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Abstract. Let G ' Z/k1Z⊕ · · · ⊕ Z/kNZ be a finite abelian group with ki|ki−1 (2 ≤ i ≤ N).
For a matrix Y =

(
ai,j

)
∈ ZR×S satisfying ai,1 + · · ·+ ai,S = 0 (1 ≤ i ≤ R), let DY (G) denote

the maximal cardinality of a set A ⊆ G for which the equations ai,1x1 + · · · + ai,SxS = 0
(1 ≤ i ≤ R) are never satisfied simultaneously by distinct elements x1, . . . , xS ∈ A. Under
certain assumptions on Y and G, we prove an upper bound of the form DY (G) ≤ |G|(C/N)γ

for positive constants C and γ.

1. Introduction

Let G be a finite abelian group, and let D3(G) denote the maximal cardinality of a subset
A ⊆ G which does not contain a 3-term arithmetic progression. Let k ∈ N = {1, 2, . . .} with
gcd(2, k) = 1. In his fundamental paper [9], Roth proved that D3(Z/kZ) = O

(
k/ log log k

)
. His

result was later improved by Heath-Brown [6] and Szemerédi [11] to D3(Z/kZ) = O
(
k/(log k)α

)
for some small positive constant α > 0. Recently, Bourgain [2] proved that D3(Z/kZ) =

O
(
k(log log k)2/(log k)2/3

)
, which provides the best bound currently known. For a general finite

abelian group G of odd order, Brown and Buhler [1] and Frankl, Graham, and Rödl [3] showed
that D3(G) = o(|G|). In [8], Meshulam considered the case where G has many constituents, and
he proved that D3(G) ≤ 2|G|/c(G), where c(G) denotes the number of constituents of G. By
combining Meshulam’s result with Bourgain’s bound, one can follow the proof of [8, Corollary
1.3] to obtain that D3(G) = O

(
|G|/(log |G|)β

)
, where β is any positive constant with β < 2/5.

By adapting Bourgain’s argument in [2] to a general finite abelian group G of odd order, one
should in fact be able to prove that D3(G) = O

(
|G|/(log |G|)β

)
, where β is any positive constant

with β < 2/3. In [7], the first two authors of this paper generalized Meshulam’s result to give
an upper bound for subsets of finite abelian groups which avoid non-trivial solutions to a linear
equation of the form r1x1 + r2x2 + · · · + rsxs = 0. In this paper, we follow the approaches of
[7] and [10] to further generalize Meshulam’s result by investigating solutions of a system of
equations.
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Given a finite abelian group G, we can write

G ' Z/k1Z⊕ · · · ⊕ Z/kMZ,

where Z/kiZ is a non-trivial cyclic group of order ki (1 ≤ i ≤ M) and ki|ki−1 (2 ≤ i ≤ M). We
denote by c(G) = M the number of constituents of G and by a(G) = k1 the annihilator of G.
For R,S ∈ N with S ≥ 2R + 1, let Y =

(
ai,j
)

be an R × S matrix whose elements are integers.
Let L ∈ N with L ≥ R. We say that the group G is L-coprime to Y if there exist L columns of
Y such that:

– any R of these L columns form a matrix of determinant coprime to a(G),
– after removing any L− R + 1 of these L columns from Y , we can find two disjoint sets

of R columns which form matrices of determinant coprime to a(G).

In this case, we denote by IY (G;L) the set of indices of these L columns. The L-coprimality
condition on Y is essential for the arguments of this paper. In order to study systems of higher
complexity, one could use higher-order Fourier analysis (see, for example, [4, 5]).

Let Y =
(
ai,j
)
∈ ZR×S satisfy ai,1 + · · · + ai,S = 0 (1 ≤ i ≤ R). Consider the system of

equations

ai,1x1 + · · ·+ ai,SxS = 0 (1 ≤ i ≤ R). (1)

LetDY (G) denote the maximal cardinality of a set A ⊆ G for which the equations in (1) are never
satisfied simultaneously by distinct elements x1, . . . , xS ∈ A, and let |G| denote the cardinality
of G. For L,N ∈ N with L ≥ R, we denote by dY (N ;L) the supremum of DY (G)|G|−1 as G
ranges over all finite abelian groups with c(G) ≥ N that are L-coprime to Y . In this paper, we
prove the following theorem.

Theorem 1. For R,S ∈ N with S ≥ 2R+ 1, let Y =
(
ai,j
)
∈ ZR×S satisfy ai,1 + · · ·+ ai,S = 0

(1 ≤ i ≤ R). For L ∈ N with L ≥ R, there exists an effectively computable constant C =
C(Y ;L) > 1 such that for N ∈ N, we have

dY (N ;L) ≤
(C
N

)L−R+1
R

.

We note that in the special case when L = R, the above conditions on G and Y are analogous
to Conditions 1 and 2 in [10]. Hence, Theorem 1 is more general than the finite abelian group
analogue of Roth’s result in [10]. Also, in the special case when R = 1 and L = S − 2, we can
derive [7, Theorem 1] from Theorem 1 (see Remark 1). In particular, if Y = (1,−2, 1) (thus
L = R = 1 and G is of odd order), by [7, Remark 6], the constant C in Theorem 1 can be taken
to be 2. Thus, Theorem 1 implies Meshulam’s result on subsets of finite abelian groups with no
3-term arithmetic progression [8, Theorem 1.2].

We conclude this section by recalling some properties of character sums of finite abelian
groups. Let Ĝ denote the character group of G. For g ∈ G, we have

|G|−1
∑
χ∈Ĝ

χ(g) =

{
1, if g = 0,

0, otherwise.



A GENERALIZATION OF MESHULAM’S THEOREM 3

For R ∈ N, the character group of GR is equivalent to the product of R copies of Ĝ, and we
denote it by ĜR. Thus, for χ = (χ1, . . . , χR) ∈ ĜR and (g1, . . . , gR) ∈ GR, we have

|G|−R
∑

χ∈ĜR
χ1(g1) · · ·χR(gR) =

R∏
i=1

(
|G|−1

∑
χi∈Ĝ

χi(gi)

)

=

{
1, if gj = 0 (1 ≤ j ≤ R),

0, otherwise.

(2)

In what follows, we will write 1 for the trivial character (1, . . . , 1) ∈ ĜR and Γ(G) for ĜR \ {1}.

Acknowledgements The authors would like to thank the referees for providing valuable sug-
gestions and comments.

2. Proof of Theorem 1

For R,S ∈ N with S ≥ 2R+ 1, let Y =
(
ai,j
)
∈ ZR×S satisfy ai,1 + · · ·+ ai,S = 0 (1 ≤ i ≤ R).

For L,N ∈ N with L ≥ R, let G be a finite abelian group with c(G) ≥ N that is L-coprime
to Y . Let DY (G) and dY (N ;L) be defined as in Section 1. For convenience, in what follows,
we will write D(G) in place of DY (G) and d(N) in place of dY (N ;L). For a set A ⊆ G, let
T (A) = TY (A) denote the number of solutions of (1) with xi ∈ A (1 ≤ i ≤ S). For 1 ≤ j ≤ S

and χ = (χ1, . . . , χR) ∈ ĜR, define

Fj(χ) = Fj(χ;A) =
∑
x∈A

χ1(a1,jx) · · ·χR(aR,jx) =
∑
x∈A

χ
a1,j
1 · · ·χaR,jR (x).

Then by (2), we have

T (A) = |G|−R
∑

χ∈ĜR
F1 · · ·FS(χ)

= |G|−RF1 · · ·FS(1) + |G|−R
∑

χ∈Γ(G)

F1 · · ·FS(χ).
(3)

Before proving Theorem 1, we will need to obtain bounds on T (A) and the contribution of the
non-trivial characters.

Lemma 2. Let G be a finite abelian group. For R ∈ N, let Z ∈ ZR×R satisfy gcd(detZ, a(G)) =
1, where detZ denotes the determinant of Z. For x ∈ GR, we have Zx = 0 if and only if x = 0.

Proof. For a finite abelian group G, we can write G ' Z/k1Z ⊕ · · · ⊕ Z/kMZ with ki|ki−1 (2 ≤
i ≤M). For x ∈ GR, we have x = x1 + · · ·+xM with xi ∈

(
Z/kiZ

)R
(1 ≤ i ≤M). Then Zx = 0

is equivalent to Zxi = 0 (1 ≤ i ≤ M). Fix i ∈ N with 1 ≤ i ≤ M . Since gcd(detZ, a(G)) = 1
and ki|a(G), Z is invertible over the ring Z/kiZ. Hence Zxi = 0 if and only if xi = 0. Thus,
Zx = 0 is equivalent to x = 0. �

Lemma 3. For Y =
(
ai,j
)
∈ ZR×S and L ∈ N with L ≥ R, suppose that G is a finite abelian

group that is L-coprime to Y . Suppose that A ⊆ G for which the equations in (1) are never
satisfied simultaneously by distinct elements x1, . . . , xS ∈ A. Then we have

T (A) ≤ C1|A|S−R−1,
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where C1 = C1(Y ) =

(
S
2

)
.

Proof. We have
T (A) = card

{
x ∈ AS

∣∣Y x = 0
}
,

where card {V } denotes the cardinality of a set V . Since A ⊆ G for which the equations in (1)
are never satisfied simultaneously by distinct elements x1, . . . , xS ∈ A, whenever Y x = 0 for
some x = (x1, . . . , xS) ∈ AS , there exist distinct elements i, j ∈ {1, . . . , S} with xi = xj . Fix

one of the C1 =

(
S
2

)
choices of {i, j}. We consider two cases.

• Case 1: Suppose that {i, j} ∩ IY (G;L) = ∅. Since G is L-coprime to Y , by Lemma 2,
we have

card
{
x ∈ AS

∣∣xi = xj and Y x = 0
}
≤ |A|S−R−1.

• Case 2: Suppose that {i, j}∩IY (G;L) 6= ∅. Without loss of generality, we may assume
that j ∈ IY (G;L). Since G is L-coprime to Y , we can find two disjoint R-element subsets
U and V of {1, . . . , S} \ {j} such that the columns of Y indexed by either set form a
matrix of determinant coprime to a(G). Since (U ∪ V ) ∩ {i, j} ⊆ {i} and U ∩ V = ∅,
without loss of generality, we may assume that U ∩ {i, j} = ∅. It now follows from
Lemma 2 that

card
{
x ∈ AS

∣∣xi = xj and Y x = 0
}
≤ |A|S−R−1.

On recalling the definition of C1 and combining Cases 1 and 2, the lemma follows. �

Lemma 4. Let Y ∈ ZR×S satisfy ai,1 + · · ·+ ai,S = 0 (1 ≤ i ≤ R). For L,N ∈ N with L ≥ R,
let G be a finite abelian group with c(G) ≥ N that is L-coprime to Y . Suppose that A ⊆ G for
which the equations in (1) are never satisfied simultaneously by distinct elements x1, . . . , xS ∈ A.
Then we have

sup
χ 6=1

∣∣∣∣∑
x∈A

χ(x)

∣∣∣∣ ≤ d(N − 1)|G| − |A|.

Proof. This proof can be carried out in the same way as the proof of [7, Lemma 3]. To do this,
in the proof of [7, Lemma 3], we set ri = −1, and we replace the condition that G is coprime
to r with the condition that G is L-coprime to Y . We also change the notion of non-trivial
solutions in [7] to solutions with distinct coordinates. Finally, we replace the linear equation
r1x1 + · · ·+ rsxs = 0 with the system of equations (1). �

Lemma 5. For Y =
(
ai,j
)
∈ ZR×S and L ∈ N with L ≥ R, suppose that G is a finite abelian

group that is L-coprime to Y . Let

Q = QY (G;L) =
{
B ⊆ IY (G;L)

∣∣ |B| = L−R+ 1
}
.

For B ∈ Q, let

ΓB = ΓB,Y (G;L) =
{
χ = (χ1, . . . , χR) ∈ ĜR

∣∣χa1,j1 · · ·χaR,jR 6= 1 (j ∈ B)
}
.

Then we have
Γ(G) ⊆

⋃
B∈Q

ΓB.
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Proof. Let χ = (χ1, . . . , χR) ∈ Γ(G). Select any R columns indexed by {l1, . . . , lR} ⊆ IY (G;L),
and we denote by Z =

(
ai,lj

)
1≤i,j≤R the matrix formed by these columns. Suppose that

χ
a1,li
1 · · ·χaR,liR = 1 for every i ∈ {1, . . . , R}. Let ρ be an isomorphism from Ĝ to G. It fol-

lows that for 1 ≤ i ≤ R,

0 = ρ(1) = ρ(χ
a1,li
1 · · ·χaR,liR ) = a1,liρ(χ1) + · · ·+ aR,liρ(χR).

Write ρ(χ) =
(
ρ(χ1), . . . , ρ(χR)

)
. Then the above equation is equivalent to having ρ(χ)Z = 0.

Since G is L-coprime to Y , we have gcd(detZ, a(G)) = 1. By Lemma 2, we have ρ(χ) = 0. It
follows that χ = 1, contradicting the fact that χ ∈ Γ(G).

Since we can find an element k such that χ
a1,k
1 · · ·χaR,kR 6= 1 amongst any R-element subset of

IY (G;L), it follows that there are at least L−R+1 values k ∈ IY (G;L) with χ
a1,k
1 · · ·χaR,kR 6= 1.

That is, there exists B ⊆ IY (G;L) with |B| = L−R+ 1 such that χ ∈ ΓB. This completes the
proof of the lemma. �

Lemma 6. Let Y ∈ ZR×S satisfy ai,1 + · · ·+ ai,S = 0 (1 ≤ i ≤ R). For L,N ∈ N with L ≥ R,
let G be a finite abelian group with c(G) ≥ N that is L-coprime to Y . Suppose that A ⊆ G for
which the equations in (1) are never satisfied simultaneously by distinct elements x1, . . . , xS ∈ A.
Then we have

|G|−R
∑

χ∈Γ(G)

|F1 · · ·FS(χ)| ≤ C2

(
d(N − 1)|G| − |A|

)L−R+1|A|S−L−1,

where C2 = C2(Y ;L) =

(
L

L−R+ 1

)
.

Proof. Let Q and ΓB (B ∈ Q) be defined as in Lemma 5. We have

|G|−R
∑
χ∈ΓB

|F1 · · ·FS(χ)| ≤
(

sup
χ∈ΓB

∏
j∈B

∣∣Fj(χ)
∣∣) · |G|−R ∑

χ∈ĜR

∏
j 6∈B

∣∣Fj(χ)
∣∣.

By Lemma 4, we see that for j ∈ B,

sup
χ∈ΓB

∣∣Fj(χ)
∣∣ ≤ d(N − 1)|G| − |A|.

Since G is L-coprime to Y , there are two disjoint R-element subsets U and V of {1, . . . , S} \B
such that the columns of Y indexed by either set form a matrix of determinant coprime to
a(G). Let Z be an R×R matrix formed by the columns indexed by U (or V ). Note that since
gcd(detZ, a(G)) = 1, by Lemma 2, for y1,y2 ∈ AR, we have Zy1 = Zy2 if and only if y1 = y2.
Then by (2), we have

|G|−R
∑

χ∈ĜR

∣∣∣∣ ∏
j∈U

(or j∈V )

Fj(χ)

∣∣∣∣2 = card
{

(y1,y2) ∈ AR ×AR
∣∣Zy1 = Zy2

}
= |A|R.
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On combining the above equality with the Cauchy-Schwarz inequality, we see that

|G|−R
∑

χ∈ĜR

∏
j 6∈B

∣∣Fj(χ)
∣∣

≤ |A|S−|B|−2R · |G|−R
∑

χ∈ĜR

∣∣∣∣ ∏
j∈U

Fj(χ)

∣∣∣∣∣∣∣∣ ∏
j∈V

Fj(χ)

∣∣∣∣
≤ |A|S−|B|−2R

(
|G|−R

∑
χ∈ĜR

∣∣∣∣ ∏
j∈U

Fj(χ)

∣∣∣∣2
) 1

2
(
|G|−R

∑
χ∈ĜR

∣∣∣∣ ∏
j∈V

Fj(χ)

∣∣∣∣2
) 1

2

= |A|S−|B|−R.
On combining the above three inequalities, we have

|G|−R
∑
χ∈ΓB

|F1 · · ·FS(χ)| ≤
(
d(N − 1)|G| − |A|

)L−R+1|A|S−L−1.

By Lemma 5, Γ(G) ⊆
⋃
B∈Q ΓB. Since |IY (G;L)| = L, we have |Q| =

(
L

L−R+ 1

)
= C2. It

follows that

|G|−R
∑

χ∈Γ(G)

|F1 · · ·FS(χ)| ≤ C2

(
d(N − 1)|G| − |A|

)L−R+1|A|S−L−1.

This completes the proof of the lemma. �

We are now ready to prove Theorem 1.

Proof. (of Theorem 1) This statement will follow by induction. Since d(N) ≤ 1 and C > 1,

we trivially have that d(N) ≤
(
C
N

)L−R+1
R whenever N ≤ C. Let N > C, and assume that

d(N − 1) ≤
(

C
N−1

)L−R+1
R . Let G be a finite abelian group with c(G) ≥ N that is L-coprime

to Y . Suppose that A ⊆ G for which |A| = D(G) and the equations in (1) are never satisfied
simultaneously by distinct elements x1, . . . , xS ∈ A. By (3), we have

|G|−R|F1(1) · · ·FS(1)| − |G|−R
∑

χ∈Γ(G)

|F1 · · ·FS(χ)| ≤ T (A).

On applying Lemmas 3 and 6, there exist computable constants C1, C2 > 0 such that

|G|−R|A|S − C2

(
d(N − 1)|G| − |A|

)L−R+1|A|S−L−1 ≤ C1|A|S−R−1.

Let d∗(G) = |A||G|−1. We have

d∗(G)S − C1d
∗(G)S−R−1|G|−1 − C2

(
d(N − 1)− d∗(G)

)L−R+1
d∗(G)S−L−1 ≤ 0. (4)

We consider two cases.

• Case 1: Suppose that d∗(G)S − C1d
∗(G)S−R−1|G|−1 ≤ 1

2d
∗(G)S . Since c(G) ≥ N , we

have |G| ≥ 2N , and hence

d∗(G) ≤
(
2C1

) 1
R+1 |G|−

1
R+1 ≤

(
2C1

) 1
R+1 2−

N
R+1 .
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For x > 0, the function 2−
x

R+1x
L−R+1

R obtains its maximum of
(

(R+1)(L−R+1)
Re log 2

)L−R+1
R

when x = (R+1)(L−R+1)
R log 2 . Thus, provided that C ≥ (R+1)(L−R+1)

Re log 2 (2C1)
R

(R+1)(L−R+1) , we

have
d∗(G) ≤ (C/N)

L−R+1
R .

• Case 2: Suppose that d∗(G)S − C1d
∗(G)S−R−1|G|−1 > 1

2d
∗(G)S . We can deduce from

(4) that

d∗(G)L+1 < 2C2

(
d(N − 1)− d∗(G)

)L−R+1
.

By setting C3 =
(
2C2

)− 1
L−R+1 , we have

C3d
∗(G)

L+1
L−R+1 + d∗(G) < d(N − 1).

Assume that C ≥ C4
C4−1 , where C4 = (C3 + 1)

R
L−R+1 . Since the function x

L+1
R (x −

1)−
L−R+1

R − x is decreasing for x > 1, when N > C, we have

N
L+1
R (N − 1)−

L−R+1
R −N ≤ C

L+1
R (C − 1)−

L−R+1
R − C ≤ CC3.

On combining the above two inequalities with the induction hypothesis, we see that

C3d
∗(G)

L+1
L−R+1 + d∗(G) <

(
C/(N − 1)

)L−R+1
R

≤ C3

(
C/N

)L+1
R +

(
C/N

)L−R+1
R .

Since the function C3x
L+1

L−R+1 + x is increasing for x > 0, we have

d∗(G) ≤ (C/N)
L−R+1

R .

On combining Cases 1 and 2, whenever C ≥ max
{ (R+1)(L−R+1)

Re log 2 (2C1)
R

(R+1)(L−R+1) , C4
C4−1

}
, we

obtain

d(N) = sup
{
d∗(G)

∣∣ c(G) ≥ N and G is L-coprime to Y
}
≤ (C/N)

L−R+1
R .

This completes the proof of Theorem 1. �

Remark 1. Let Y =
(
ai,j
)
∈ ZR×S satisfy ai,1 + · · ·+ ai,S = 0 (1 ≤ i ≤ R). For L,N ∈ N with

L ≥ R, let G be a finite abelian group with c(N) ≥ N that is L-coprime to Y . Following the
notation in [7], we say that a solution x = (x1, . . . , xS) ∈ GS of (1) is trivial if xj1 = · · · = xjl for
some subset {j1, . . . , jl} ⊆ {1, . . . , S} with l ≥ 2 and ai,j1 +· · ·+ai,jl = 0 (1 ≤ i ≤ R). Otherwise,

we say a solution x of (1) is non-trivial. Let D̃(G) = D̃Y (G) denote the maximal cardinality of
a set A ⊆ G for which (1) has no non-trivial solution with xj ∈ A (1 ≤ j ≤ S). Since a solution

x of (1) with distinct coordinates is also a non-trivial solution, we have D̃(G) ≤ D(G). Thus,

by Theorem 1, there exists a positive constant C = C(Y ;L) such that D̃(G) ≤ |G|(C/N)
L−R+1

R .

Remark 2. Let Y =
(
ai,j
)
∈ ZR×S satisfy ai,1 + · · · + ai,S = 0 (1 ≤ i ≤ R), and let G be

a finite abelian group that is R-coprime to Y . For k ∈ N and G = Z/kZ, Roth [10] proved

that D(Z/kZ) = O
(
k/(log log k)1/R2)

. By combining his result with Theorem 1, the proof of [8,

Corollary 1.3] yields that for a finite abelian group G, we have D(G) = O
(
|G|/(log log |G|)1/R2)

.
By adapting Bourgain’s method in [2], one can significantly improve Roth’s bound for D(Z/kZ)
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by replacing the power of log log k with a power of log k. This would lead to a better bound for
D(G).
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