Skip to main content
Log in

Covering arrays of strength 3 and 4 from holey difference matrices

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

A covering array CA(N; t, k, v) is an N × k array with entries from a set X of v symbols such that every N × t sub-array contains all t-tuples over X at least once, where t is the strength of the array. The minimum size N for which a CA(N; t, k, v) exists is called the covering array number and denoted by CAN(t, k, v). Covering arrays are used in experiments to screen for interactions among t-subsets of k components. One of the main problems on covering arrays is to construct a CA(N; t, k, v) for given parameters (t, k, v) so that N is as small as possible. In this paper, we present some constructions of covering arrays of strengths 3 and 4 via holey difference matrices with prescribed properties. As a consequence, some of known bounds on covering array number are improved. In particular, it is proved that (1) CAN(3, 5, 2v) ≤ 2v 2(4v + 1) for any odd positive integer v with gcd(v, 9) ≠ 3; (2) CAN(3, 6, 6p) ≤ 216p 3 + 42p 2 for any prime p > 5; and (3) CAN(4, 6, 2p) ≤ 16p 4 + 5p 3 for any prime p ≡ 1 (mod 4) greater than 5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buratti M.: Cyclic designs with block size 4 and related optimal optical orthogonal codes. Des. Codes Cryptogr. 26, 111–125 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chang Y., Yin J.: Further results on optimal optical orthogonal codes with weight 4. Discrete Math. 279, 135–151 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chateauneuf M., Kreher D.L.: On the state of strength-three covering arrays. J. Combin. Des. 10, 217–238 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cohen D.M., Dalal S.R., Fredman M.L., Patton G.C.: The AETG system: an approach to testing based on combinatorial design. IEEE Trans. Software Eng. 23, 437–444 (1997)

    Article  Google Scholar 

  5. Colbourn C.J.: Combinatorial aspects of covering arrays. Le Matematiche (Catania) 58, 121–167 (2004)

    Google Scholar 

  6. Colbourn C.J.: Strength two covering arrays: existence tables and projection. Discrete Math. 308, 772–786 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Colbourn C.J., Martirosyan S.S., Mullen G.L., Shasha D.E., Sherwood G.B., Yucas J.L.: Products of mixed covering arrays of strength two. J. Combin. Des. 14, 124–138 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Colbourn C.J., Martirosyan S.S., Trung T.V., Walker R.A., : Roux-type constructions for covering arrays of strengths three and four. Des. Codes Cryptogr. 41, 33–57 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Drake D.A.: Partial λ-geometries and generalized Hadamard matrices over groups. Can. J. Math. 31, 617–627 (1979)

    MathSciNet  Google Scholar 

  10. Hartman A.: Software and hardware testing using combinatorial covering suites. In: Golunbic, M.C., Hartman, I.B.A.(eds) Graph Theory, Combinatorics and Algorithms: Interdisciplinary Applications., pp. 237–266. Springer, Boston (2005)

    Chapter  Google Scholar 

  11. Hartman A., Raskin L.: Problems and algorithms for covering arrays. Discrete Math. 284, 149–156 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hedayat A.S., Slone N.J.A., Stufken J.: Orthogonal Arrays. Springer, New York (1999)

    MATH  Google Scholar 

  13. Ji L., Yin J.: Constructions of new orthogonal arrays and covering arrays of strength three, preprint.

  14. Johnson K.A., Entringer R.C.: Largest induced subgraphs of the n-cube that contain no 4-cycles. J. Combin. Theory Ser. B 46, 346–355 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  15. Körner J., Lucertini M.: Compressing inconsistent data. IEEE Trans. Inform. Theory 40, 706–715 (1994)

    Article  MATH  Google Scholar 

  16. Liedl R., Niederreiter H.: Finite Fields. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  17. Martirosyan S., Trung T.V.: On t-covering arrays. Des. Codes Cryptogr. 32, 323–339 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Poljak S., Putr A., Rödl V.: On qualitatively independent partitions and related problems. Discrete Appl. Math. 6, 193–205 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  19. Seroussi G., Bshouty N.H.: Vector sets for exhaustive testing of logic circuits. IEEE Trans. Inform. Theory 34, 513–522 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  20. Stevens B., Mendelsohn E.: New recursive methods for transversal covers. J. Combin. Designs 7, 185–203 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Tang Y., Yin J.: The combinatorial construction of a class of optimal optical orthogonal codes. Sci. China-A 45, 1268–1275 (2002)

    MATH  MathSciNet  Google Scholar 

  22. Yin J.: Constructions of difference covering arrays. J. Combin. Theory A 104, 327–339 (2003)

    Article  MATH  Google Scholar 

  23. Yin J.: Cyclic difference packing and covering arrays. Des. Codes Cryptogr. 37, 281–292 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Ji.

Additional information

Communicated by C.J. Colbourn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Ji, L. & Yin, J. Covering arrays of strength 3 and 4 from holey difference matrices. Des. Codes Cryptogr. 50, 339–350 (2009). https://doi.org/10.1007/s10623-008-9235-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-008-9235-1

Keywords

Mathematics Subject Classification (2000)

Navigation