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Abstract A snake-in-the-box code (or snake) of word length n is a simple circuit in an
n-dimensional cube Qn , with the additional property that any two non-neighboring words
in the circuit differ in at least two positions. To construct such snakes a straightforward,
non-recursive method is developed based on special linear codes with minimum distance 4.
An extension of this method is used for the construction of covers of Qn consisting of 2m−1

vertex-disjoint snakes, for 2m−1 < n ≤ 2m . These covers turn out to have a symmetry group
of order 2m .

Keywords Snake-in-the-box-code · Snake · Gray code · Reed-Muller code ·
Parallel system · Cover · Invariance group

AMS Classifications 11T71 · 14G50

1 Introduction

This paper is about the construction of certain ordered binary codes called snake-in-the-box
codes, or briefly snakes. In general, a snake in a graph is a simple cycle with no chords. A
chord of a cycle S is an edge of the graph which connects two non-consecutive vertices of S.
In this paper, we consider snakes in the hypercube Qn . The vertices of Qn are all 2n binary
n-tuples (also called binary words of length n), and two vertices (i.e. two binary n-tuples)
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are connected by an edge if and only if they differ in just one position (cf. e.g. [6]). A snake
in Qn is called a snake-in-the-box code.

More precisely, suppose S = w0, w1, . . . , wL−1 is a cyclic list of L words in Qn . The
distance d(wi , w j ) between two words wi and w j in Qn is defined to be the Hamming
distance of the two words. The list distance l(wi , w j ) between the two words is the minimum
number of words in Lwhen going from wi until w j , or more precisely

l(wi , w j ) := min{|i − j | , L − |i − j |}. (1.1)

Then S is a snake-in-the-box code if for every i , j satisfying 0 ≤ i , j < L ,

d(wi , wi+1) = 1 (1.2)

and

l(wi , w j ) = 1 ⇒ d(wi , w j ) = 1, (1.3)

where wL is identified with w0. So, a snake-in-the-box code is a cyclic (closed) list of words
of Qn which satisfies the nearness condition (1.2) and the separability condition (1.3).

Any cycle in Qn can be specified by a sequence of integers indicating the bit which
changes when going from one word to the next, where the bits in a binary word of length n
are labeled by 0, 1, . . . , n − 1 from left to right. This sequence is called transition sequence.
Let

T = t1, t2, . . . , tL (1.4)

be the transition sequence for the snake S of length (or range) L . Then the words wi−1 and
wi only differ in coordinate ti , 0 < i ≤ L . Since S is cyclic, we have wL = w0.

We emphasize that the adjective ‘cyclic’ for a snake here roughly means that there is
essentially no ‘first’ or ‘last’ word in the snake, i.e. the successor of the ‘last’ word is the
‘first’ word. Otherwise, the resulting snake is called an open snake. However, some authors
(e.g. Casella and Potter [4], Kochut [10]) use the term ‘snake(-in-the-box code)’ for an open,
i.e. non-cyclic snake. In terms of its transition sequence (cf. expressions (2.4), (2.8)), a snake
is cyclic if and only if every integer in the transition sequence occurs an even number of
times.

The snake S is called symmetric if its transition sequence T is of the form

T = t1, t2, . . . , tK , t1, t2, . . . , tK , (1.5)

which implies that S is cyclic and L = 2K in (1.4). Kautz [7] calls such a snake a natural
code. In this case, the second half of the word list of the snake can be obtained from the first
half by translating all words in the first half over the vector wK + w0.

Many authors have studied the problem of determining upper and lower bounds for the
maximal length s(n) of a snake in Qn(e.g. [1, 3–5, 10–12, 14–17, 22]), and also how to obtain
long snakes (e.g. [14, 18]). At present, the exact value of s(n) has been determined only for
six values of n, i.e. s(2) = 4, s(3) = 6, s(4) = 8, s(5) = 14, s(6) = 26 and s(7) = 48. All
derived upper bounds show that for n > 7, the value of s(n) satisfies λ2n−1 ≤ s(n) < 2n−1,
with 1 > λ ≥ 0.60156 . . . (cf. [1]).

A generalization of the notion of snake is a set of (vertex-)disjoint snakes. Since for n ≥ 4
at most half of the number of vertices of Qn can be incident with a snake, it is a natural
question to ask for the minimal number a(n) of disjoint snakes of equal length which cover
all 2n vertices of Qn . Such a set is called a minimal cover (by snakes) of Qn . More generally,
we call a set of p disjoint snakes of equal length covering Qn , a p-cover of Qn .
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Disjoint snakes based on a Reed-Muller code 209

A problem posed by Erdös, is to decide whether Qn can be covered with at most l disjoint
snakes for some fixed value l, i.e. if there is an integer l such that a(n) ≤ l, for all n ≥ 2.
Wojciechowski [18] proved that for l = 16, the answer is affirmative. Lukito [11] showed
that such a cover can always be established with symmetric snakes for l ≤ 32.

Constructions of snakes in Qn are mostly based on techniques of ‘extending’ snakes
existing in Qm for some m < n. The existence of these ‘basic snakes’ may have been
established in the same way or by other means, e.g. by computer search, or just by accident
(e.g. [1]). In this way, the best lower bounds for the length of a snake in Qn have been
derived. Similar techniques are applied in [3, 4, 8] for the construction of snakes, and more
generally, for the construction of circuit codes. Also Wojciechowski’s approach for proving
the existence of covers of Qn by snakes is not based on a straightforward construction of
concrete snakes.

A different approach for the construction of snakes is presented by Paterson and Tuliani
[14]. This approach exploits the symmetry properties of necklaces. A necklace is an ordered
list of the words of a constant-weight binary cyclic code. Here also a computer search is used
to get some basis objects.

Our major goal in this paper is to construct snakes in a more straightforward way, i.e. by a
non-recursive method. Moreover, we require our method to be extendable for the construction
of covers of Qn by vertex-disjoint snakes, possibly improving the result of Wojciechowski [18]
for certain values of n.

In this paper we shall apply binary linear algebraic [n, k, d]-codes. Such a code is a
k-dimensional linear subspace of GF(2)n with the additional property that any two different
vectors (or words) have a Hamming distance at least d (cf. e.g. [13]). Many of these codes
appear to have a basis of words of weight d [19].

Our construction starts from a minimum-weight(-d) basis of some linear algebraic code
C. The weight-d basis vectors are arranged according to a standard Gray code, resulting in
an ordered cyclic list of the codewords of C, such that each codeword is at Hamming distance
d from the previous one [19]. This framework constitutes the skeleton of the snake to be
constructed.

In order to obtain the whole snake, we have to change the d bits, going from one codeword
of C to the next one, in such an order that the separability condition (no chords) (1.3) of a
snake is satisfied. Several variations and generalizations of this method seem to be possible.
We refer to [20] where a similar method was used for the construction of distance preserving
codes and covers of GF(2)n by such codes.

In this paper, we apply the method above for d = 4. Apart from being symmetric due to
the applied standard Gray code, our snakes have some additional structure, because of the
linearity of the underlying code C. This partial linear structure of the snakes is exploited for
the construction of covers of Qn by symmetric snakes.

The outlines of the paper are as follows. Since our construction method heavily relies
on Gray codes, we discuss in Sect. 2 a number of properties of the well-known standard
or binary-reflected Gray code G(n). Another major tool throughout the paper is the binary
Reed-Muller code R(m − 2, m), for m ≥ 3. Therefore, Sect. 2 contains also a number of
relevant properties of Reed-Muller codes. The reason for using this code as well as defining
it in terms of EG(m, 2), is that its geometrical structure enables us to satisfy the so called
fixed-position property, which is an essential element of our approach.

Section 3 contains the details of our method to construct snakes of length 2k+2 in Qn

based on a linear [n, k, 4]-code. In Sects. 4 and 5, this general method is applied by making
use of R(m − 2, m), which is a special minimum-distance-4 code with n = 2m . The order
in which bits have to be changed going from one codeword of R(m − 2, m) to the next
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one (see above) will be prescribed by using a complete set of parallel flats in EG(m, 2), the
underlying structure of R(m − 2, m). Finally, in Sect. 6, the (partial) linear structure of the
snakes constructed in the previous section is exploited to obtain covers of Qn by snakes.
More precisely, it is proved that one can construct covers of Qn by 2m−1 symmetric snakes,
for any n which satisfies 2m−1 < n ≤ 2m , m ≥ 3. Such a cover is invariant for a translation
group of order 2m . This invariance property is the subject of Sect. 7.

So, not only do we have now a straightforward method to construct snakes and covers
of Qn by snakes, but these snakes and covers also have some algebraic structure. It turns
out that such a cover is completely determined by a special kind of basis of R(m − 2, m).
Moreover, for the ranges 4 < n ≤ 8 and 8 < n ≤ 16, the number of snakes in our covers of
Qn is less than the upperbound 16 derived by Wojciechowski [18].

As for our notation, we shall stick to the widely used convention to label the bits of a
codeword of the standard Gray code G(n) from 1 until n, and from right to left, since this is
convenient for the index problem and for all properties which are proven by induction. On the
other hand, if we are dealing with snake-in-the-box codes in Sects. 3 until 7, we shall label
the bits of the codewords from 0 until n − 1, and from left to right, since these codewords
originate from a vector space GF(2)n where the labeling of vector components is similar.
Since the standard Gray code G(k) is only used as an auxiliary tool to label the k basis vectors
of the underlying [n, k, 4]-code, the two different conventions do not interfere.

As was already remarked in the first lines of this Introduction, the vertices of the hypercube
Qn are, by definition, the binary words of length n, or equivalently, the vectors of GF(2)n .
When discussing the algebraic structure of the snakes to be constructed, we mostly shall
use the term ‘vector’ to denote these vertices. However, when we want to emphasize the
graph-theoretical aspects of our construction, we just call them ’vertices’.

2 Relevant properties of standard Gray codes and Reed-Muller codes

Let Qn be the n-dimensional cube (hypercube), or shortly n-cube. This is the graph with all
2n binary words of length n as vertices, and all pairs of vertices which differ in precisely one
coordinate as edges.

A cyclic Gray code is a simple cycle in Qn . If this cycle is incident with all 2n vertices of
Qn , one speaks of a complete cyclic Gray code, otherwise one calls this Gray code incomplete.
If not stated explicitly in this paper, the term ‘cyclic Gray code’ implies completeness. A
snake, as defined in Sect. 1, is a Gray code which satisfies the extra condition (1.3), and which
for n > 2 is always incomplete.

A cyclic Gray code can also be defined as a Hamilton cycle in Qn , i.e. circuit in Qn

containing any of the 2n vertices precisely once. Equivalently, a cyclic Gray code G(n) is
a sequence of n-bit words such that two successive words differ in precisely one position,
where we interpret the first word of the sequence as the successor of the last word.

The best known example of such a code is the binary reflected or standard Gray code. If
we define

G(1) =
(

0
1

)
, (2.1)

then G(n), n > 1, can be defined recursively as the list of ordered rows of a 2n × n matrix

G(n) =
(

0 G(n − 1)

1 G R(n − 1)

)
(2.2)
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where G R(n − 1) stands for the reversed list of G(n − 1), i.e. the i th word of G R(n − 1) is
the (2n−1 − 1 − i)-th word of G(n − 1), 0 ≤ i ≤ 2n−1 − 1.

For some fixed n ≥ 1, all 2n codewords of G(n) can also be generated by the symmetric (or
non-cyclic) transition sequence Sn as follows. This non-cyclic transition sequence of G(n)

can be defined recursively by

S1 = 1, Sn = Sn−1, n, Sn−1, (2.3)

and for every positive integer n > 1. If we write

Sn = s1, s2, . . . , s2n−1, (2.4)

then with g0 = 0, the words in the standard Gray code

G(n) = g0, g1, . . . , g2n−1 (2.5)

are constructed consecutively such that for every x ∈ {1, 2, . . . , 2n − 1}, the nonzero word
gx is determined by changing in gx−1 the sx -th bit from the right.
A useful form of the list G(n) is obtained by partitioning it into 2n−i sublists of size
2i , starting from 0, i.e.

G(n) = G0
i (n), G1

i (n), . . . , G2n−i −1
i (n) (2.6)

for some i , 1 ≤ i ≤ n − 1. The non-cyclic lists G j
i (n) all have the same transition sequence

Si . More explicitly, we can write the transition sequence (2.4) as

Sn = Si , i + 1, Si , i + 2, . . . , Si , n, Si , . . . , i + 2, Si , i + 1, Si . (2.7)

This form can be derived by repeatedly applying the second equality of (2.3).
Since G(n) is a cyclic Gray code, we also introduce its complete transition sequence

Sn := Sn, n, (2.8)

where the integer n indicates the transition from the last word to the first word of G(n).
The Gray code G(n), n > 1, and its transition sequence Sn satisfy many well-known

symmetry relations like (1.5) with K = 2n−1. All these relations are easily derived from
(2.3). For a review and proofs, we refer to [9, 21]. In addition to (1.5), we shall need a few
other properties of G(n) in the next sections. Though these properties are not too well-known,
we leave out the proofs, since they are almost as simple as the ones we referred to above.
In order to formulate these properties, we next introduce the notion of contents for some
subsequence of a given transition sequence.

Definition 2.1 Let T be a subsequence of the transition sequence of some cyclic Gray code.
Then the contents c(T ) of T is the set of those integers which occur an odd number of times
in T .

If T stands for the series of transitions when going from g to h in the list of code-words, the
integers in c(T ) indicate the bit positions where g and h are different, or equivalently, sup
g + h = c(T ), where sup v stands for the support of a vector v.

Theorem 2.1 Let T := i, T’, j be a subsequence of the transition sequence Sn of the standard
Gray code G(n), n > 1.

(i) if 1 < i < j or 1 < j < i , then |c(T )| is odd and min c(T ) = i −1 or min c(T ) = j −1,
respectively;
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(ii) if i = j , then |c(T )| is odd and min c(T ) ≥ i for i < n, while c(T ) �= {i}, and
c(T ) = {i − 1} for i = n;

(iii) if i = 1, j > 1 or i > 1, j = 1, then |c(T )| is even;
(iv) if T R = T , then either i = j < n and c(T ) = {m} for some m > i , or i = j = n and

c(T ) = {n − 1}.
Theorem 2.2 Let Sn be the transition sequence of the standard Gray code G(n) and let X
be an arbitrary fixed subset of {1, 2, . . . , n}, n ≥ 3, with |X | odd, and i0 := min X. If one
defines i := i0 + 1 then

(i) if 1 < i < n, then for any j with i < j ≤ n, there exists a subsequence T = i, T ′, j of
Sn such that c(T ) = X;

(ii) if 1 < i ≤ n, then for any j with i < j ≤ n, there exists a subsequence T = j, T ′, i
of Sn such that c(T ) = X;

(iii) if 1 < i ≤ n, then for any j with 1 ≤ j ≤ i − 1, there exists a subsequence T = j, T ′,
j of Sn such that c(T ) = X;

For explicit proofs, we refer to [21].
Any of the 2n−i sublists G j

i (n) in (2.6) can be obtained from any other such sublist by
adding a fixed binary vector from G F(2)n to all its vectors, due to their identical transition
sequences Si in (2.7). In order to formulate this property in a precise way, we introduce
vectors ek,l in GF(2)n which have, by definition, ones at positions k and l from the right and
zeros elsewhere, where k, l ∈ {1, 2, . . . , n}, with k �= l.

Theorem 2.3 The sublists G j
i (n) of the standard Gray code G(n), n ≥ 2, are related to

each other by the recurrence relation

G j
i (n) = G j−1

i (n) + ei,i+s j , 0 < j ≤ 2n−i , (2.9)

where the integers s j are the elements of the transition sequence Sn−i of G(n − i).

The second major tool for our method to construct snakes are Reed-Muller codes. The
binary r -th order Reed-Muller code R(r, m) is a linear [n, k, d]-code with

n = 2m, d = 2m−r , k =
r∑

i=0

(
m
i

)

for integers m ≥ 2 and 0 ≤ r ≤ m. For a precise definition we refer to standard textbooks like
[13]. Occasionally, the codewords c of R(r, m) are interpreted as characteristic vectors χ(S)

of certain subsets S of the vector space G F(2)m . Moreover, this vector space is identified
with the Euclidean Geometry EG(m, 2) (cf. [13]).

An r-dimensional subspace or r-flat in EG(m, 2) is by definition an r -dimensional sub-
space of G F(2)m or a coset of such a subspace. Within this context, the ones in a codeword
c = χ(S) correspond to the points (zero-dimensional subspaces) of S.

In this paper we adopt the above interpretation, since the geometric notions appear to be
convenient and helpful tools to formulate and to understand our construction of snakes in Qn .
In particular the so-called parallel systems, which are complete families of disjoint r -flats
covering EG(m, 2), will play a main role in our method. As for our notation, we denote
the points of EG(m, 2) by p0, p1, . . . . . . , p2m−1, where the labeling is such that the index
i of pi , when written as a binary number of length m, is identical to the reversed vector pR

i
(Remember that we label the components of a vector of GF(2)m from 0 until m − 1 from left
to right).
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Disjoint snakes based on a Reed-Muller code 213

This choice of labeling implies, for i , j ∈ {0, 1, . . . , 2m −1}, that we can write pi +p j =
pi⊕ j , where we assume that i and j are written as binary numbers of length m, and where the
symbol ⊕ stands for bitwise addition modulo 2, also known as Nim addition. In the next we
shall mostly denote the points of EG(m, 2) by their labels represented as decimal numbers.
Consequently, a subset S = {pi , p j , . . . , pl} will be represented by S = {i, j, . . . . . . . . . , l},
and a coset S + pa := {pi + pa, p j + pa, . . . , pl + pa} is represented by

S ⊕ a = {i ⊕ a, j ⊕ a, . . . . . . . . . , l ⊕ a}. (2.10)

A useful property of the code R(r, m) is that it is spanned by its minimum-weight codewords
of weight d = 2m−r [13, Ch. 14], which are the characteristic vectors of (m − r)-flats in
EG(m, 2).

3 A general method to construct snakes applying an [n, k, 4]-code

Let C be some [n, k, 4]-code with basis B = (b1, b2, . . . , bk) such that ‖bi‖ = 4, for
1 ≤ i ≤ k. We assume that these basis vectors are ordered with respect to some, still
unspecified, criterion giving rise to the ordered basis B.

We can define an ordered list for the codewords of C in the following way. Starting from
the zeroword c0 = 0, we define the codewords of C recursively, by using the integers s j ,
1 ≤ j < 2k , of Sk (cf. (2.4))

c0 := 0, ci+1 = ci + bsi+1 , 0 ≤ i < 2k − 1. (3.1)

Because of the properties of the Gray code and because of the constant weight 4 of all vectors
bi , the list C is a complete list of the 2k codewords c0, c1, . . . , c2k−1 such that each codeword
is at Hamming distance 4 from the previous one (cf. also [19]). Moreover, this last property
holds cyclically. In order to arrive at a list of 4 · 2k binary words satisfying the condition that
each word differs from the previous one in precisely one bit, we transform ci into ci+1 in
(3.1) by changing the four bits with labels in sup bsi+1 , one after another. This gives rise to
intermediate words w1

i , w2
i and w3

i between ci and ci+1, 0 ≤ i ≤ 2k − 1.
To specify the order in which the four bits have to be changed, we introduce the notion

of ordered block. If sup bi = {i1, i2, i3, i4}, we define Bi = (i1, i2, i3, i4) where the four
integers of sup bi are ordered according to some rule. This order is called the internal order
of the block Bi , 1 ≤ i ≤ k.

In this paper, the internal order of the blocks will be determined by a property which we
call the fixed-position property and which will be defined in Definition 3.1. The list of blocks
B := (B1, B2, . . . , Bk) is called the block list corresponding to B. The order of the blocks in
B is called the outer order of the blocks. The sequence

Sk(B) = B1 B2 B1 B3 . . . B1 B2 B1 Bk B1 B2 B1 B3 . . . B1 B2 B1 Bk, (3.2)

where the block labels are arranged according to Sk (cf. (2.4) and (2.8)), can now be interpreted
as a transition sequence of length 4 · 2n for binary words of length n, when the symbols Bi

in (3.2) are replaced by the ordered sets (i1, i2, i3, i4), 1 ≤ i ≤ k.
Applying (3.2), starting from the zeroword 0, provides us with the following list of words

of length n

c0 := 0, w1
0, w2

0, w3
0, c1, w1

1, w2
1, w3

1, . . . , c2k−1, w1
2k−1, w2

2k−1, w3
2k−1. (3.3)

We shall prove that under certain conditions concerning the basis B, the outer order and
the internal order of the blocks Bi , 1 ≤ i ≤ k, the 2k+2 words of (3.3) constitute a snake.

123



214 A.J. van Zanten, L. Haryanto

Not only must the words in (3.3) be different, but they also have to be at distance at least 2
(in cyclic sense) from each other when they are not neighbors.

Definition 3.1 A block list B = (B1, B2, . . . , Bk) is said to satisfy the fixed-position pro-
perty, if the internal order of the blocks of B is such that any integer of the set {0, 1, . . . , n−1}
has a fixed position in each block of B in which it occurs. In this case, the set of integers
{0, 1, . . . , n − 1} can be partitioned into four subsets I1, I2, I3 and I4 such that an integer
i ∈ Ia , a ∈ {1, 2, 3, 4}, can only occur in position a in the blocks B1, B2, . . . , Bk .

Lemma 3.1 Let C be an [n, k, 4]-code with an ordered minimum-weight basis B= (b1, b2,

. . . , bk) such that the corresponding list of blocks B=(B1, B2, . . . , Bk) satisfies the fixed-
position property. Let c ∈ C be some codeword with W := sup c. Then the parity of |Ia ∩ W |
is the same for all a ∈ {1, 2, 3, 4}.

Proof The proof follows immediately from the expression of c w.r.t. the basis B, i.e. c =
∑k

l=1
clbl , cl ∈ {0, 1}, and from the fixed-position property. 
�

We shall consider subsequences of (3.2) of type

T = Bi , T ′, B j , 1 ≤ i, j ≤ k. (3.4)

More in particular, we shall consider the contents c(T ) of such subsequences (cf. Defini-
tion 2.1). Since subsequence (3.4) consists of complete blocks, its contents is the support of
some codeword c ∈ C. We therefore define W := sup c = c(T ). If i = 1, j > 1 or i > 1,
j = 1, c is the sum of an even number of basis vectors bl ∈ B, whereas in all other cases,
c is the sum of an odd number of basis vectors (cf. Theorem 2.1). On the other hand, if c is
some codeword of C, it can be written as the sum of a number of basis vectors of basis B, i.e.

c =
∑
l∈X

bl , (3.5)

where the index set X is some subset of {1, 2, . . . , k}. We define for our convenience,

i0 := min X. (3.6)

Using Theorem 2.1(i), we can write for (3.5) in the case 1 < i < j that

c = bi0 +
∑

l≥i0+1

bl (3.7)

with i0 = i − 1, and where the summation index l now runs through the index set X\ {i0}.
We shall write e j , 0 ≤ j < n, for the unit vectors in GF(2)n with (e j )i = δi j , where i runs
from 0 until n − 1 from left to right. So, Bi = (i1, i2, i3, i4) corresponds to the basis vector

bi = ei1 + ei2 + ei3 + ei4 .

For our convenience, and because of the role of index i(= i0 + 1) in (3.7), we shall assume
occasionally, when studying sequence (3.4), that i ≤ j . In order to cover all possibilities,
we then also have to take into account sequences B j , T ′, Bi . We now prove a necessary and
sufficient criterion for a block system or block list B to generate a snake.

Theorem 3.1 Let B = (B1, B2, . . . , Bk) be a block list corresponding to an ordered
minimum-weight basis of an [n, k, 4]-code C satisfying the fixed-position property. Then
the sequence Sk(B) of (3.2) is the transition sequence of a snake of length 2k+2 if and only
if there is no codeword c ∈ C, as expressed by (3.7), such that its support W is one of the
following sets
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x + y

c

bi

c + bi + bj
bj

x yc' c"

z"z'

c1 c2

Fig. 1 Partitioning the list of codewords

(i) W = {i1, i2, p3, j4};
(ii) W = {i1, q2, j3, j4};

(iii) W = { j1, j2, p3, i4};
(iv) W = { j1, q2, i3, i4},

for 1 < i < j ≤ k, and for any p and q with p, q ∈ {1, 2, . . . , k}.
Proof Let S be the list of words generated by Sk(B) as transition sequence, starting from the
zeroword 0. Let x and y be two words of S. We can write, w.l.o.g., x = c′+z′ and y = c′′+z′′,
where c′, c′′ ∈ C and where z′ is one of the vectors 0, ei1 , ei1 + ei2 , ei1 + ei2 + ei3 , and z′′ is
one of the vectors 0, e j4 , e j3 + e j4 , e j2 + e j3 + e j4 , for some i , j ∈ {1, 2, . . . , k}.

We partition the sequence Sk(B) as Sk(B) = T ′′, Bi , T ′, B j , T ′′′ where the sub-sequence
T := Bi , T ′, B j corresponds to the sublist of S in Fig. 1. If c := c′ + c′′ is the codeword of
C that corresponds to T , we have that W = sup c = c(T ).

If T ′ is empty then either j > 1, i = 1 or i > 1, j = 1 and it is obvious that dS(x, y) > 1
is equivalent to d(x, y) > 1. In the remaining part of this proof, we assume that T ′ is not
empty. For similar reasons, we assume that the sublist T ′′′, T ′′ is not empty (remember that
S is a circular list). We shall first prove that if the conditions of the theorem hold, the list S
is a snake.
A. Assume d(x, y) = 0. It follows that c = c′ + c′′ = z′ + z′′. The assumption T ′′′, T ′′ �= ∅
implies that c �= 0. Since c ∈ C, the weight ‖c| of c equals 4 or 6. More in particular, due to
the possibilities for z′ and z′′, we have the following possible expressions for c.

(a) c = ei1 + e j2 + e j3 + e j4 ;
(b) c = ei1 + ei2 + e j3 + e j4 ;
(c) c = ei1 + ei2 + ei3 + e j4 ;
(d) c = ei1 + ei2 + ei3 + e j2 + e j3 + e j4 .

The cases (a), (c) and (d) do not occur, since then we would have
∥∥c + b j

∥∥ = 2,
‖c + bi‖ = 2 and

∥∥c + bi + b j
∥∥ = 2, respectively, violating the minimum distance 4

of C. With respect to case (b), we remark that c is the sum of an odd number of basis vectors
as a consequence of the fixed-position property, and therefore i = j or i > 1, j > 1 or both
(cf. Theorem 2.1). Now i = j in (b) yields c = bi which contradicts Theorem 2.1(ii). For
i �= j , a word of type (b) can not occur because of the conditions of the theorem (take p = j
in (i) or q = i in (ii)).
B. Assume d(x, y) = 1.

Now, x + y = et for some t ∈ {1, 2, . . . , n}, and it follows that c = z′ + z′′ + et . Since
c ∈ C, we have again that ‖c‖ is equal to 4 or 6. The only possibilities for c with ‖c‖ = 4 are
(cf. (3.4))
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(e) c = et + e j2 + e j3 + e j4 , t ∈ I1\{i1, j1};
(f) c = ei1 + et + e j3 + e j4 , t ∈ I2\{i2, j2};
(g) c = ei1 + ei2 + et + e j4 , t ∈ I3\{i3, j3};
(h) c = ei1 + ei2 + ei3 + et , t ∈ I4\{i4, j4}.

Cases (e) and (h) do not occur, since then we would have
∥∥c + b j

∥∥ = 2 and ‖c + bi‖ = 2,
respectively, which violates the minimum distance 4 of C. Cases ( f ) and (g) do not occur
because of the conditions of the theorem.

The possibilities for c with ‖c‖ = 6 are

(i) c = ei1 + ei2 + et + e j2 + e j3 + e j4 , t ∈ I3\{i3};
(j) c = ei1 + ei2 + ei3 + et + e j3 + e j4 , t ∈ I2\{ j2}.

It will be clear that any choice for t will contradict Lemma 3.1. So, we have proved now the
if part of the theorem.

Next, we shall prove the only-if part. Let S be a snake. Assume that the conditions of the
theorem do not hold. Then there exists a c ∈ C (cf. Eq. 3.7)

c =
∑
l∈X

bl = bi−1 +
∑
l≥i

bl

for some X ⊆ {1, 2, . . . , k}, min X = i − 1, such that its contents W is equal to one of the
sets (i)–(iv) mentioned in the theorem.

E.g., let W = {i1, i2, p3, j4} with 1 < i < j . From Theorem 2.2(i), we know that the
transition sequence Sk of the standard Gray code G(k) contains a subsequence T = i , T ′, j
with c(T ) = X (remember that the codewords of C are ordered with respect to the standard
Gray code G(k) of length k, which is the dimension of C, whereas n stands for the length of
codewords in C, contrary to the role of n in Sect. 2).

It follows that Sk(B) contains a subsequence T = Bi , T ′, B j with

c(T ) = W = {i1, i2, p3, j4}, 1 < i < j.

If p3 = i3, we take z′ = ei1 + ei2 + ei3 and z′′ = e j4 (cf. the beginning of this proof), and
we obtain words x = c′ + z′, y = c′′ + z′′ with mutual distance

d(x, y) = ‖x + y‖ = ∥∥c + z′ + z′′∥∥ = 0.

This contradicts our assumption that S is a snake. Similarly, p3 = j3 gives d(x, y) = 0. If
p3 �= i3, j3, we take z′ = ei1 + ei2 and z′′ = e j4 giving rise to

d(x, y) = ∥∥ep3

∥∥ = 1,

which also contradicts the assumption that S is a snake. A similar argument can be given in
case (ii). In cases (iii) and (iv) we consider the codeword c′ = c + bi + b j which can also
be expressed in the form of Eq. 3.7 since i > i − 1 and j > i − 1. Similarly as in cases
(i) and (ii), we now can derive contradictions. Therefore, the conditions of the theorem are
necessary as well. 
�

Example 3.1 We first give a simple example of a snake of range 64 in Q8, generated by four
vectors that are represented by the block list B = (B1, B2, B3, B4) with

B1 = (0, 2, 4, 5), B2 = (1, 2, 4, 6), B3 = (1, 3, 7, 6), B4 = (1, 3, 4, 5).
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These blocks correspond to four independent vectors of weight 4 in GF(2)8, which are the
basis vectors of an [8,4,4]-code. It is obvious that they satisfy the fixed-position property.
Substituting the blocks in the sequence (3.2) for k = 4 gives

S4(B) = B1 B2 B1 B3 B1 B2 B1 B4 B1 B2 B1 B3 B1 B2 B1 B4.

One can easily verify that the codewords c, as expressed by (3.7) cannot be of type (i) or (ii),
nor of type (iii) or (iv), as formulated in Theorem 3.1. Therefore, the sequence S4(B) is the
transition sequence of a snake of range 4 · 24 = 26.

In practice, we shall make use of block lists such that the integers 11, 21, . . . , t1, are all
different, while t1 = (t + 1)1 = · · · = k1. We shall say that the list is ordered in standard
form with respect to the integers of I1, or shortly, that the list is in standard form. The integers
11, 21, . . . , (t − 1)1 correspond to pivots in the basis vectors b1, b2, . . . , bt−1, respectively,
and can be used to transform the set {b1, b2, . . . , bt−1} to echelon form. For such a list, we
are able to formulate a sufficient criterion for the construction of a snake based on that list,
only in terms of the blocks themselves.

Theorem 3.2 Let B = (B1, B2, . . . , Bk) be a block list corresponding to an ordered
minimum-weight basis of an [n, k, 4]-code C, satisfying the fixed-position property. Let
furthermore B be in standard form. Then B can be transformed into a list B′ corresponding
to an equivalent basis of C such that B′ generates a snake of length 2k+2, if each block B j of
B with t ≤ j < k, satisfies at least one of the following conditions:

(i) the integer j2 or j4 does not occur in any of the blocks Bl , l > j ;
(ii) the integer j3 does not occur in any of the blocks Bl , l > j , and |B j ∩ B j+1| = 1.

Proof We shall prove that the conditions of Theorem 3.1 can always be met by transforming
B into an appropriate equivalent block list B′. From the conditions of the theorem we know
that the integers 11, 21, . . . , (t − 1)1 are all distinct and that t1 = (t + 1)1 = . . . = k1.

Suppose there is a codeword c = bi−1 + ∑
l≥i bl (cf. (3.7)) with sup c equal to one of

the types (i)– iv) of Theorem 3.1. Then we would have (i − 1)1 ∈ sup c for i ≤ t , which
contradicts (i −1)1 �= i1. For t < i , we obtain similar contradictions if Bi satisfies condition
(i).

Suppose there is a block Bi , t < i , which only satisfies condition (ii), and let there be a
codeword c = bi−1 + ∑

l≥i bl with sup c= {t1, i2, p3, j4}, t < i < j < k. This cannot
happen if (i– 1)2 or (i − 1)4 does not occur in blocks Bl , l ≥ i . So, (i − 1)3 does not occur in
blocks Bl , l ≥ i , while (i − 1)2 and (i − 1)4 do. It follows that p3 = (i − 1)3 and p = i − 1.
Now c �= bi−1, since c = bi−1 would imply (i − 1)2 = i2 contradicting |B j ∩ B j+1| = 1,
for j = i −1. We define b′

i−1 := c and replace Bi−1 in the block list B by B ′
i−1, thus defining

a new list B′. This list B′ also satisfies the condition that each block contains at least one
integer that does not occur in blocks with higher index because (i −1)3 ∈ B ′

i−1 and (i −1)3 ∈
B ′

l , l ≥ i .
The relation c = bi−1 + ∑

l≥i bl must now be written as c′ := bi−1 = b′
i−1 + ∑

l≥i bl

with sup c′={t1, (i − 1)2, (i − 1)3, (i − 1)4}. Since i2 �= (i − 1)2 and i4 �= (i − 1)4, this
support is not of type (i), (iii) or (iv) of Theorem 3.1, with respect to the new list B′. Neither is
it of type (ii), because that would imply c′ = b j = bi−1, which is false since j > i . Similar
replacements can be made if c is of type (ii), (iii) or (iv) of Theorem 3.1. Hence, by carrying
out this process for i = t + 1, t + 2, . . . , k, and anytime if necessary, replacing Bi−1 by an
equivalent independent block B ′

i−1, we can transform B into a block list B′ which satisfies
the condition of Theorem 3.1. 
�
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Remarks As is clear from the statement as well as from the proof, the conditions of
Theorem 3.2 are sufficient. However, they are not necessary for a block list to generate a
snake. For a counter example, we refer to the list given in [21, Fig. 3]

The conditions of Theorem 3.2 imply that the code C has a minimum-weight basis in
echelon form with the additional property that, if j3 ∈ I3 is the only pivot of b j , one has

‖ b j + b j+1 ‖= 6.

4 Parallel systems in EG(m, 2) and the fixed-position property

Let S be an r -dimensional linear subspace of EG(m, 2). Then S and its cosets are pairwise
disjoint. We consider a complete family P of cosets, i.e.

P := {S ⊕ i1, S ⊕ i2, . . . , S ⊕ il} (4.1)

with i1 = 0, i2, . . . , il ∈ {1, 2, . . . , 2m − 1} (cf. (2.10)) such that⋃
j

(S ⊕ i j ) = V . (4.2)

The disjoint cosets in (4.1) will be called parallel subspaces or parallel flats. Since the
union of cosets contains all points of EG(m, 2), we call P a parallel system of flats covering
EG(m, 2), or shortly a cover of EG(m, 2). Obviously, the number l of parallel r -flats in
EG(m, 2) is equal to 2m−r .

In the remaining part of this paper, we shall focus on codes R(m − 2, m), m ≥ 3, which
are [n, k, 4]-codes and which are spanned by words of weight 4. We shall prove that for
any m ≥ 3, R(m − 2, m) has a weight-4 basis which satisfies the fixed-position property, as
defined in Definition 3.1.

We first remark that the sum of all vectors of a linear subspace over GF(2) is equal to 0,
and hence the Nim sum of their labels equals 0. Since the integers in a coset are obtained
from the integers in some linear subspace by addition of a fixed integer, the same property
holds for any coset. We now take for S in (4.1) an (m − 2)-dimensional linear subspace. It
follows that l = 4, and we write

I j := S ⊕ i j , j ∈ {1, 2, 3, 4}. (4.3)

Theorem 4.1 Let P={I1, I2, I3, I4} be some parallel system of (m − 2)-flats covering
EG(m, 2) and let B be an arbitrary 2-flat. Then the intersections of B with the flats Ii satisfy
one of the following relations:

(i) |B ∩ Ii | = 1, for all i ∈ {1, 2, 3, 4};
(ii) |B ∩ Ii | = |B ∩ I j | = 2, for some i, j ∈ {1, 2, 3, 4}, i �= j ;

(iii) |B ∩ Ii | = 4, for some i ∈ {1, 2, 3, 4}.
Proof Assume that there is an i ∈ {1, 2, 3, 4} such that B = {a, b, c, d} has at least two
points - say a and b - in common with Ii . Then it follows that a⊕b ∈ I1 and hence, c⊕d ∈ I1,
since a⊕b⊕c⊕d = 0. But then c and d are both in I j , for some j ∈ {1, 2, 3, 4}. If i = j , we
are in case (iii), and if i �= j we are in case (ii). If our assumption is false, we are in case (i). 
�

Theorem 4.2 For the code R(m − 2, m), m ≥ 3, there exists a minimum-weight basis

B = (b1, b2, . . . , bk)
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such that the ordered blocks Bi corresponding to sup bi , 1 ≤ i ≤ k, all satisfy the fixed-
position property with respect to any parallel system P of (m − 2)-flats covering EG(m, 2).

Proof Let P be some given parallel system of (m − 2)-flats. Let B be a 2-flat which is of
type (ii) (cf. Theorem 4.1) with respect to P, e.g. B = (a1, b1, a2, b2), where a1, b1 ∈ I1 and
a2, b2 ∈ I2. We remark that any 2-flat is uniquely determined by three of its four points and
that any of its points is the Nim sum of the others when using the binary representation. We
shall say in the next that a block has a zero-Nim-sum.

Hence, for any c3 ∈ I3, the block (a1, a2, c3, c4) with c4 = a1 ⊕a2 ⊕c3 stands for a 2-flat.
Since a1 ⊕ a2 ⊕ b1 ⊕ b2 = 0, it follows that b1 ⊕ b2 ⊕ c3 ⊕ c4 = 0 and hence (b1, b2, c3,
c4) also represents a 2-flat. Now, we can write (a1, b1, a2, b2)=(a1, a2, c3, c4) � (b1, b2, c3,
c4), which shows that B can be written as the sum of two blocks satisfying the fixed-position
property. Here, the notation B�B ′ stands for the symmetric difference of the blocks B and
B ′ being considered as sets, and it represents the sum of the corresponding vectors.

Similar arguments can be raised for 2-flats of type (iii), say for (a1, b1, c1, d1). For any
e2, s2 ∈ I2 and any f3 ∈ I3, we can find a t3 ∈ I3 such that

(a1, b1, c1, d1) = (a1, e2, f3, g4)�(b1, e2, f3, h4)�(c1, s2, t3, g4)�(d1, s2, t3, h4),

and where the four blocks on the RHS all represent 2-flats. This also illustrates that all blocks
representing a 2-flat of type (iii) can be written as a sum of blocks satisfying the fixed-position
property. From Sect. 2 we know that R(m − 2, m) is spanned by its weight-4 vectors, i.e. by
some of the 2-flats in EG(m, 2).

From the above considerations it now follows that R(m − 2, m) is also spanned by the
subset of its weight-4 vectors the corresponding blocks of which satisfy the fixed-position
property. 
�

The following obvious theorem appears to be useful for the construction of minimum-
weight bases for R(m − 2, m) codes.

Theorem 4.3 Let B = (b1, b2, . . . , bk) with k = ∑m−2
i=0 (m

i ) be a set of independent binary
vectors of length n = 2m and of weight 4. If the corresponding blocks Bi , 1 ≤ i ≤ k, have
zero-Nim-sum, then B generates the Reed-Muller code R(m − 2, m).

Example 4.1 We present the following basis for the code R(2, 4) as a block list B in standard
form.

B1 = (3, 4, 8, 15),

B2 = (2, 4, 8, 14),

B3 = (1, 4, 8, 13),

B4 = (0, 4, 8, 12),

B5 = (0, 7, 8, 15),

B6 = (0, 6, 8, 14),

B7 = (0, 7, 10, 13),

B8 = (0, 6, 10, 12),

B9 = (0, 7, 9, 14),

B10 = (0, 5, 9, 12),

B11 = (0, 7, 11, 12).
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The blocks satisfy the fixed-position property with respect to the parallel system P = {I1, I2,
I3, I4}, with I1 = {0, 1, 2, 3}, I2 = {4, 5, 6, 7}, I3 = {8, 9, 10, 11}, I4 = {12, 13, 14, 15}.

As one can easily verify, each block in the list contains at least one integer which does
not occur in blocks with a higher index. For each block we selected such a pivot and marked
it by an underscore. So, the corresponding basis vectors can be put in echelon form and
are independent. Since furthermore all blocks have zero-Nim-sum, the basis B generates the
code R(2, 4), which is a [16, 11, 4]-code, according to Theorem 4.3. It appears, by applying
Theorems 3.1 and 3.2, that the above block list generates a snake in Q16 of length 213. This
was verified by a computer program.

In the next section, we shall present a basis for R(m − 2, m), for all m ≥ 3, the corres-
ponding block list of which has a similar structure as the one in Example 4.1.

5 Snakes based on a special basis of R(m − 2, m)

In EG(m, 2), m ≥ 3, we introduce the parallel system P = {I1, I2, I3, I4} consisting of four
(m − 2)-flats defined as

I1 = {0, 1, . . . , 2m−2 − 1 },
I2 = {2m−2, 2m−2 + 1, . . . , 2m−1 − 1 },
I3 = {2m−1, 2m−1 + 1, . . . , 2m−1 + 2m−2 − 1},
I4 = {2m−1 + 2m−2, 2m−1 + 2m−2 + 1, . . . , 2m − 1 }

with respect to P , we now develop a kind of canonical basis and a corresponding block list
B(m) which we shall call the canonical block list of R(m − 2, m). This block list B(m)

consists of three sublists B1, B2 and B3. Sublist B1 is defined as

B1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(2m−2 − 1, 2m−2, 2m−1, 2m − 1 ),

(2m−2 − 2, 2m−2, 2m−1, 2m − 2 ),
...

...
...

...

( 1, 2m−2, 2m−1, 2m−1 + 2m−2 + 1).

The first integer in every block is marked by an underscore, meaning that this integer stands
for a pivot in the complete basis to be constructed. Sublist B3 is built up as follows

B1
3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0, 2m−1 − 1, 2m−1, 2m − 1 ),

(0, 2m−1 − 2, 2m−1, 2m − 2 ),

(0, 2m−1 − 1, 2m−1 + 2, 2m − 3 ),

(0, 2m−1 − 2, 2m−1 + 2, 2m − 4 ),
...

...
...

...

(0, 2m−1 − 1, 2m−1 + 2m−2 − 2, 2m − 2m−2 + 1),

(0, 2m−1 − 2, 2m−1 + 2m−2 − 2, 2m − 2m−2 ),

B2
3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0, 2m−1 − 1, 2m−1 + 1, 2m − 2 ),

(0, 2m−1 − 3, 2m−1 + 1, 2m − 4 ),

(0, 2m−1 − 1, 2m−1 + 5, 2m − 6 ),

(0, 2m−1 − 3, 2m−1 + 5, 2m − 8 ),
...

...
...

...

(0, 2m−1 − 1, 2m−1 + 2m−2 − 3, 2m − 2m−2 + 2),

(0, 2m−1 − 3, 2m−1 + 2m−2 − 3, 2m − 2m−2 ),
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...
...

...
...

Bm−2
3 =

{
(0, 2m−1 − 1, 2m−1 + 2m−3 − 1, 2m − 2m−3),

(0, 2m−1 − 2m−3 − 1, 2m−1 + 2m−3 − 1, 2m − 2m−2),

Bm−1
3 = (0, 2m−1 − 1, 2m−1 + 2m−2 − 1, 2m − 2m−2).

As one can verify, the sublists Bi
3 have size 2m−i−1, 1 ≤ i ≤ m − 1. For each block, we

mark the integer we selected to play the role of pivot by an underscore. These pivots occur
alternately in the third and in the fourth column, except when we are dealing with the last block
in Bi

3, 1 ≤ i < m−1. For those blocks we selected the integer in the second column. The total
number of blocks in B3 is

∑m−1
i=1 2m−i−1 = 2m−1−1. Finally, sublist B2 consists of the blocks

(0, i2, 2m−1, 2m−1 + i2).

Here, i2 runs through the set I2\I ′
2, where I ′

2 is the subset of I2 consisting of those integers
that are already present in the blocks of B3. All integers in I2\I ′

2 are chosen to be pivots.
The total number of blocks in B2 is equal to |I2\I ′

2| = 2m−2 − m + 1. Hence, the block list
B(m) = B1, B2, B3 contains

2m−2 − 1 + 2m−2 − m + 1 + 2m−1 − 1 = 2m − m − 1

blocks. All these blocks have a different pivot, and so they are independent. Furthermore,
they all have zero-Nim-sum, as one can easily verify. E.g. block B1(∈ B1) has Nim sum
(2m−2−1)⊕2m−2⊕2m−1⊕(2m −1) = (2m−3+2m−4+· · ·+1)⊕2m−2⊕2m−1⊕(2m −1) =
(2m − 1) ⊕ (2m − 1) = 0. So, by Theorem 4.3, the basis corresponding to B(m) generates
R(m−2, m). Moreover, the conditions of Theorem 3.2 are satisfied, and so list B(m) generates
a snake of length 2k+2 in Qn with k = 2m −m −1 and n = 2m , or is equivalent to such a list.

If B(m) does not generate a snake immediately but first has to be altered according to
the procedure described in the proof of Theorem 3.2, there is a block Bi−1 = (0, (i − 1)2,
(i − 1)3, (i − 1)4) and a codeword c = bi−1 + ∑

l≥i bl with sup c of type (i), (ii), (iii) or (iv)
(cf. Theorem 3.1). Assume sup c = {0, i2, p3, j4}, i < j ≤ k (type (i)). Since (i − 1)3 is a
pivot in this case, it follows that p3 = (i − 1)3 and Bi−1 ∈ B3. But then all integers l3 in∑�

l≥i Bl corresponding to
∑

l≥i bl have to occur an even number of times. Because of the
structure of the list, the blocks Bl in the above sum occur as pairs of consecutive blocks. But
each such pair contains an integer l4, which is a pivot, so there can be only one such pair.

Let c = bi−1 +b j +b j+1, j ≥ i . Since we must have j3 = ( j +1)3, j2 �= ( j +1)2, j4 �=
( j + 1)4, it follows B j , B j+1 ∈ Bl

3 for some l ∈ {1, 2, . . . , m − 2}. Moreover, i2 and i4 are
never in the same sublist Bl

3. So, sup c always contains three integers of I2, or three integers
of I4, and hence, we have a contradiction. Similar contradictions follow when sup c is of type
(ii), (iii) or (iv). Therefore, the list B(m) itself generates a snake and need not be transformed
into an equivalent list. This proves the following theorem.

Theorem 5.1 The block list B(m) generates a symmetric snake of length 2k+2 in Qn, where
k = 2m − m − 1 and n = 2m, for m ≥ 3.

Starting with the basis of R(m − 2, m), one can obtain a basis for a code of length n − 1
and dimension k − 1, by the process of puncturing (cf. e.g. [13]) with respect to an appro-
priate coordinate and omitting a relevant block. The reduced list also meets the conditions
of Theorem 3.2. Repeating this process, e.g. by puncturing respectively to the pivots of the
first y blocks, 1 ≤ y ≤ 2m−1 − 1, yields the following result.
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Corollary 5.2 For any n which satisfies 2m−1 < n ≤ 2m , one can construct a symmetric
snake of length 2n−m+1 in Qn , for every m ≥ 1.

For m ≥ 3, this corollary is an immediate consequence of Theorem 5.1. For m = 2, a sym-
metric snake in Q3 and Q4 can easily be constructed. In Q3, such a snake is generated by
the transition sequence 0, 1, 0, 1 and in Q4, by 0, 1, 2, 3, 0, 1, 2, 3. For m = 1, the snake
coincides with Q2 itself.

6 Covers of Qn by snakes

It is obvious that if we apply a transition sequence of a snake S in Qn starting with a word t
different from the zeroword 0, we again obtain a snake. Since this snake can also be produced
by addition of t to all words of S, we denote it by S + t, and we call it a translation of S
over the vector t. More precisely, if we start with a snake

S = (w0, w1, . . . , wL−1), (6.1)

then

S + t = (w0 + t, w1 + t, . . . , wL−1 + t). (6.2)

An obvious question is whether S and S + t are disjoint (i.e. whether they have no com-
mon words). In this section we shall study this question with respect to the snakes which
are produced by the method of Sect. 3, and which are based on a linear [n, k, 4]-code. In the
next, the vector ei stands for the unit vector with a ‘one’ on position i and zeros elsewhere,
for 0 ≤ i ≤ n − 1, just like in Sects. 2 and 3, and we label the positions in a snakeword of
length n from 0 until n − 1, again from left to right.

Theorem 6.1 Let S be the snake produced by the method of Theorem3.2. The snakes S and
S + ep1 + eq3 , and also the snakes S and S + ep1 + eq3 + er3 + es3 are disjoint, for all p, q, r ,
s ∈ {1, 2, . . . , k}, where p1 ∈ I1 and q3, r3, s3 ∈ I3, and where q3, r3, s3 are distinct integers.

In order to prove e.g. that S + ep1 + eq3 ∩ S = ∅, one can prove the equivalent statement
that there are no vectors x and y in S such that x + y = ep1 + eq3 . Writing x = c′ + z′ and
y = c′′ + z′′ with c′, c′′ ∈ C, one can next eliminate all possibilities for W := sup c′ + c′′ in
a completely similar way as in part A of the proof of Theorem 3.1.

Example 6.1 As an example, we consider the snake of Example 4.1, which is a snake of
length 213 in Q16. According to Theorem 6.1, we have the following empty intersections:

S ∩ S + e0 + e8, S ∩ S + e0 + e9, S ∩ S + e0 + e10,

S ∩ S + e0 + e11, S ∩ S + e0 + ei + e j + ek

with i , j , k ∈ {8, 9, 10, 11}. Moreover, by computer calculations we found that the following
three snakes also have empty mutual intersections: S +e0 +e9, S +e0 +e10 and S +e0 +e11.
Hence, the following set consists of eight snakes which are mutually disjoint:

C ={S, S + e0 + e9, S + e0 + e10, S + e0 + e11, S + e9 + e10, S + e9 + e11, S + e10 + e11,

S + e0 + e9 + e10 + e11}.
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Since 8 × 213 = 216, the set C is a cover of Q16 by eight pairwise disjoint snakes. Since
all these snakes are symmetric—they all have the same symmetric transition sequence—we
say that C is a symmetric 8-cover of Q16. We remark that if one replaces one of the vectors
e9, e10 and e11 by e8, one no longer obtains an 8-cover of Q16. In that case, it turns out that
there are four pairs of snakes with a non-empty intersection.

Although all observations in Example 6.1 are verified by computer calculations, one can
also prove that the various intersections are empty in a way rather similar to the proofs of
Theorems 3.1 and 6.1. However, such proofs are lengthy and tedious, and not very appro-
priate to be generalized for larger values of n. For this reason, we shall study the problem
of disjoint snakes covering a hypercube, from a different point of view. It turns out that the
various disjoint snakes of a cover of Qn constructed by our method, can be connected to each
other via a small alteration, such that the result is a complete cyclic Gray code in the very
same hypercube Qn . We shall illustrate this phenomenon by a small example.

Example 6.2 Consider the block list B = (B1) with B1 = (0, 1, 2, 4). The vector b1 ∈
G F(2)5 the support of which corresponds to B1, generates a trivial [5, 1, 4]-code C. The list
B defines the transition sequence

S1(B) = 0, 1, 2, 4, 0, 1, 2, 4

which generates a snake S in Q5 of length 8. One can verify easily that the four snakes
S, S + e0 + e2, S + e0 + e3, S + e2 + e3 are pairwise disjoint and together form a cover of
Q5. We shall construct this cover now in an alternative way.

To this end, we extend the list B to a list Bext = (B1, B2, B3), where B2 = (0, 1, 3, 4) and
B3 = (0, 1, 0, 4). The vector b2 corresponding to B2 has a support {0, 1, 3, 4}, according to
our convention in Sect. 3. Furthermore, we assign to B2 the vector b2 with support {1, 4}. It
can easily be proved (and verified by the list of words below) that

S3(Bext ) = 0, 1, 2, 4, 0, 1, 3, 4, 0, 1, 2, 4, 0, 1, 0, 4, 0, 1, 2, 4, 0, 1, 3, 4, 0, 1, 2, 4, 0, 1, 0, 4

is the transition sequence of a cyclic Gray code of wordlength 5. The Gray code itself is
presented by the following list of words.

0. 00000 (0) 8. 00110 (0) 16. 10010 (0) 24. 10100 (0)
1. 10000 (1) 9. 10110 (1) 17. 00010 (1) 25. 00100 (1)
2. 11000 (2) 10. 11110 (2) 18. 01010 (2) 26. 01100 (2)
3. 11100 (4) 11. 11010 (4) 19. 01110 (4) 27. 01000 (4)
4. 11101 (0) 12. 11011 (0) 20. 01111 (0) 28. 01001 (0)
5. 01101 (1) 13. 01011 (1) 21. 11111 (1) 29. 11001 (1)
6. 00101 (3) 14. 00011 (0) 22. 10111 (3) 30. 10001 (0)
7. 00111 (4) 15. 10011 (4) 23. 10101 (4) 31. 00001 (4)

It is obvious that its transition sequence can also be written as

S3(Bext ) = I, 3, 4, I, 0, 4, I, 3, 4, I, 0, 4

with I = 0, 1, 2, 4, 0, 1. The four subsequences I of length 7 can be interpreted as the transition
sequences of four open snakes of length 7. These four snakes are translations of each other,
and are separated from each other by the words with indices 7, 15, 23 and 31. By a cyclic
permutation of these words to the right, we obtain (closed) snakes of length 8

S(4), S(4) + b1 + b2, S(4) + b2 + b3, S(4) + b1 + b3,
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which also are translations of each other. Since b1 + b2 = e2 + e3, b2 + b3 = e0 + e3 and b1

+ b3 = e0 + e2, we have a 4-cover of Q5, which is similar to the 8-cover of Q16 mentioned
in Example 6.1.

In general, we shall extend a block list B in standard order which corresponds to the
basis of an [n, k, 4]-code, and which satisfies the fixed-position property, with a additional
independent blocks Bk+1, Bk+2, . . . , Bk+a , defined as

Bl = (k1, k2, l3, k4), (6.3)

where l3 ∈ I3 for k + 1 ≤ l ≤ k + a − 1 and l3 = k1 for l = k + a.
The blocks of (6.3) correspond to vectors bl ∈ (G F(2))n with sup bl = {k1, k2, l3, k4},

for k + 1 ≤ l ≤ k + a − 1, whereas we let Bk+a correspond to a vector bk+a of weight 2
with sup bk+a = {k2, k4}. So, the new block list Bext consists of k + a independent blocks,
and is also in standard form since k1 = (k + 1)1 = (k + 2)1 = · · · = (k + a)1. However, it no
longer satisfies the fixed-position property because of block Bk+a , and neither do the new
blocks have a place in the underlying Euclidean Geometry of the original list B, since the
Nim sum of the integers in a block is unequal to 0. It is obvious that Bext generates an [n,
k + a, 2]-code, which we shall call Cext since it contains C as a subcode.

The transition sequence Sk+a(Bext ) obtained by substituting the blocks of Bext in (3.2)
will, in general, not define a snake. This is because the minimum distance 2 of Cext prevents
us from proving the separability condition of a snake like we did in part B of the proof of
Theorem 3.1. However, we can rather easily prove the validity of the nearness condition by
assuming one additional (weak) condition for the blocks, and next slightly generalizing part
A of that proof.

Theorem 6.2 Let B = (B1, B2, . . . , Bk)be a block list in standard order corresponding to an
[n, k, 4]-code satisfying the fixed-position property. Let Bext = (B1, B2, . . . , Bk, Bk+1, . . . ,

Bk+a) be the extended block list such that Bk+1, . . . , Bk+a are defined by (6.3). Then
Sk+a(Bext ) is the transition sequence of a complete or incomplete Gray code, if each Bi , i ∈
{1, 2, . . . , k+a}, contains at least one integer that does not occur in any of the blocks Bl , l > i .

Proof We shall prove that all 2k+a+2 words of the list Sext generated by Sk+a(Bext ), starting
from the zeroword, are different. The arguments are similar to those used in the proof of part
A of Theorem 3.1. Take two words x and y from this list Sext . Just like in the proof of the
above mentioned theorem, we can write w.l.o.g., x = c′ + z′ and y = c′′ + z′′, where c′,
c′′ ∈ Cext , and where z′ is one of the vectors 0, ei1 , ei1 +ei2 , ei1 +ei2 +ei3 and z′′ is one of the
vectors 0, e j4 , e j3 + e j4 , e j2 + e j3 + e j4 , 1 ≤ i , j ≤ k + a, For a picture of the sublist of Sext

between x and y, we refer to Fig. 1. Furthermore, we define c := c′ + c′′ and we partition the
transition sequence as Sk+a(Bext ) = T ′′, Bi , T ′, B j , T ′′′ with sup c = c(Bi , T ′, B j ) and
with non-empty subsequences T ′ and T ′′′, T ′′.

Assume that d(x, y) = 0, or equivalently that c := z′ +z′′. The weight ‖c‖ of c can now be
equal to 2, 4 or 6, since c ∈ Cext . It follows from the form of the blocks in Bext that the code-
words of Cext of weight 2 have a support that is either of type {pb, qb}, b ∈ {1, 2, 3, 4}, or of
type {p1, q3}, or of type {p2, q4}, with p, q ∈ {1, 2, . . . , k+a}. From the possible expressions
of z′ and z′′ and from (6.3), we may conclude that the only possibility to satisfy c = z′+z′′ is
sup c = {i2, j4} with i = k + a or j = k + a. Since such a c satisfies |sup c ∩ I2| = 1, it is the
sum of an odd number of basis vectors, and since |sup c ∩ I1| = 0, this sum contains bk+a .

If i = j = k + a, it follows from Theorem 2.1(ii) that c = bk+a−1 which contradicts the
previous conclusion. Suppose i < j = k+a. Then c = bi−1+∑

l≥i bl , where l runs through
an index set of even size according to Theorem 2.1(i). From the condition of the theorem we
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know that Bi−1 contains at least one integer which does not occur in blocks Bl , l ≥ i . This
cannot be an integer from I1 or I3, since such an integer does not occur in sup c. But if (i −1)2

does not occur anymore, then it follows that (i −1)2 = (k+a)2(= k2), which is also a contra-
diction. For a similar reason (i−1)4 cannot occur in blocks Bl , l ≥ i . Assuming j < i = k+a
gives rise to similar contradictions. So, we may conclude that ‖c‖ is either equal to 4 or to 6.

Due to the possible expressions for z′ and z′′ and the general form of the blocks of Bext , the
only possible vectors c of weight 4 or 6 are of type (a), (b), (c) or (d) as defined in the proof
of Theorem 3.1 with 1 ≤ i, j ≤ k +a, but with i3 �= (k +a)3 and j3 �= (k +a)3. Vectors c of
types (a), (c) and (d) can be eliminated by reducing these cases to the previous case of weight
2. Vectors c of type (b) can be dealt with in the same way as the vectors of weight 2 by using
the condition that each block contains an integer which does not occur in blocks with a higher
index. We conclude that d(x, y) �= 0, and hence, Bext generates a Gray code with 2k+a+2

words. This Gray code is complete if a = n − k − 2 and incomplete if a < n − k − 2. 
�

Theorem 6.3 Let B = (B1, B2, . . . , Bk) and Bext = (B1, B2, . . . , Bk, Bk+1, . . . , Bk+a),
a = n − k − 2, be two block lists that satisfy the conditions of Theorem6.2, and let B
generate a snake of size 2k+2. Let furthermore u0, u1, . . . , u2a−1 be the 2a words in the word
list Sext generated by Bext at the positions 2k+2−1, 2 · 2k+2−1, 3·2k+2−1, . . . , 2a ·2k+2−1.
Then one obtains a 2a-cover of Qn by symmetric snakes, by carrying out the cyclic permu-
tation (u0u1 . . . u2a−1) in Sext .

Proof We partition Sk+a (Bext ), starting from its first element into 2a subsequences of size
2k+2. From the expression (2.6) with i = n − a, and from the specific form of the blocks
Bk , Bk+1, . . . , Bk+a , which differ only in their third element, it follows that these 2a sub-
sequences are all equal to Sk(B), apart from their last but one element (cf. Example (6.2)).
Hence, they are the transition sequences of 2a open snakes of length 2k+2 − 1, separated by
words u0, u1, . . . , u2a−1. The open snakes can be obtained from each other by a translation
over some fixed vector, as a consequence of Theorem 2.3. These translation vectors are the
2a linear combinations of the vectors s1 = bk + bk+1, s2 = bk + bk+2, . . . , sa = bk + bk+a ,

More precisely, let

S0, u0, S1, u1, . . . , Sa−1, u2a−1 (6.4)

be the above mentioned open snakes and the separating words. It follows from the properties
of the Gray code G(k + a), especially from Eq. 2.9 with n replaced by k + a, that

S i = S i−1 + ssi , 1 ≤ i ≤ 2a, (6.5)

where the indices si are the elements of the complete transition sequence of the standard
Gray code G(a)

Sa = s1, s2, s3, . . . , s2a , (6.6)

the concrete form of which is

Sa = 1, 2, 1, . . . , a, 1, 2, 1, . . . , a. (6.7)

In (6.5), we identify the open snakes S2a and S0. A similar rule

ui = ui−1 + ssi+1 , 1 ≤ i ≤ 2a (6.8)

holds for the separating words ui and ui−1in (6.4). Furthermore, the Hamming distance bet-
ween ui and the first word of S i+1 is equal to 1 for all relevant values of i , since these words
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are successive words in the Gray code generated by Sk+a(Bext ), according to Theorem 6.2.
The Hamming distance between ui and the last word of S i+1 is equal to∥∥ssi+1 + e(k+si+1)3

∥∥ = ∥∥bk+bk+si+1+e(k+si+1)3

∥∥ = ∥∥ek3

∥∥ = 1.

So, if we permute u0, u1, . . . , u2a−1 in (6.4) in cyclic sense over one position to the right,
we obtain the concatenation of 2a closed snakes of length 2k+2

S0, u2a−1, S1, u0, S2, u1, . . . , S2a−1, u2a−2, (6.9)

and these snakes are identical to

S, S + s1, S + s1 + s2, . . . , S +
∑

si ∈Xi
ssi , . . . , S + sa, (6.10)

where Xi is the multiset of the first i integers of (6.6), and where the snake (list) S is generated
by Sk(B). This proves the theorem. 
�
Example 6.3 Consider again the block list B of Example 4.1, and let

Bext = (B, B12, B13, B14),

be its extension with the three additional blocks

B12 = (0, 7, 9, 12), B13 = (0, 7, 10, 12), B14 = (0, 7, 0, 12).

Since B generates a snake (Example 4.1) and since Bext satisfies the conditions of Theo-
rem 6.2, we are entitled to apply Theorem 6.3. Hence, after having carried out the permutation
(u0 u1u2 · · · u7) of the words which are at the positions 213 −1, 2 ·213 −1, 3 ·213 −1, . . . , 7 ·
213−1, respectively, we obtain a concatenation of eight (closed) snakes which together consti-
tute a cover of Q16. This is precisely the 2a-cover mentioned in Theorem 6.3 with a = 3.

We emphasize that extending B with the blocks

B12 = (0, 7, 9, 12), B ′
13 = (0, 7, 8, 12), B14 = (0, 7, 0, 12)

will not provide us with a cover. This is because the extended block list no longer satisfies
the conditions of Theorem 6.2. In particular, block B6 does not contain an integer that does
not occur in blocks Bl , l > 6.

If some block list Bext satisfies the conditions of Theorem 6.3, we shall say that Bext

generates a symmetric 2a-cover of Qn .

Theorem 6.4 Let B = (B1, B2, . . . , Bk) be a block list that satisfies the conditions of Theo-
rem 3.2 and let k0 be the number of blocks B j which only satisfy condition (i i) of that theorem
and not condition (i). If

k0 ≤ k + |I3| + 2 − n,

then B (or an equivalent list) can be extended to a list Bext which generates a 2a-cover of
Qn with a = n − k − 2.

Proof From Theorem 3.2 we know that B (or an equivalent list) generates a snake in Qn .
From Theorems 6.2 and 6.3 it follows that there exists an extended list Bext generating a
2a-cover, if one can find a − 1 = n − k − 3 integers l3 ∈ I3 that are not in one of the k0

blocks as described in the theorem. Since Bk is not one of these k0 blocks, we must have

|I3| − 1 − k0 ≥ n − k − 3.


�
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Example 6.4 The list B = (B1) of Example 6.2 is a trivial example of Theorem 6.4. In this
case, we have n = 5, k = 1, k0 = 0 and |I3| = 2, since I3 = {2, 3}.

The list B of Examples 4.1 and 6.1 also satisfies the requirement of Theorem 6.4. Here,
we have n = 16, k = 11 and |I3| = 4. Since B7 is the only block in the list that satisfies
condition (ii) of Theorem 3.2 and not condition (i), it follows that k0 = 1. Actually, this is a
special case of a general theorem dealing with the canonical basis of the Reed-Muller code
which we introduced at the beginning of this section.

Theorem 6.5 Let B(m) be the canonical block list of the Reed-Muller code R(m − 2, m) of
word length n(= 2m) and of dimension k(= 2m − m − 1). Then B(m) can be extended to a
list Bext (m) which generates a symmetric 2m−1- cover of Qn, for any m ≥ 3.

Proof We know already from Theorem 5.1 that B(m) generates a symmetric snake in Qn

of length 2k+2, for m ≥ 3. Moreover, if we take the I3-integers i1
3 , i2

3 , . . . , im−2
3 , which

are in the last blocks of B1
3, B2

3, . . . , Bm−2
3 , we can extend B with blocks (0, 2m−1 − 1, l3,

2m −2m−2), with l3 ∈∈ {i1
3 , i2

3 , . . . , im−2
3 , 0}. The total number of these blocks is m −1. This

is precisely the number necessary to obtain a 2m−1-cover of Qn , according to Theorem 6.4,
since k0 = 2m−2 − m + 1. 
�
Corollary 6.6 For any n which satisfies 2m−1 < n ≤ 2m, one can construct a symmetric
2m−1-cover of Qn, for m ≥ 3.

Proof The construction can be accomplished by starting with constructing a cover of Qn0

for n0 = 2m , m ≥ 3, and next puncturing y times 1 ≤ y ≤ 2m−1 − 1 to the pivots in
blocks B1, B2, . . . , By and omitting these blocks (cf. Corollary 5.2 and the lines prior to that
corollary). 
�
Example 6.5 To obtain a 4-cover of Q5, we first take the canonical block list B(3) of R(1,
3) (cf. Sect. 5) consisting of the blocks B1 = (1, 2, 4, 7), B2 = (0, 3, 4, 7), B3 = (0, 2, 4, 6)

and B4 = (0, 3, 5, 6). Next we puncture successively to coordinate 1, 7 and 2, and omit
blocks B1, B2 and B3, yielding block list B = ((0, 3, 5, 6)). Finally, applying (6.3), we ob-
tain Bext = ((0, 3, 5, 6), (0, 3, 4, 6), (0, 3, 0, 6)). According to Corollary 5.2 and Theorem 6.3,
this list generates a 4-cover of Q5. If one relabels the coordinates 0, 3, 4, 5, 6 by 0, 1, 3, 2,
4, one obtains precisely the 4-cover of Q5 discussed in Example 6.2.

We would like to point out that for 4 < n ≤ 8 and for 8 < n ≤ 16, Corollary 6.6 gives
better results than [18], i.e. the number of snakes in the cover of Qn is equal to 4 and to 8,
respectively, whereas in [18] it is only stated that this number is upperbounded by 16. The
4-covers of Qn for 4 < n ≤ 8 are minimal covers. This follows immediately from the values
of s(n), i.e. of the maximal snake length, for these n-values (cf. Sect. 1).

Even in the range 16 < n ≤ 32, one could say that Corollary 6.6 provides us with slightly
better results, since the 16 covering snakes are symmetric, and so we have a symmetric
16-cover. Moreover, in the range 4 < n ≤ 16, it gives a supplement to a result in [2] which
states that for any even integer r ≥ 4, n ≥ 2, the graph K n

r , being the nth power of the complete
graph Kr , can be covered with r3 snakes, be it that these snakes are not all mutually disjoint.

7 Invariance group of a cover

In this final section, we define the notion of invariance group of a cover of Qn by snakes. Let

C(n) := {S(n)
1 , S(n)

2 , . . . , S(n)
N } (7.1)

123



228 A.J. van Zanten, L. Haryanto

be a family of mutually disjoint snakes of the same length covering the whole vertex set
V Qn of the hypercube Qn . We consider permutations on V Qn , i.e. elements of the symme-
tric group S2n acting on the set of the 2n vertices of Qn . Let Aut (Qn) be the subgroup of
permutations π with the property that for every pair of vertices v, w ∈ V Qn , {v, w} ∈ EQn ,
if and only if {π(v), π(w)} ∈ E Qn .

One can immediately verify that the translations over the vectors of G F(2)n induce a group
of automorphisms of Qn of order 2n . The full automorphism group of Qn is of size 2n ×n! and
is generated by the 2n translation vectors acting on the vertices v = (v1, v2, . . . , vn) ∈ V Qn

and the n! permutations of the coordinates of v. More precisely, Aut (Qn) is the wreath
product of the symmetric groups Sn and S2 (cf. [6, p. 177]).

It follows easily from the nearness condition (1.2) and the separability condition (1.3) (see
Sect. 1), that a snake S is transformed into a snake π(S), for any π ∈ Aut (Qn). Consequently,
any π ∈ Aut (Qn) transforms a cover C(n) to another cover π(C(n))

Next, we ask the question if there are π ∈ Aut (Qn) which transform S into S itself, or
more generally, which π ∈ Aut (Qn) transform each snake S(n)

i of the cover C(n) into some

snake S(n)
j (the same snake or a different one) of C(n). Of course, such elements π constitute a

subgroup of Aut (Qn), which we shall call Aut (C(n)). So, we have the following definition.

Definition 7.1 The invariance group Aut (C(n)) of a cover C(n) of Qn is the group of those
permutations of Aut (Qn) which induce a permutation of the snakes in C(n).

Any subgroup of Aut (C(n)) will be called an invariance group of C(n).
Now consider a 2a-cover of Qn as mentioned in Theorem 6.3. It will be clear that this

cover is invariant under the translation group

G =< s1, s2, . . . , sa > (7.2)

of order 2a (cf. (6.10)). In particular, it follows that the covers of Qn with n = 2m which can
be constructed by applying Theorem 6.5, have an invariance translation group of order 2m−1,
generated by the a = m − 1 independent vectors s1 = bk + bk+1, s2 = bk + bk+2, . . . , sa =
bk + bk+a , or equivalently by the m − 1 vectors e0 + el3 , where l3 ∈ {k3, (k + 1)3,
(k + 2)3, . . . , (k + m − 2)3} = {k3, i1

3 , i2
3 , , . . . , im−2

3 } (cf. the proof of Theorem 6.5).
The same holds for any n with 2m−1 < n ≤ 2m , when one interprets the translation

vectors si , 1 ≤ i ≤ m − 1, as vectors in G F(2)n (after puncturing to relevant coordinates).
We have to remark here that there will be no puncturing with respect to any of the coordinates
from the set {k3, i1

3 , i2
3 , , . . . , im−2

3 }, since these integers did not serve as a pivot in any of the
blocks of B(m).

Invariance translations other than the above ones will imply the existence of elements π ∈
Aut (Qn), π �= 1, such that π(S) = S. From the symmetry of the standard Gray code (cf. (1.5)
with K = 2n−1) and from the transition sequence (3.2), it follows that a translation over the
vector s0 := bk−1+bk satisfies this condition. So, we may conclude with the following result.

Theorem 7.1 The 2m−1-cover of Qn, 2m1 < n ≤ 2m, as mentioned in Corollary 6.6 has an
invariance translation group of order 2m generated by the vectors s0, s1, . . . , sm−1.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.
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