Skip to main content
Log in

Minimal logarithmic signatures for finite groups of Lie type

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

A logarithmic signature (LS) for a finite group G is an ordered tuple α =  [A 1, A 2, . . . , A n ] of subsets A i of G, such that every element \({g \in G}\) can be expressed uniquely as a product ga 1 a 2 . . . a n , where \({a_i \in A_i}\). The length of an LS α is defined to be \({l(\alpha)= \sum^{n}_{i=1}|A_i|}\). It can be easily seen that for a group G of order \({\prod^k_{j=1}{p_j}^{m_j}}\), the length of any LS α for G, satisfies, \({l(\alpha) \geq \sum^k_{j=1}m_jp_j}\). An LS for which this lower bound is achieved is called a minimal logarithmic signature (MLS) (González Vasco et al., Tatra Mt. Math. Publ. 25:2337, 2002). The MLS conjecture states that every finite simple group has an MLS. This paper addresses the MLS conjecture for classical groups of Lie type and is shown to be true for the families PSL n (q) and PSp 2n (q). Our methods use Singer subgroups and the Levi decomposition of parabolic subgroups for these groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artin M.: Algebra. Prentice Hall Inc, Englewood Cliffs, NJ (1991)

    Google Scholar 

  2. Bereczky Á.: Maximal overgroups of singer elements in classical groups. J. Algebra 234, 187–206 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Biggs N., White A.T.: Permutation groups and combinatorial structures. Cambridge University Press, Cambridge-New York (1979)

    Book  MATH  Google Scholar 

  4. Bohli J.M., Steinwandt R., González Vasco M.I., Martínez C.: Weak Keys in MST 1. Des. Codes Cryptogr. 37, 509–524 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Carter R.W.: Finite Groups of Lie Type: Conjugacy Classes and Complex Characters. John Wiley & Sons Ltd, New York (1985)

    MATH  Google Scholar 

  6. Conway J.H., Curtis R.T., Norton S.P., Parker R.A., Wilson R.A.: Atlas of Finite Groups. Clarendon Press, Oxford (1985)

    MATH  Google Scholar 

  7. Cossidente A., De Resmini M.J.: Remarks on singer cyclic groups and their normalizers. Des. Codes Cryptogr. 32, 97–102 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Garrett P.: Buildings and classical groups. Chapman & Hall, London (1997)

    MATH  Google Scholar 

  9. González Vasco M.I., Steinwandt R.: Obstacles in two public key cryptosystems based on group factorizations. Tatra Mt. Math. Publ. 25, 23–37 (2002)

    MATH  MathSciNet  Google Scholar 

  10. González Vasco M.I., Rötteler M., Steinwandt R.: On minimal length factorizations of finite groups. Exp. Math. 12, 1–12 (2003)

    MATH  Google Scholar 

  11. Gorenstein D.: Finite Groups. Chelsea Publ. Co., New York (1980)

    MATH  Google Scholar 

  12. Hajós G.: Többméretű terek befedése kockaráccsal. Mat. Fiz. Lapok. 45, 171–190 (1938)

    MATH  Google Scholar 

  13. Hestenes M.D.: Singer groups. Canad. J. Math. 22, 492–513 (1970)

    MATH  MathSciNet  Google Scholar 

  14. Hirschfeld J.: Projective geometries over finite fields. The Clarendon Press Oxford University Press, New York (1998)

    MATH  Google Scholar 

  15. Holmes P.E.: On minimal factorisations of sporadic groups. Exp. Math. 13, 435–440 (2004)

    MATH  Google Scholar 

  16. Lempken W., van Trung T.: On minimal logarithmic signatures of finite groups. Exp. Math. 14, 257–269 (2005)

    MATH  Google Scholar 

  17. Lempken W., Magliveras S.S., van Trung T., Wei W.: A public key cryptosystem based on non-abelian finite groups. J. Cryptol. 22, 62–74 (2009)

    Article  MATH  Google Scholar 

  18. Magliveras S.S.: A Cryptosystem from logarithmic signatures of finite groups. In Proceedings of the 29th Midwest Symposium on Circuits and Systems, pp. 972–975. Elsevier Publishing Company, Amsterdam (1986).

  19. Magliveras S.S.: Secret and public-key cryptosystems from group factorizations. Tatra Mt. Math. Publ. 25, 11–22 (2002)

    MATH  MathSciNet  Google Scholar 

  20. Magliveras S.S., Memon N.D: Algebraic properties of cryptosystem PGM. J. Cryptol. 5, 167–183 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  21. Magliveras S.S., Stinson D.R., van Trung T.: New approaches to designing public key cryptosystems using one-way functions and trapdoors in finite groups. J. Cryptol. 15, 285–297 (2002)

    Article  MATH  Google Scholar 

  22. Magliveras S.S., Svaba P., van Trung T., Zajac P.: On the security of a realization of cryptosystem MST 3. Tatra Mt. Math. Publ. 41, 1–13 (2008)

    MathSciNet  Google Scholar 

  23. Minkowski H.: Geometrie der Zahlen. Teubner, Leipzig (1896)

    Google Scholar 

  24. Minkowski H.: Diophantische Approximationem. Teubner, Leipzig (1907)

    Google Scholar 

  25. Singer J.: A theorem in finite projective geometry and some applications to number theory. Trans. Am. Math. Soc. 43, 377–385 (1938)

    Article  MATH  Google Scholar 

  26. Singhi N., Singhi N.: Minimal logarithmic signatures for classical groups (preprint).

  27. Szabó S.: Topics in Factorization of Abelian Groups. Birkhäuser Verlag, Basel (2004)

    Google Scholar 

  28. Wilson R.A.: The finite simple groups (in preparation). http://www.maths.qmul.ac.uk/~raw/fsgs.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nidhi Singhi.

Additional information

Communicated by Ron Mullin, Rainer Steinwandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singhi, N., Singhi, N. & Magliveras, S. Minimal logarithmic signatures for finite groups of Lie type. Des. Codes Cryptogr. 55, 243–260 (2010). https://doi.org/10.1007/s10623-010-9369-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-010-9369-9

Keywords

Mathematics Subject Classification (2000)

Navigation