Skip to main content
Log in

Multiple blocking sets in finite projective spaces and improvements to the Griesmer bound for linear codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Belov, Logachev and Sandimirov construct linear codes of minimum distance d for roughly 1/q k/2 of the values of dq k-1. In this article we shall prove that, for q = p prime and roughly \({\frac{3}{8}}\)-th’s of the values of d < q k-1, there is no linear code meeting the Griesmer bound. This result uses Blokhuis’ theorem on the size of a t-fold blocking set in PG(2, p), p prime, which we generalise to higher dimensions. We also give more general lower bounds on the size of a t-fold blocking set in PG(δ, q), for arbitrary q and δ ≥ 3. It is known that from a linear code of dimension k with minimum distance dq k-1 that meets the Griesmer bound one can construct a t-fold blocking set of PG(k−1, q). Here, we calculate explicit formulas relating t and d. Finally we show, using the generalised version of Blokhuis’ theorem, that nearly all linear codes over \({{\mathbb F}_p}\) of dimension k with minimum distance dq k-1, which meet the Griesmer bound, have codewords of weight at least d + p in subcodes, which contain codewords satisfying certain hypotheses on their supports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ball S.: Multiple blocking sets and arcs in finite planes. J. London Math. Soc. 54, 581–593 (1996)

    MATH  MathSciNet  Google Scholar 

  2. Ball S.: On intersection sets in Desarguesian affine spaces. Eur. J. Combin. 21, 441–446 (2000)

    Article  MATH  Google Scholar 

  3. Blokhuis A.: On the size of a blocking set in PG(2, p). Combinatorica 14, 111–114 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Blokhuis A., Lovász L., Storme L., Szőnyi T.: On multiple blocking sets in Galois-planes. Adv. Geom. 7, 39–53 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Blokhuis A., Storme L., Szőnyi T.: Lacunary polynomials, multiple blocking sets and Baer-subplanes. J. London Math. Soc. 60, 321–332 (1999)

    Article  MathSciNet  Google Scholar 

  6. Bruen A.A.: Polynomial multiplicities over finite fields and intersection sets. J. Combin. Theory A 60, 19–33 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cheon E.J., Maruta T.: On the minimum length of some linear codes. Des. Codes Cryptogr. 43, 123–135 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hamada N.: A characterization of some [n, k, d; q]-codes meeting the Griesmer bound using a minihyper in a finite projective geometry. Discrete Math. 116, 229–268 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ling S., Xing C.: Coding Theory, A First Course. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  10. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977)

    MATH  Google Scholar 

  11. Szőnyi T., Weiner Zs.: Small blocking sets in higher dimensions. J. Combin. Theory A 95, 88–101 (2001)

    Article  Google Scholar 

  12. van Lint J.H.: An Introduction to Coding Theory, 2nd edn. Springer, Berlin (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simeon Ball.

Additional information

Communicated by J. D. Key.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ball, S., Fancsali, S.L. Multiple blocking sets in finite projective spaces and improvements to the Griesmer bound for linear codes. Des. Codes Cryptogr. 53, 119–136 (2009). https://doi.org/10.1007/s10623-009-9298-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-009-9298-7

Keywords

Mathematics Subject Classifications (2000)

Navigation