
Computing Pairings Using x-Coordinates Only

Steven D. Galbraith1? and Xibin Lin2??

1 Mathematics Department, Royal Holloway University of London
Egham, Surrey, TW20 0EX, UK

2 School of Mathematics and Computational Science
Sun-Yat Sen University Guangzhou, 510275, P.R.China

Steven.Galbraith@rhul.ac.uk

linxibin@mail2.sysu.edu.cn

Abstract. To reduce bandwidth in elliptic curve cryptography one can transmit only x-coordinates of
points (or x-coordinates together with an extra bit). For further computation using the points one can
either recover the y-coordinates by taking square roots or one can use point multiplication formulae
which use x-coordinates only.
We consider how to efficiently use point compression in pairing-based cryptography. We give a method
to compute compressed Weil pairings using x-coordinates only. We also show how to compute the
compressed Tate and ate pairings using only one y-coordinate. Our methods are more efficient than
taking square roots when the embedding degree is small. We implemented the algorithms in the case
of embedding degree 2 curves over Fp where p ≡ 3 (mod 4) and found that our methods are 10− 15%
faster than the analogous methods using square roots.

Keywords: elliptic curves, pairings, point compression.

1 Introduction

To reduce bandwidth in elliptic curve cryptography one can transmit only x-coordinates of points (or x-
coordinates together with an extra bit). This is called point compression (see Section IV.4 of [5] for more
details). For further computation using the points one can either recover the y-coordinates by taking square
roots or one can use point multiplication formulae which use x-coordinates only (for example, the formulae
due to Montgomery [22]).

Cryptographic parings have many applications in cryptography. To reduce the bandwidth of pairing-based
cryptosystems it is natural to use point compression. Indeed, this trick is necessary for certain applications
such as the BLS short signature scheme [7]. However, due to the security requirements of elliptic curves for
pairing applications (especially when the embedding degree is small) one might be required to work over a
large field and so taking square roots might be expensive. For this reason (and also, out of mathematical
curiosity) it is natural to ask whether pairings can be computed using x-coordinates only.

When we discard y-coordinates we are essentially working up to sign. Let q be a prime power and let
en be a bilinear pairing into the group of n-th roots of unity µn ⊆ F∗qk where k is even and n - (qk/2 − 1).
We have en(±P,±Q) = z±1. Note that the norm of z with respect to Fqk/Fqk/2 is 1 and so z−1 is the
Galois conjugate of z in Fqk/Fqk . It follows that the trace z + z−1 of the pairing value is independent of the
choice of signs. This suggests that it might be possible to compute the trace of the pairing value from the
x-coordinates only. One of the contributions of this paper is show that this can indeed be done.

Traces of pairing values are already used to compress pairing values [27, 16, 15, 24], so our methods can
also be viewed as a form of compressed pairing computation. However, we only consider compression with
respect to the quadratic extension Fqk/Fqk/2 . If further compression is required then it can be performed
after the pairing computation has been performed.
? This author thanks the EPSRC for support.

?? This author thanks the Chinese Scholarship Council.



To save time cost of computing pairing value, many methods have been proposed to speed up the basic
Miller algorithm, including the denominator elimination method [3], the construction of pairing-friendly
elliptic curves [14], and the methods to shorten the Miller loop [2, 17]. Our formulae for pairing computation
are essentially independent of these tricks and so our methods apply equally to the ate pairing.

This paper is organized as follows. Section 2 introduces the mathematical preliminaries, including the
Miller Algorithm and compressed pairings, Lucas sequences, and the conventional methods to compute
the compressed Tate pairing for k = 2. Section 3 first describes the method of point multiplication using x-
coordinates only, then explains how to compute Miller functions (in a certain shape) using x-coordinates only.
Section 4 shows how to use the results of Section 3 to compute compressed pairings using x-coordinates only.
Section 5 considers the case where one y-coordinate is known (this arises in many cryptographic applications).
Section 6 analyses the efficiency of our methods and reports on some implementation comparisons. Section
7 gives our conclusions.

2 Mathematical Preliminaries

2.1 Square Roots

It is well-known that one can compute square roots in finite fields in polynomial time. A particularly simple
case is when p ≡ 3 (mod 4), where x = a(p+1)/4 (mod p) is a solution to x2 ≡ a (mod p). This can be
computed efficiently using standard modular exponentiation algorithms, but if p is 512 bits then this still
needs around 510 modular squarings and roughly 255 modular multiplications. A small improvement may be
obtained using window methods, but as far as we know this method is essentially the most efficient method
to compute square roots modulo p.

For other values of p the Tonelli-Shanks method can be used, but it is typically less efficient than the
above. Hence, computing square roots is a non-trivial operation which can lead to a significant overhead in
cryptographic protocols using point compression. In standard elliptic curve cryptography one can work with
160–256 bit primes and the problem may not be so significant. But in pairing-based cryptography, when the
embedding degree is small, square root computation could be a considerable burden.

Computing roots is more efficient when working over extension fields. Barreto et al ([3] Section 4) present
a more efficient method for square roots in Fpm where p ≡ 3 (mod 4) and m > 1 is odd. In characteristic
2 the problem of recovering the y-coordinate in point compression boils down to solving an equation of the
form x2 + x = a in F2m , which can be very efficiently solved when m is odd (see Section II.2.4 of [5]).

Hence, for pairing-based cryptography using fields of small characteristic it is relatively efficient to recover
the y-coordinates of compressed points. Therefore, in this situation there is no motivation for developing
pairing algorithms using x-coordinates only. For this reason we restrict to odd characteristic in this paper.

2.2 Miller’s Algorithm

Let E be an elliptic curve over Fq, P and Q be points on E of order n, and n | (qk − 1). Recall that the
Weil pairing (technically this is 1/en(P,Q) but the literature usually calls the below formulation the Weil
pairing) may be computed as

en(P, Q) = (−1)nfn,P (Q)/fn,Q(P )

where fn,P is a function on E with divisor n(P )− n(∞). Similarly, the Tate pairing is

tn(P,Q) = fn,P (Q)(q
k−1)/n.

One builds the functions fn,P by an interative process known as Miller’s algorithm. The key to this process
are the rules f1,P = 1 and

fn+m,P = fn,P fm,P l/v

where l is the line between [n]P and [m]P (tangent line if [n]P = [m]P ) and v is the vertical line through
[n + m]P . For future reference we now present Miller’s algorithm for computing fn,P (Q).

2



Algorithm 1: Miller’s Algorithm
Input: P, Q and elliptic curve E, and n =

∑l
i=0 a[i]2i.

Output: fn,P (Q)
1 R ← P , f1 ← 1
2 for i = l − 1, l − 2, . . . , 1, 0 do
2.1 f1 ← f2

1 · lR,R(Q)
v2R(Q) , R ← 2R

2.2 if a[i] = 1 then
2.3 f1 ← f1 · lR,P (Q)

vR+P (Q) , R ← R + P

2.4 end if
2.5 end for
3 return f1

2.3 Lucas Sequences

Let z ∈ Fq2 be an element of order dividing q + 1 and recall the trace map Tr(z) = z + zq. We briefly
recall how to compute Tr(zi) efficiently from Tr(z) using Lucas sequences. Define Vi = Tr(zi). The following
Lemma recalls the standard facts on Vi (see Section 3.6.3 of [13]).

Lemma 1. The Lucas sequence satisfies:

1. V0 = 2 and V1 = Tr(z).
2. Vi+1 = Tr(z)Vi − Vi−1.
3. V2i = V 2

i − 2.
4. V2i+1 = ViVi+1 − Tr(z).

2.4 Point Compression in Pairing Based Cryptography

The philosophy of point compression is simple: to reduce the bandwidth one can transmit only the x-
coordinates of any points required to be sent during runs of a protocol. One can also extend this idea to
public keys or other system parameters, but the motivation may be weaker for this data since the bandwidth
for set-up may not be so constrained.

There are now two choices to implement the protocol. The first is to recover y-coordinates for all points
by taking square roots and then perform point multiplication and pairing computations in the conventional
way. The alternative is to work with x-coordinates only. Pairing computation using x-coordinates only is not
expected to be faster than conventional methods, but avoiding computing the square roots can lead to an
overall improvement in performance.

We now consider a small number of examples of cryptographic protocols using pairings to discuss how
point compression can be used.

1. The Joux 3-party key exchange protocol [19]: The data transmitted is the points [a]P , [b]P and [c]P . We
can send x-coordinates only. To compute the shared key, user A needs to compute Tr(en([b]P, [c]P )a).
Hence the conventional solution requires two square root operations.

2. Boneh-Lynn-Shacham signatures [7]: The public key is Q = [a]P and the private key is a. To sign m we
hash to a point H(m) and the signature is σ = [a]H(m). To get a short signature it is required to send
only the x-coordinates for σ. To verify one must test whether Tr(en(P, σ)) = Tr(en(Q,H(m))). Hence
the conventional solution required one square root (or two if the public key is also compressed).

3. There are many examples of identity-based encryption schemes using pairings. We recall here the ID-
based KEM based on the Sakai-Kasahara approach, which has been submitted to the IEEE P1363 draft
standard on identity based cryptography [1].
The master key is P ′ = [s]P . Given an identity ID the private key is DID = [(s + H1(ID))−1]Q.
To encapsulate a key to user ID: Choose a random bitstring m, set r = H3(m), R = P ′ + [H1(ID)]P ,
U = [r]R, V = m⊕H2(e(P, Q)) and k = H4(m). The key encapsulation is (U, V ), where one could apply
point compression to the component U . The encapsulated key is k.

3



To recover the key user ID computes α = e(U,DID), m = H2(α)⊕V , r = H3(m), R = P ′+[H1(ID)]P ,
if U 6= [r]R then fail, else k = H4(m). Note that the pairing computation involves the private key (for
which both x and y are known) and the point U , for which only the x-coordinate is known.
The Boneh-Boyen ID-based KEM [8, 10] using point compression of the ciphertext also results in pairing
computations where only one y-coordinate is known.

2.5 Conventional Methods to Compute the Compressed Tate Pairing

For the sake of comparision, we briefly recall some existing methods for computing pairings when the em-
bedding degree k is even. These methods are referred to as the conventional methods. We particularly focus
on the case of k = 2, since our performance comparison in Section 6 is for this case. The merits of using
elliptic curves of embedding degree 2 is discussed by Scott in [26]. We also assume that order of the subgroup
of interest has low Hamming weight, hence we only count the cost of doublings in Miller’s algorithm.

The first type methods are the ones that apply to general elliptic curves. These include the standard
BLKS method in affine coordinates[3], and the methods in jacobian coordinates in [26] [12][18].

The second type is the method using elliptic curves with efficient endomorphisms, which was proposed by
Scott in [25]. This method depends on the choice of certain non-supersingular elliptic curves. This method
is referred to as Tate using endomorphisms. For details of this case see Appendix C.

When point compression technique is used, the cost of the overall computation of the compressed Tate
pairing consists of three main parts: the square root extractions, the Miller loop, and the final exponentiation.
The cost of the first and the third parts varies slightly according to the parameters. While the operation
of each doubling step in the Miller loop for different methods can be approximately counted, which is
summarized in the following Table.

Here and thereafter, M , S and I mean multiplication, squaring and inversion in Fq respectively. In this
paper, we also assume M ≈ S. For concrete examples, we consider q ≡ 3 mod 4, so it is reasonable to assume
that one multiplication in Fq2 costs 3M , and one squaring in Fq2 costs 2M .

Table 1. Cost of Existing Methods in Miller Step

Method Operation

Affine Coordinate 10M + 1I

Jacobian Coordinate[12] 19M

3 Point Multiplication and Miller Functions Using x-Coordinates Only

In this section we present our main technical result, which describes the shape of Miller functions treating
the y-coordinates of the points as an unknown. We provide simple recurrence formulae which enable efficient
computation of these functions. First, to set the scene, we recall how to derive the formulae for point
multplication using x-coordinates only.

3.1 Elliptic Curve Point Multiplication using x-Coordinates Only

Let E : y2 = x3 + Ax + B be an elliptic curve over Fq and let P = (xP , yP ). Let [i]P = (xi, yi). From the
fact that −[i]P = [i](−P ) it follows that xi depends only on xP and i. The existence of formulae for xi using
x-coordinates only is clear from the theory of division polynomials (for example, see the Formulary of Cas-
sels [11]). It follows that for any elliptic curve in odd characteristic there are rational functions gi,1(x), gi,2(x)
such that

[i]P = (gi,1(xP ), yP gi,2(xP )).

4



In general, evaluating such expressions is less efficient than using the standard formulae for the group law
on elliptic curves, however Montgomery [22] presented very efficient formulae and a ladder algorithm to
compute the x-coordinate of [i]P from the x-coordinate of P .

For our application we will need not just xi but the value yi/yP (this is because we need to compute
slopes for the Miller functions). Hence, we cannot just use Montgomery’s results. Define ui to be yi/yP .
Clearly, x1 = xP and u1 = 1. The remainder of this section is devoted to giving recurrence formulae for
these rational functions.

Lemma 2. Let (xi, yP ui) = [i](xP , yP ) and suppose that x3
i + Axi + B 6= 0. Then

x2i =
(3x2

i + A)2

4(x3
i + Axi + B)

− 2xi, u2i = ui

(
3x2

i + A

2(x3
i + Axi + B)

(xi − x2i)− 1
)

and, if xi 6= xP

xi+1 =
(x3

P + AxP + B)(ui − 1)2

(xi − xP )2
− xi − xP , ui+1 =

(ui − 1)(xP − xi+1)
xi − xP

− 1.

Proof. For doubling, the slope is λ = (3x2
i + A)/(2yi) so λ2 = (3x2

i + A)2/(4y2
i ) and x2i = λ2 − 2xi. The

formula for x2i is immediate.
The y-coordinate of [2](xi, yi) is y2i = −(λ(x2i − xi) + yi). For this calculation we write

λ =
yi(3x2

i + A)
2y2

i

= yP ui
3x2

i + A

2(x3
i + Axi + B)

. (1)

Hence, using y2i = yP u2i, we have

u2i = −ui
(3x2

i + A)(x2i − xi)
2(x3

i + Axi + B)
− ui

which establishes the formula.
For adding (xP , yP ) to (xi, yi), when xP 6= xi, we have λ = (yi − yP )/(xi − xP ) = yP (ui − 1)/(xi − xP ).

The formulae follow easily.

Points of order 2 satisfy ui = 0.

3.2 Miller Functions Using x-Coordinates Only

Let E : y2 = x3 + Ax + B over Fpd , where p is an odd prime. Let n be a divisor of #E(Fpd) and let
the embedding degree of n be k, which we assume to be even. Define q = pdk/2 and write Fq2 = Fq(θ)
where θ2 = w for some w ∈ Fq. Let P = (xP , yP ), Q = (xQ, θyQ) ∈ E(Fq2) be points of order n with
xP , yP , xQ, yQ ∈ Fq.

We assume for simplicity and efficiency that q ≡ 3 (mod 4), so that we may take θ such that θ2 = −1.
The method also works for the general case θ2 = w. However, it is natural to restrict to the case q ≡ 3
(mod 4) when using point compression since it makes computing square roots easier. Since our methods are
faster that the convential approach in the case q ≡ 3 (mod 4) then they should be even better in the more
general case.

To compute pairings we must compute the Miller functions fi,P (Q) and fi,Q(P ) for various i corresponding
to initial segments of the binary expansion of n. The following result is the key observation.

Lemma 3. Let notation be as above and assume that n is odd. and let fi be either fi,P (Q) or fi,Q(P ). If i
is even or i = n then

fi,P (Q) = yP αi,P + θyQβi,P fi,Q(P ) = yP αi,Q + θyQβi,Q

5



and if i is odd then

fi,P (Q) = αi,P + θyP yQβi,P fi,Q(P ) = αi,Q + θyP yQβi,Q

where αi,P , βi,P , αi,Q, βi,Q all depend on the x-coordinates of P and Q and the equation of the curve.

Remark 1. If n is even, say n = 2sm, then the values fi are as above when i is an initial segment of m.
However, the final s squarings are different. There are three cases: (1) [i]P = O; (2) [i]P 6= O but [2i]P = O;
(3) [2i]P 6= O. In cases (1) and (2) the value for fi is of the form αi + θyP yQβi while in case (3) the value is
of the form αiyP + θyQβi.

Proof. To prove this we will give explicit recurrence formulae for the αi and βi.
First, consider the case of fi,P (Q). Let (xi,P , uiyP ) = [i](xP , yP ). We start with i = 1 (which is odd) and

α1,P = 1, β1,P = 0. For a doubling, we start with fi in either of the two forms and compute

f2i,P = f2
i,P l(Q)/v(Q).

We have f2
i,P = α′2i,P + θyP yQβ′2i,P where α′2i,P is either y2

P α2
i,P − y2

Qβ2
i,P or α2

i,P − y2
P y2

Qβ2
i,P depending

on whether i is even or odd. In both cases β′2i,P = 2αi,P βi,P .
The line l has equation y−yi,P −λ(x−xi,P ). Using equation (1), we have λ = yP ui,P (3x2

i,P +A)/(2(x3
i,P +

Axi,P + B)), therefore,

l(Q) = θyQ − yP ui,P

(
3x2

i,P + A

2(x3
i,P + Axi,P + B)

(xQ − xi,P ) + 1

)
.

We write this as θyQ + yP t1. The vertical line contributes simply v(Q) = xQ − x2i,P .
Multiplying all these together gives f2i,P = yP α2i,P + θyQβ2i,P where

α2i,P = (α′2i,P t1 − (x3
Q + AxQ + B)β′2i,P )/(xQ − x2i,P )

and
β2i,P = ((x3

P + AxP + B)t1β′2i,P + α′2i,P )/(xQ − x2i,P ).

This completes proof of first part of the first claim.
Now suppose a further addition is performed in Miller’s algorithm. It is known that the final addition

does not affect the form of the value. In general case, from Lemma 2 we deduce that the line l is

y − yP

(
u2i − 1

x2i − xP
(x− xP ) + 1

)
.

and so

l(Q) = θyQ − yP

(
u2,i − 1
x2i − xP

(xQ − xP ) + 1
)

.

Writing this as θyQ + yP t2, we have f2i+1,P = α2i+1,P + θyP yQβ2i+1,P where

α2i+1 = ((x3
P + Axp + B)α2i,P t2 − (x3

Q + AxQ + B)β2i,P )/(xQ − x2i+1,P ),

and
β2i+1,P = (α2i,P + β2i,P t2)/(xQ − x2i+1,P ).

This completes the proof in the case of fi,P (Q).
We now consider the values fi,Q = fi,Q(P ). Let (xi,Q, uiyQθ) = [i](xQ, yQθ). Lemma 2 handles this case

as well (just absorb the θ into the value of y).

6



As before, we start with α1,Q = 1 and β1,Q = 0 and first consider the case of doubling. The result about
squaring the previous value is the same as before, so we have f2

i,Q = α′2i,Q + θyP yQβ′2i,Q. The line in a
doubling has slope

λ = (3x2
i,Q + A)/(2θyi,Q) = θyi,Q(3x2

i,Q + A)/(2(θyi,Q)2) = θyQui(3x2
i,Q + A)/(2(x3

i,Q + Axi,Q + B)).

hence, we have l(P ) equal to

yP − θyQui

(
3x2

i,Q + A

2(x3
i,Q + Axi,Q + B)

(xP − xi,Q) + 1

)
.

Writing this as yP + θyQt3 and noting that v(P ) = (xP − x2i,P ), we have f2i,Q = f2
i,Ql(P )/v(P ) =

yP α2i,Q + θyQβ2i,Q where

α2i,Q = (α′2i,Q − (x3
Q + AxQ + B)β′2i,Qt3)/(xP − x2i,Q)

and
β2i,Q = α′2i,Qt3 + (x3

P + AxP + B)β′2i,Q/(xP − x2i,Q).

Finally, we consider a further addition (i.e.,obtaining f2i+1,Q from f2i,Q. As before, the last iteration does
not need to be computed. In the general case,

λ =
θy2i,Q − θyQ

x2i,Q − xQ
= θyQ

u2i − 1
x2i,Q − xQ

.

and so l(P ) equals

yP − θyQ

(
u2i − 1

x2i,Q − xQ
(xP − xQ) + 1

)

Writing this as yP + θyQt4, we have f2i+1,Q = α2i+1,Q + θyP yQβ2i+1,Q, where

α2i+1,Q = ((x3
P + AxP + B)α2i,Q − (x3

Q + AxQ + B)β2i,Qt4)/(xP − x2i+1,Q)

and
β2i+1,Q = (α2i,Qt4 + β2i,Q)/(xP − x2i+1,Q).

This completes the proof. ¤

To summarize, given xP and xQ being the x-coordinates of points of order n on E(Fq), one can compute
the values αn,P , βn,P , αn,Q and βn,Q for fn,P (Q) and fn,Q(P ) using knowledge of only xP , xQ and the
coefficients of the curve.

4 Computing Parings Using x-Coordinates Only

We now use the results of the previous section to compute various pairings using x-coordinates only. We
then propose some optimizations of the computation.

4.1 The Weil Pairing

For interest we present the case of the Weil pairing even though this is not usually used in practical appli-
cations.

By Lemma 3 we have

en(P, Q) = (−1)n fn,P (Q)
fn,Q(P )

= (−1)n yP αn,P + θyQβn,P

yP αn,Q + θyQβn,Q
.

7



Multiplying numerator and denominator by the conjugate of the denominator gives

en(P,Q) = (−1)n (yP αn,P + θyQβn,P )(yP αn,Q − θyQβn,Q)
y2

P α2
n,Q − y2

Qβ2
n,Q

= (−1)n
(x3

P + AxP + B)αn,P αn,Q + (x3
Q + AxQ + B)βn,P βn,Q + θ(· · · )

(x3
P + AxP + B)α2

n,Q − (x3
Q + AxQ + B)β2

n,Q

Hence, the trace of en(P, Q) with respect to Fq2/Fq can be computed using x-coordinates only.

4.2 Tate and ate Pairings

For efficient pairing computation it is more common to use the ate or Tate pairings. As before suppose q ≡ 3
(mod 4), Fq2 = Fq(θ) where θ2 = −1 and P = (xP , yP ), Q = (xQ, θyQ) ∈ E(Fq2) have order n.

The Tate pairing is
tn(P, Q) = fn,P (Q)(q−1)(q+1)/n

and the ate pairing is
an(P,Q) = fT,Q(P )(q−1)(q+1)/n

where T is t− 1 where t is the trace of Frobenius.
We will show that one can compute the trace of fn,P (Q)q−1 and fn,Q(P )q−1 using x-coordinates only.

Note that due to the exponentiation to the power q − 1 one can apply denominator elimination during this
computation. The remaining part of the final exponentiation (raising to the power (q + 1)/n) is performed
using Lucas sequences.

Lemma 4. One can compute TrFq2/Fq
(fn,P (Q)q−1) and TrFq2/Fq

(fT,Q(P )q−1) using x-coordinates only.

Proof. Following Lemma 3, we have fn,P (Q) = yP αn,P + θyQβn,P where αn,P and βn,P lie in Fq and can be
computed using x-coordinates only. Then

fn,P (Q)q−1 =
yP αn,P − θyQβn,P

yP αn,P + θyQβn,P
.

Multiplying by the Galois conjugate of the denominator gives

fn,P (Q)q−1 =
(x3

P + AxP + B)α2
n,P − (x3

Q + AxQ + B)β2
n,P + θ(· · · )

(x3
P + AxP + B)α2

n,P + (x3
Q + AxQ + B)β2

n,P

which shows that one can compute TrFq2/Fq
(fn,P (Q)q−1).

The case of the ate pairing is exactly the same when T is even (just swapping P and Q and replacing n
by T ). For the case when T is odd we have

fT,Q(P )q−1 =
αT,Q + θyP yQβT,Q

αT,Q − θyP yQβT,Q
.

As before this simplifies to

α2
T,Q − (x3

P + AxP + B)(x3
Q + AxQ + B)β2

T,Q + θ(· · · )
α2

T,Q + (x3
P + AxP + B)(x3

Q + AxQ + B)β2
T,Q

and clearly the trace can be computed using only x-coordinates.

As mentioned above, any step of the algorithm which results in multiplying both αi and βi by a quantity in
F∗q can be omitted. This is the denominator elimination trick which has great benefit in pairing computations
with even embedding degree.

8



Remark 2. 1. Clearly the above methods apply to any algorithm which involves computing a Miller function
in Fq2 and then raising to a multiple of q− 1. In particular, it immediately applies to Scott’s fast pairing
computation using an efficient endomorphism.

2. When using the Tate or ate pairing there is an exponentiation to the power q − 1, and so denominator
elimination can be used in the Miller algorithm as usual.

3. One can use any variant of projective coordinates for the pairing computation (in our case this is
essentially just using (x, z)-coordinates). We sketch some details later in the paper.

5 Computing Pairings with Only One y-Coordinate

In some applications one may be pairing points P and Q where, say, only the x-coordinate of Q is known
but both coordinates of P are known. The above methods can of course be applied by forgetting yP , but in
practice it is more efficient to use knowledge of yP to speed up the computation of the quantities αi and βi

in Lemma 3.
We assume in this section that yP is known, where the pairing computation involves the Miller function

fn,P (Q). If instead yQ is known then it might be preferable to swap the arguments to the pairing function
in the cryptographic protocol so that the full benefit of the method in this section is available.

The following gives the formulae of computing αn,P and βn,P without y-coordinate of the second element.

Lemma 5. Let notation be as in Lemma 3. Denote equivalence in Fq2/Fq by ≡. Then

fi,P (Q) ≡ αi,P + θyQβi,P ,

where αi,P , βi,P depend only on xP , yP , and xQ.

Proof. The proof is essentially the same with Lemma 3, except here we can calculate the slope of the lines
explicitly. We write down the formulae here for the sake of efficiency analysis in the following section.

As before let α1,P = 1 and β1,P = 0. The line equations are the standard ones, which are of the form
θyQ + t1 for double and of the form θyQ + t2 for addition. So we have

f2i,P (Q) ≡ (αi,P + θyQβi,P )2(θyQ + t1)
≡ ((α2

i,P − y2
Qβ2

i,P )t1 − 2αi,P βi,P y2
Q) + θyQ(α2

i,P − y2
Qβ2

i,P + 2αi,P βi,P t1)
≡ α2i,P + θyQβ2i,P ;

f2i+1,P (Q) ≡ (α2i,P + θyQβ2i,P )(θyQ + t2)
≡ (α2i,P t2 − y2

Qβ2i,P ) + θyQ(α2i,P + β2i,P t2)
≡ α2i+1,P + θyQβ2i+1,P .

This completes the proof. ¤

Remark 3. The above Lemma can be applied to any pairing algorithm based on Miller’s algorithm. Specifi-
cally, it easily applies to the pairing computation using Jacobian coordinates [12] and Tate pairing using an
efficient endomorphism [25]. The extension of our algorithm to these two methods is discussed in Appendix B
and Appendix C respectively and timings are given in Tables 3, 4 and 5.

6 Implementation Results and Efficiency Comparision

In this section, efficiency analysis and implementation results of our proposed algorithms are given.
We consider the case of elliptic curves over Fp with embedding degree 2 at the 80-bit security level,

which means p has 512 bits and n has 160 bits. The merits of using elliptic curves of embedding degree 2

9



is discussed by Scott in [26]. We assume that the point order n has low Hamming weight. Therefore, only
doubling steps in the Miller loop are considered.

Two concrete elliptic curves are used. Let E1 be the supersingular elliptic curve given in Appendix A,
and E2 be the non-supersingular elliptic curve given in Appendix C. Note that both of these curves are given
in Miracl [23] and that p ≡ 3 mod 4 in both cases. The reason why we consider two types of elliptic curves
is that the Tate pairing using endomorphism requires to work on certain type of non-supersingular curves.
Since we are working with k = 2 curves over Fp we do not consider the ate pairing.

To obtain a consistent comparison of running times we implemented all the algorithms in Magma [9].
The purpose of the running times is only to show the relative costs of the methods. Of course faster running
times could be obtained on our platform by using lower-level software libraries.

6.1 Tate Pairing Using x-Coordinates Only

In this scenario, only x-coordinates of P and Q are given.
To compute the Tr(tn(P,Q)), one can first extract two square roots and then perform the conventional

Miller algorithm. We refer this as conventional method. Using curve E1 the computation cost of the overall
computation is approximately estimated as follows.

A binary method for computing the square root would cost about 792M (as (p + 1)/4 is of 510 bits
and hamming weight 282). The length of Miller loop is 159(n is of 160 bit). The hard part of the final
exponentiation using Lucas sequences costs about 2 ∗ 353M ((p + 1)/r is of 353 bit). Assuming 1I = 10M ,
the overall cost is about 792 ∗ 2 + 20 ∗ 159 + 2 ∗ 353 = 5470M .

For our new algorithm, each doubling in the Miller loop costs about 14M +1I (compared with 10M +I for
the conventional Miller algorithm using affine coordinates). Hence, the Miller algorithm costs about 4∗159 =
636M more, but we save 1584M by not needing to compute two square roots. The final exponentiation is
the same. The following table summarizes the analysis and the implementation result.

Table 2. Efficiency Comparision 1

Method Operation Time(ms)

Conventional(A) 5470M 12.7

New(A) 4522M 11.0

This suggests that our approach is about 15% faster.

6.2 Tate Pairing Using xP , yP and xQ

In this scenario, xP , yP and xQ are given.
To compute Tr(tn(P, Q)) using conventional methods, one first needs to extract one square root and then

perform the conventional Miller algorithm. We divide the conventional methods into three cases as below,
thus the cost can be approximately estimated separately.

Affine Coordinates We use the elliptic curve E1. One square root extraction costs about 792M . Every
doubling step in the Miller loop costs 10M + 1I. The final exponentiation costs about 2 ∗ 353M . Assuming
1I = 10M , the overall cost is about 792 + 20 ∗ 159 + 2 ∗ 353 = 4678M .

For our new algorithm, each doubling step costs about 12M + 1I, thus it costs about 2 ∗ 159M more in
the Miller loop. But our algorithm save 792M for taking square root. The final exponentiation is the same.
The following table summarizes the estimation and the implementation result.

This suggests that our approach is about 11% faster.

10



Table 3. Efficiency Comparision 2

Method Operation Time(ms)

Conventional(A) 4678M 11.2

New(A) 4204M 9.7

Jacobian Coordinates We consider the elliptic curve E1. The costs of computing square roots and per-
forming the final exponentiation are the same as the affine coordinate case. Every doubling step in the Miller
loop costs about 19M using the method in [12]. So the overall cost is about 4519M

For our new algorithm, each double step costs about 21M , thus it costs about more 2 ∗ 159M in the
Miller loop. And the saving of taking square root is 792M . The final exponentiation is the same.

The following table summarizes the estimation and the implementation result.

Table 4. Efficiency Comparision 2

Method Operation Time(ms)

Conventional(J)[12] 4519M 11.1

New(J) 4045M 9.8

This suggests that our approach is about 11% faster.

Tate Pairing Using an Efficient Endomorphism We consider the ordinary elliptic curve E2. The
square root extraction costs 510M + 242M = 752M . The operation count of Miller’s algorithm and final
exponentiation is 3329M , which was given in [25]. So this method costs about 3329M + 752M = 4081M .

It’s not hard to find that, our new algorithm would cost 20M +I at each doubling in the Miller algorithm,
which is 4M more then the method above. There are about 80 doubling step in the concrete curve considered.
So the new algorithm cost more 320M in the Miller algorithm, but save 752M in the square root extraction.
The final exponentiation is the same.

The following table summarizes the estimation and the implementation result.

Table 5. Efficiency Comparision 2

Method Operation Time(ms)

Conventional(J)[12] 4081M 11.1

New(J) 3649M 10.4

This suggests that our approach is about 10% faster.

6.3 Summary of Efficiency Analysis

Our approach can be applied to all known pairing algorithms when the embedding degree is even and point
compression is being used. Applying our new algorithm to the conventional methods for pairings on elliptic
curves over Fp with embedding degree 2, the overall pairing computation is about 10−15% faster than their
analogous methods. This leads to the following recommendation.

11



– In the case only x-coordinates of P and Q are given, such as the Joux’s three party key agreement scheme
[19], it is better to use the algorithm in Lemma 4 when the ratio between inversion and multiplication
does not exceed 16. Otherwise, it is better to use the algorithm in Lemma 5.

– In the case xP , yP and xQ are given, such as the ID-KEM schemes of [1] and [8, 10] it is better to use
the algorithm in Lemma 5. Again, the choice between the coordinate systems depends on the ratio of
inversion and multiplication.

7 Conclusions

We have shown how to efficiently compute the trace of the Weil and Tate pairings using only the x-coordinates
of points. We have discussed the application of these ideas to pairing computation when elliptic curve point
compression is used. The new methods to compute the compressed Tate pairing are about 10%-15% faster
then their their counterparts.

We stress that this issue is relevant only when working with small embedding degrees, such as embedding
degree 2. In particular, our results apply to the scenario studied by Scott [26]. For example, if using BN
curves with k = 12 then recovering the y-coordinate of a point only requires square roots in Fp for the point
on the small field and square roots in Fp2 for the point on the sextic twist curve. Hence, one would not use
the methods of our paper in cases like this.

References

1. M. Barbosa, L. Chen, Z. Cheng, M. Chimley, A. Dent, P. Farshim, K. Harrison, J. Malone-Lee, N. P. Smart, F.
Vercauteren, SK-KEM: An Identity-Based KEM, submission to IEEE P1363.3 ID-based PKC. Available from
http://grouper.ieee.org/groups/1363/IBC/submissions/index.html

2. P.S.L.M. Barreto, S. Galbraith, C. ÓhÉigeartaigh, and M. Scott. Efficient pairing computation on supersingular
abelian varieties. Designs, Codes and Cryptography. Volume 42, Number 3, pp.239-271, Springer-Verlag, 2007.

3. P.S.L.M. Barreto, H.Y. Kim, B. Lynn, and M. Scott. Efficient algorithms for pairing-based cryptosystems.
Crypto’2002, LNCS 2442, pp.354-368, Springer-Verlag, 2002.

4. P.S.L.M. Barreto and M. Naehrig. Pairing-Friendly Elliptic Curves of Prime Order. SAC’2005, LNCS 3897,
pp.319-331, Springer-Verlag, 2006.

5. I. F. Blake, G. Seroussi and N. P. Smart, Elliptic curves in cryptography, Cambridge 1999.
6. D. Boneh and M. Franklin. Identity based encryption from the Weil Pairing. Crypto 2001, LNCS 2139, pp213-299,

Springer Verlag, 2002.
7. D. Boneh, H. Shacham, and B. Lynn. Short signatures from the Weil pairing. Journal of Cryptology, Vol. 17, No.

4, pp. 297-319, 2004
8. D.Boneh and X. Boyen. Efficient selective-ID secure identity based encryption without random oracles. EURO-

CRYPT 2004, LNCS 3027, pp.223-238, Springer-Verlag, 2004.
9. W. Bosma, J. Cannon and C. Playoust, The Magma Algebra System I: The User Language, J. Symbolic Com-

putation, 24 (1997) 235-265.
10. X. Boyen. The BB1 Identity-based cryptosystem: A standard for Encryption and Key Encapsulation. Submissions

for IEEE P1363.3: Identity-Based Public Key Cryptography
11. J. W. S. Cassels, Lectures on elliptic curves, Cambridge (1991)
12. S. Chatterjee, P. Sarkar, and R. Barua Efficient Computation of Tate Pairing in Projective Coordinate Over

General Characteristic Fields. ICISC 2004, LNCS 3506, pp. 168-181, 2005.
13. R. Crandall and C. Pomerance, Prime numbers A Computational Perspective, Springer (2nd ed.), 2005.
14. D. Freeman, M. Scott, and E. Teske. A Taxonomy of pairing–friendly elliptic curves. Cryptology ePrint Archive,

Report 2006/372 .
15. S. Galbraith, H. Hopkins and I. Shparlinski, Secure Bilinear Diffie-Hellman Bits, in H. Wang, J. Pieprzyk and

V. Varadharajan (eds.), ACISP 2004, Springer LNCS 3108 (2004) 370–378. Earlier version in eprint archive
2002/155.

16. R. Granger, D. Page, M. Stam, On Small Characteristic Algebraic Tori in Pairing Based Cryptography, LMS
JCM 9, pp. 64-85, 2006.

17. F. Hess, N.P. Smart, and F. Vercauteren. The Eta Pairing Revisited. IEEE Transactions on Information Theory,
vol 52, pp. 4595-4602, Oct. 2006. Also available from http://eprint.iacr.org/2006/110.

12



18. T. Izu and T. Takagi. Efficient computation of the Tate pairing for the Large MOV degree. ICISC 2002, LNCS
2587, pp. 283-297, Springer-Verlag, (2003).

19. A. Joux, A one round protocol for tripartite Diffie-Hellman. Journal of Cryptology, 17 (4) : 263–276, 2004.
20. M. Joye and J. J. Quisquater. Efficient computation of full Lucas sequences. Electronics Letters, 32(6):537C538,

1996.
21. N. Kobilitz and A. Menezes. Pairing-Based Cryptography at High Security Levels.
22. Peter. L. Montgomery. Speeding the Pollard and Elliptic Curve Methods of Factorization. Mathematics of Com-

putation. 1987, 48: 243-264.
23. Multiprecision Integer and Rational Arithmetic C/C++ Library. http://www.shamus.ie/index.php.
24. M. Naehrig and P.S.L.M. Barreto, On compressible pairings and their computation, eprint 2007/429.
25. M. Scott, Faster pairings using an elliptic curve with an efficient endomorphism. Indocrypt 2005, LNCS 3797,

pp.258-269, Springer Verlag, 2005
26. M. Scott, Computing the Tate Pairing. CT-RSA 2005, LNCS 3376, pp 293-304, Springer-Verlag, 2005.
27. M. Scott and P. S. L. M. Barreto, Compressed Pairings. Crypto’2004, LNCS 3152, pp140-156, Springer-Verlag,

2004.

A The Supersingular Elliptic Curve from Miracl

The supersingular elliptic curve with k = 2 provided by the Miracl is of the form y2 = x3 + ax + b, where
ab 6= 0. Here, using the fact that p ≡ 3 mod 4, we easily obtain the supersingular elliptic curve E1: y2 = x3+x
over Fp, where

– p = 8BA2A5229BD9C57CFC8ACEC76DFDBF3E3E1952C6B3193
ECF5C571FB502FC5DF410F9267E9F2A605BB0F76F52A7
9E8043BF4AF0EF2E9FA78B0F1E2CDFC4E8549B

– n = 8000000000000000000000000000000000020001

B The Compressed Tate Pairing using Jacobian Coordinates

We use the method of S. Chatterjee et al. in [12] as building block. Here, we briefly recall their method.
For consistence, we use their description for the notation and algorithm. The elliptic curve considered is
y2 = x3 + ax.

B.1 Encapsulated Point Doubling and Line Computation

Let P = (X1, Y1, Z1) correspond to (X1/Z
2
1 , Y1/Z

3
1 ) in affine coordinate. Let ((X3, Y3, Z3)) = 2P . Then we

have

t1 = Y 2
1 ; t2 = 4X1t1; t3 = 8t21; t4 = Z2

1 ; t5 = 3X2
1 + aZ4

1 ;
X3 = t25 − 2t2; Y3 = t5(t2 −X3)− t3; Z3 = 2Y1Z1;

The line valuation at Q′ = (−xQ, θyQ) is

gP,P (−xQ, θyQ) = Z3t4yQθ − (2t1 − t5(t4xQ + X1))

.
In the Miller algorithm, f1 is updated by

f1 = f2
1 ∗ gP,P (−xQ, θyQ)

.

13



B.2 Encapsulated(Mixed) Point Addition and Line Computation

Given R = (X1, Y1, Z1) and P = (X, Y, Z) we compute R + P = (X3, Y3, Z3) as follows,

t1 = Z2
1 ; t2 = Z1t1; t3 = Xt1;

t4 = Y t2; t5 = t3 −X1; t6 = t4 − Y1;
t7 = t25; t8 = t5t7; t9 = X1t7;

X3 = t26 − (t8 + 2t9); Y3 = t6(t9 −X3)− Y1t8; Z3 = Z1t5;

The line valuation at Q′ = (−xQ, θyQ) is

gR,P (−xQ, θyQ) = Z3yQθ − (Z3Y − t6(xQ + X))

Then f1 is updated by
f1 = f1 ∗ gR,P (−xQ, θyQ)

.

B.3 New Algorithm in the Jacobian Coordinate Case

Equipped with the above formulas for line valuations, we can rewrite Lemma 5 in the case of Jacobian
coordinate. The formulas for αi,P and βi,P is given below.

f2i,P (Q) = (αi,P + θyQβi,P )2(s1 + s2θyQ)
= (m1 + m2yQθ)(s1 + s2θyQ)
= α2i,P + θyQβ2i,P ;

where m1 = α2
i,P − β2

i,P y2
Q, m2 = 2αi,P βi,P , hence α2i,P = m1s1 −m2s2y

2
Q, and β2i,P = m1s2 + m2s1.

Similarly,

f2i+1,P (Q) = (α2i,P + θyQβ2i,P )(s3 + s4θyQ)
= (m1 + m2θyQ)(s3 + s4θyQ)
= α2i+1,P + θyQβ2i+1,P

where m1 = α2i,P , m2 = β2i,P , hence α2i+1,P = m1s3 −m2s4y
2
Q, and β2i+1,P = m1s4 + m2s3.

Note that, during the implementation, we can use the Karatsuba style formula to compute αi,P and βi,P .
The trick can save one base field multiplication in each Miller step in the above computation.

C Faster Tate Pairing Using an Efficient Endomorphism

In [25], Scott proposed a new method to compute the Tate pairing using efficient endomorphisms. The
method is recalled as follows.

The example curve E2 considered is defined by y2 = x3 + 5 over Fp, where,

– p = DAC2F97CDD22AC93CCC12106F6541B748C9D8F71C806B
1023B95D69281EB5F739F9A3EFC931882113CA321A0AC
348D825249B44E45C180726EC6E896E6DE568B

– λ = 280 + 216 = 100000000000000010000(hex)

– n = λ2 + λ + 1 = 10000000000000002000100000000000100010001(hex)

14



– β=704027DC704986DC115B5DBEE212B29F21C650042202F
B5790BB520E4970BCE603FF01F4F0B509A0DB16332424
6EE01848A1A47FDB43C9D7BC041237FFE2CE2C

Here, β is the non-trivial cubic root of unity in Fp which is needed for efficient endomorphism.

Algorithm 3: Faster Tate Algorithm
Input: P, Q, E, λ = 2a + 2b, a > b
Output: tn(P, Q)
1 A ← P , f1 ← 1, f2 ← 1, j ← 1
2 for i ← 1 to a− b do
3 f1 ← f2

1 · g(A,A, Q, 0)
4 f2 ← f2

2 · s[0]
5 end for
6 f1 ← f1 · g(A, P, Q, 0)
7 f2 ← f2 · s[0]
8 for i ← 1 to b do
9 f1 ← f2

1 · g(A,A, Q, 0)
10 f2 ← f2

2 · s[0]
11 end for
12 f1 ← f1 · g(A,P, Q,−)
13 f1 ← fλ

1 · f2

14 return f (p−1)(p+1)/r

Algorithm 4: Function g(.)
Input: A,B, Q, i
1 xi, yi ← A
2 xQ, yQ ← Q
3 mi = A.add(B) (Add B to A and return slope)
4 store −yQ − yi −mi(βxQ − xi) in an array element s[i]
5 return yQ − yi −mi(xQ − xi)

Note that this is for the computation of the whole Tate pairing. A slight change of the final steps can
easily lead to the compressed pairing.

Through algorithm 3 and 4, it is easy to see that the update of f1 and f2 using line valuations can be
computed in the similar fashion of Lemma 5 without the value of yQ. If we only care about the compressed
Tate pairing, than we simply replace line 13 and 14 with the Lucas sequence.

The computation in each step of loop costs about 16M + I. Applying our algorithm to this method, each
step would cost about 20M + I.

This clarifies that our new algorithm applies to the Tate pairing using efficient endomorphism.

15


