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ON SOME OPEN PROBLEMS ON MAXIMAL CURVES

STEFANIA FANALI AND MASSIMO GIULIETTI

Abstract. In this paper we solve three open problems on maximal curves with Frobe-

nius dimension 3. In particular, we prove the existence of a maximal curve with order

sequence (0, 1, 3, q).

1. Introduction

Let Fq2 be a finite field with q2 elements where q is a power of a prime p. An Fq2-rational

curve, that is a projective, geometrically absolutely irreducible, non-singular algebraic

curve defined over Fq2, is called Fq2-maximal if the number of its Fq2-rational points

attains the Hasse-Weil upper bound

q2 + 1 + 2gq

where g is the genus of the curve. Maximal curves have interesting properties and have

also been investigated for their applications in Coding theory. Surveys on maximal curves

are found in [5, 6, 7, 18, 19] and [13, Chapter 10]; see also [3, 4, 8, 15, 17].

For an Fq2-maximal curve X , the Frobenius linear series is the complete linear series

D = |(q+1)P0|, where P0 is any Fq2-rational point of X . The projective dimension r of the

Frobenius linear series, called the Frobenius dimension of X , is one of the most important

birational invariants of maximal curves. No maximal curve with Frobenius dimension 1

exists, whereas the Hermitian curve is the only maximal curve with Frobenius dimension

2. Maximal curves with higher Frobenius dimension have small genus, see Proposition

2.3.

In this paper, we deal with some open problems concerning maximal curves X with

Frobenius dimension 3. For P ∈ X denote by ji(P ) the i-th (D, P )-order and by ǫi the

i-th D-order (i = 0, . . . , 3). For i 6= 2, the values of ǫi and ji(P ) are known, see e.g. [13,

Prop. 10.6]. More precisely, ǫ0 = 0, ǫ1 = 1 and ǫ3 = q; for an Fq2-rational point P ∈ X ,

j0(P ) = 0, j1(P ) = 1, j3(P ) = q+1; for a non-Fq2-rational point P , j0(P ) = 0, j1(P ) = 1,

j3(P ) = q.
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In 1999, Cossidente, Korchmáros and Torres [2] proved that ǫ2 is either 2 or 3, and that if

the latter case holds then p = 3. They also showed that for an Fq2-rational point P ∈ X
only a few possibilities for j2(P ) can occur, namely

j2(P ) ∈
{

2, 3, q + 1−
⌊

1

2
(q + 1)

⌋

, q + 1−
⌊

2

3
(q + 1)

⌋}

.

In [2] it was asked whether the following three cases actually occur for maximal curves

with Frobenius dimension 3:

(A) ǫ2 = 3;

(B) ǫ2 = 2, j2(P ) = 3 for some Fq2-rational point P ;

(C) ǫ2 = 2, j2(P ) = q + 1−
⌊

2
3
(q + 1)

⌋

for some Fq2-rational point P .

The main result of the paper is the proof that the recently discovered GK-curve [10]

defined over F272 provides an affirmative answer to question (A), see Theorem 3.5. It is

also shown that the curve of equation Y 16 = X(X + 1)6 defined over F49 provides an

affirmative answer to both questions (B) and (C), see Theorem 4.1. Finally, in Section

5 we construct an infinite family of maximal curves with D-orders (0, 1, 2, q) having an

Fq2-rational point P with j2(P ) = 3, see Theorem 5.4.

It should be noted that in [1, Section 4] it is pointed out that due to some results by

Homma and Hefez-Kakuta, an interesting geometrical property of a maximal curves X
with Frobenius dimension 3 with ǫ2 = 3 is that of being a non-reflexive space curve of

degree q + 1 whose tangent surface is also non-reflexive.

The language of function fields will be used throughout the paper. The points of a

maximal curve X will be then identified with the places of the function field Fq2(X ).

Places of degree one correspond to Fq2-rational points.

2. Preliminaries

Throughout the paper, p is a prime number, q = pn is some power of p, K = Fq2 is the

finite field with q2 elements, F is a function field over K such that K is algebraically

closed in F , g(F ) is the genus of F , N(F ) is the number of places of degree 1 of F , P(F )

is the set of all places of F .

For a place P of degree 1, let H(P ) be the Weierstrass semigroup at P , that is, the set

of non-negative integers i for which there exists α ∈ F such that the pole divisor (α)∞ is

equal to iP .

For a divisor D of F , let L(D) be the Riemann-Roch space of D, see e.g. [16, Def. 1.4.4].

The set of effective divisors |D| = {α + D | α ∈ L(D)} is the complete linear series

associated to D. The degree n of |D| is the degree of D, whereas the dimension r of |D|
is the dimension of the K-linear space L(D) minus 1.
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We recall some facts on orders of linear series, for which we refer to [13, Section 7.6]. For

a place P of F , an integer j is a (|D|, P )-order if there exists a divisor E in |D| with
vP (E) = j. There are exactly r + 1 orders

j0(P ) < j1(P ) < . . . < jr(P ),

and (j0(P ), j1(P ), . . . , jr(P )) is said to be the (|D|, P )-order sequence. For all but a finite

number of places the (|D|, P )-order sequence is the same. Let (ǫ0, . . . , ǫr) be the generic

(|D|, P )-order sequence, called the |D|-order sequence. In general, ji(P ) ≥ ǫi. The so-

called p-adic criterion (see e.g. [13, Lemma 7.62]) states that if ǫ < p is a |D|−order,

then 0, 1, . . . , ǫ− 1 are also |D|-orders.
Let F be a maximal function field, that is, N(F ) = q2+1+2gq. For a place P0 of degree

1, let D = |(q + 1)P0| be the Frobenius linear series of F . By the so-called fundamental

equation (see e.g. [13, Section 9.8]) the linear series D does not depend on the choice of

P0. The dimension r of D is the Frobenius dimension of F . Some facts on the Frobenius

linear series of a maximal function field are collected in the following proposition (see [13,

Prop. 10.6]).

Proposition 2.1. Let D be the Frobenius linear series of a maximal function field F , and

let (ǫ0, . . . , ǫr) be the order sequence of D. For a place P of degree 1, let

H(P ) = {0 = m0(P ) < m1(P ) < m2(P ) < . . .}.

(a) mr(P ) = q + 1, mr−1(P ) = q.

(b) The (D, P )-orders at a place P of degree 1 are the terms of the sequence

0 < 1 < q + 1−mr−2(P ) < . . . < q + 1−m1(P ) < q + 1.

(c) ǫ0 = 0, ǫ1 = 1, ǫr = q.

The only maximal function field with Frobenius dimension 2 is the Hermitian function

field H = K(x, y) with yq+1 = xq + x, see e.g. [13, Remark 10.23]. Maximal function

fields with Frobenius dimension 3 were investigated in [2]. Corollary 3.5 in [2] states that

if ǫ2 = 2, then for any place P of degree 1

j2(P ) ∈
{

2, 3, q + 1−
⌊

1

2
(q + 1)

⌋

, q + 1−
⌊

2

3
(q + 1)

⌋}

.

For each value of q there exists a unique maximal function field such that j2(P ) = q +

1 −
⌊

1
2
(q + 1)

⌋

holds for some place P (see [2, Remark 3.6]). A number of examples

for which j2(P ) = 2 occurs are known, see [13, Chapter 10]. So far, no example of a

maximal function field with Frobenius dimension 3 having a place P of degree 1 with

j2(P ) ∈
{

3, q + 1−
⌊

2
3
(q + 1)

⌋}

appears to have been known in the literature (see [2,

Remark 3.9], [1, Section 4]).

A result from [2] that will be useful in the sequel is the following.
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Lemma 2.2. [2, Lemma 3.7] If the Frobenius dimension of a maximal function field is 3,

then there exists a place P of degree 1 with j2(P ) = ǫ2.

Maximal function fields with higher Frobenius dimension have smaller genus, as stated in

the next result.

Proposition 2.3. [13, Corollary 10.25] The genus g of a maximal function field with

Frobenius dimension r is such that

g ≤











(2q−(r−1))2−1
8(r−1)

if r is even,

(2q−(r−1))2

8(r−1)
if r is odd.

3. The D-order sequence of the GK function field

Throughout this section, we assume that q = q̄3 with q̄ a prime power. Let F be the

function field K(x, y), where yq̄+1 = xq̄ + x. Let u = y xq̄2−1
−1

xq̄−1+1
, and consider the field

extension F (z)/F where zq̄
2
−q̄+1 = u. The GK function field is

(3.1) F̄ = F (z).

We first recall some proprieties of F̄ , for which we refer to [10, Section 2]. The function

field F̄ is a Kummer extension of F , and in particular F̄ /F is Galois of degree q̄2− q̄+1.

The Galois group Γ of F̄ /F consists of all the automorphisms gu of F̄ such that

gu(x) = x, gu(y) = y, gu(z) = uz,

with uq̄2−q̄+1 = 1.

The function field F̄ is Fq2-maximal. Significantly, for q > 8, F̄ is the only known

function field that is maximal but not a subfield of the Hermitian function field (see [10,

Theorem 5]). The genus of F̄ is

g =
1

2
(q̄3 + 1)(q̄2 − 2) + 1.

Also, the only common pole of x, y and z is a place P0 of degree 1 for which

L((q + 1)P0) =< 1, x, y, z > .

Therefore the Frobenius linear series D consists of divisors

D = {div(a0+a1x+a2y+a3z)+(q+1)P0 | (a0, a1, a2, a3) ∈ K4, (a0, a1, a2, a3) 6= (0, 0, 0, 0)}.

Let P ′ be any place of degree 1 of F̄ . Let P be the place of F lying under P ′. Then

(3.2)

{

e(P ′ | P ) = q̄2 − q̄ + 1, if P is either a zero or a pole of z

e(P ′ | P ) = 1, otherwise
.

We now describe the (D, P ′)-orders for a place P ′ of degree 1 of F̄ .
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Proposition 3.1. [10, Section 4] If P ′ is such that e(P ′ | P ) = q̄2 − q̄ + 1, then the

Weierstrass semigroup at P is the subgroup generated by q̄3 − q̄2 + q̄, q̄3, and q̄3 + 1.

¿From (b) of Proposition 2.1 the following corollary is obtained.

Corollary 3.2. If P ′ is such that e(P ′ | P ) = q̄2 − q̄ + 1, then

(j0(P
′), j1(P

′), j2(P
′), j3(P

′)) = (0, 1, q̄2 − q̄ + 1, q̄3 + 1)

Assume now that e(P ′ | P ) = 1. As this occurs for an infinite number of places P ,

it is possible to choose P in such a way that there exists ay + by + c ∈ F such that

vP (ay + by + c) = q̄ (see e.g. [13, p. 302]). Then vP ′(ax + by + c) = vP (ax+ by + c) = q̄

holds. Then by (b) of Proposition 2.1, q̄3 − q̄ + 1 ∈ H(P ′). Taking into account that

the automorphism group of F̄ acts transitively on the set of places of degree 1 with

e(P ′ | P ) = 1 [10, Theorem 7], the following result is obtained.

Proposition 3.3. If P ′ is such that e(P ′ | P ) = 1, then

(j0(P
′), j1(P

′), j2(P
′), j3(P

′)) = (0, 1, q̄, q̄3 + 1)

Theorem 3.4. If q is a cube, then there exists a maximal function field with Frobenius

dimension 3 and with D-order sequence (0, 1, 3
√
q, q).

Proof. We prove that the D-order sequence of the GK function field is (0, 1, q̄, q̄3). By

Lemma 2.2, there exists an Fq2-rational place P of F̄ such that j2(P ) = ǫ2. Since the only

possibilities for j2(P ) are q̄ and q̄2 − q̄ + 1, and since j2(P ) ≥ ǫ2 for every P ∈ P(F̄ ), the

claim follows. �

Therefore, the answer to question (A) in Introduction is obtained.

Theorem 3.5. There exists a maximal curves over F272 with Frobenius dimension 3 and

with D-order sequence (0, 1, 3, 27).

4. On a maximal function field over F49

In [9, Example 6.3] it is shown that for every divisor m of q2 − 1 the function field

F = K(x, y) with

y
q2−1

m = x(x+ 1)q−1

is a maximal function field with genus g = 1
2m

(q+1− d)(q− 1), where d = gcd(m, q+1).

In this section we focus on the case q = 7 and m = 3, whence d = 1 and g = 7. We are

going to prove the following result, which provides an affirmative answer to both questions

(B) and (C) in Introduction.

Theorem 4.1. Let F = K(z, t) be the function field defined over K = F49 by the equation

z16 = t(t + 1)6. Then the Frobenius dimension of F is 3, the D-order sequence of F is

(0, 1, 2, 7), and there exists an F49-rational place P of F such that j2(P ) = 3 = 8−⌊2
3
(8)⌋.
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The function field F is a subfield of the Hermitian function field H = K(x, y) with

y8 = x7 + x. More precisely, F ∼= K(x6, y3), and H/F is Galois of degree 3 (cf. [9,

Example 6.3]). The Galois group of H/F is Γ = {1, τ, τ 2}, where τ(x) = a8x, τ(y) = ay,

with a a primitive cubic root of unity.

Let P0 (resp. P∞) be the only zero (resp. pole) of x in H . Let P1, . . . , P6 be the zeros of

y in H distinct from P0.

Lemma 4.2. The only ramification points of H/F are P0 and P∞.

Proof. It is easy to see that for each point P of H distinct from P0 and P∞ the stabilizer

of P in Γ is trivial. On the other hand, both P0 and P∞ are fixed by Γ. �

Let P̄0 and P̄∞ be the places of F lying under P0 and P∞, respectively. Let P̄1 and P̄2

be the two places of F lying under the places Pi of H , i = 1, . . . , 6. Also, let z = y3 and

t = x6 in F . Then

vP̄0
(z) =

1

3
vP0

(y3) = 1, vP̄0
(t+ 1) =

1

3
vP0

(x6 + 1) = 0;

vP̄∞
(z) =

1

3
vP∞

(y3) = −7, vP̄∞
(t+ 1) =

1

3
vP∞

(x6 + 1) =
6

3
ordP∞

(x) = −16;

for i = 1, 2, vP̄i
(z) = vPi

(y3) = 3, vP̄i
(t + 1) = vPi

(x6 + 1) = 7.

To sum up,

(z) = 3(P̄1 + P̄2) + P̄0 − 7P̄∞, (t + 1) = 8(P̄1 + P̄2)− 16P̄∞.

Proposition 4.3. Let i, j be non-negative integers such that 3i ≥ 8j. Then 7i − 16j ∈
H(P̄∞).

Proof. Let γ = zi(t+ 1)−j. Then

(γ) = 3i(P̄1 + P̄2) + P̄0 − 7iP̄∞ − 8j(P̄1 + P̄2) + 16jP̄∞,

whence

(γ)∞ = (7i− 16j)P̄∞.

�

Corollary 4.4. The only non-gaps at P̄∞ that are less than or equal to 8 are 0, 5, 7, 8.

Proof. The integers 7 and 8 are non-gaps since F is an F49-maximal function field (see

Proposition 2.1). Proposition 4.3 for i = 3 and j = 1 implies that 5 is a non-gap at P̄∞.

Then it is easy to see that 10, 12, 13 are non-gaps as well. Therefore, we have 7 non-gaps

less than 2g = 14. Since g = 7, this rules out the possibility that there is another positive

non-gap less than 7 and distinct from 5. �
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We are now in a position to prove Theorem 4.1.

Proof of Theorem 4.1 The Frobenius dimension of F is 3 by Corollary 4.4. By the p-adic

criterion (see Section 2), the D-order sequence is (0, 1, 2, 7). Again by Corollary 4.4 we

have j2(P̄∞) = 3.

5. An Fq2-maximal function field of genus
q2−q+4

6

Througouth this section we assume that that q ≡ 2 (mod 3). We recall some facts about

the function field F over K, defined by

F = K(x, y) with y
q+1

3 + x
q+1

3 + 1 = 0.

Clearly F is a subfield of the hermitian function field H over K defined by H = K(z, t)

with zq+1 + tq+1 + 1 = 0, and therefore F is a maximal function field. Since the equation

Y
q+1

3 +X
q+1

3 +1 = 0 defines a non-singular plane algebraic curve of degree q+1
3
, the genus

g(F ) = 1
2

(

q+1
3

− 1
) (

q+1
3

− 2
)

, and therefore N(F ) = q2 + 1 + q
(

q+1
3

− 1
) (

q+1
3

− 2
)

.

It is straightforward to check that the zeros of x are q+1
3

distinct places of degree 1. The

same holds for y. The pole set of x coincides with the pole set of y, and consists of q+1
3

places of degree 1.

For α, β ∈ Fq2 such that α
q+1

3 + β
q+1

3 +1 = 0, let Pα,β ∈ P(F ) denote the common zero of

x− α and y − β. Let P∞,1, . . . , P∞, q+1

3

be the poles of x (and y). Clearly, Pα,β is a place

of degree 1. Also, for any β ∈ Fq2 with β
q+1

3 + 1 = 0, the zero divisor (y − β)0 of y − β is

equal to q+1
3
P0,β.

Henceforth, w is an element in Fq2 such that w
q+1

3 = 3. Let

u = wxy ∈ F.

For any place P of F which is a zero of either x or y, vP (u) = 1 holds. Moreover, for any

common pole P of x and y we have vP (u) = −2. Any other place of F is neither a pole

or a zero of u.

Consider the field extension F (z)/F where z3 = u. Let

(5.1) F̄ = F (z).

Clearly, u is not a 3-rd power of an element in F . Then F̄ is a Kummer extension of F (see

[16, Proposition III.7.3]), and in particular F̄ /F is Galois of degree 3. The ramification

index e(P ′ | P ) can be easily computed for any place P ′ of F̄ lying over a place P of F :

as gcd(2, 3) = 1, (b) of [16, Proposition III.7.3] gives

(5.2)

{

e(P ′ | P ) = 3, if P is either a zero or a pole of xy,

e(P ′ | P ) = 1, otherwise.
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By [16, Corollary III.7.4],

(5.3) g(F̄ ) = 1 + 3(g(F )− 1) + 3
q + 1

3
=

q2 − q + 4

6
.

Now we compute the number N of places of degree 1 of F̄ . Any place in P(F̄ ) of degree

1 either lies over some P∞,i, or some Pα,β. By (5.2), any place lying over either P∞,i or

Pα,β with αβ = 0 is fully ramified. This gives q + 1 places of degree 1 of F̄ .

Assume now that αβ 6= 0. Let

ϕα,β(T ) = T 3 − wαβ ∈ Fq2[T ].

As gcd(3, p) = 1, ϕα,β(T ) has 3 distinct roots in the algebraic closure of Fq2. Let λ be any

of such roots. Then λ ∈ Fq2 if and only if

(5.4) 1 = λq2−1 = (λq+1)q−1 =
(

(wαβ)
q+1

3

)q−1

=
(

3(αβ)
q+1

3

)q−1

,

that is 3(αβ)
q+1

3 ∈ Fq. Taking into account the classical relation

(A+B + C) | A3 +B3 + C3 − 3ABC,

we have that α
q+1

3 + β
q+1

3 + 1 = 0 yields

3(αβ)
q+1

3 = αq+1 + βq+1 + 1.

Then (5.4) follows since (αq+1 + βq+1 + 1)q = (αq+1 + βq+1 + 1).

By [16, Proposition III.7.3], the minimal polynomial of z over F is ϕ(T ) = T 3 − wxy.

As wxy ∈ OPα,β
, Kummer’s Theorem [16, Theorem III.3.7] applies, and hence Pα,β has 3

distinct extensions P ∈ P(F̄ ) with deg(P ) = 1.

Since F is maximal, the number of pairs (α, β) with αβ 6= 0 and α
q+1

3 + β
q+1

3 + 1 = 0 is

q2 + 1 + q

(

q + 1

3
− 1

)(

q + 1

3
− 2

)

− (q + 1)

Therefore, the total number N of places of degree 1 of F̄ is

N = q + 1 + 3

(

q2 − q + q

(

q + 1

3
− 1

)(

q + 1

3
− 2

))

By straightforward computation

N = q2 + 1 + 2q
q2 − q + 4

6
,

whence the following result is obtained.

Theorem 5.1. F̄ is an Fq2-maximal function field.

Proposition 5.2. The Frobenius dimension of F̄ is equal to 3.

Proof. The assertion follows from Proposition 2.3. �
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Remark 5.3. In [14] Fq2-maximal function fields with Frobenius dimension 3 and genus
q2−q+4

6
. We are not able to tell whether they are isomorphic to F̄ or not.

Fix β ∈ K with β
q+1

3 = 1, and let P = P0,β ∈ P(F ). Let P̄ be the place of F̄ lying over

P . The pole divisor of x
y−β

in F is q−2
3
P . Whence P̄ is the only pole of x

y−β
in F̄ , and

vP̄

(

x

y − β

)

= −(q − 2).

This means that j2(P̄ ) = 3.

Taking into account that by the p-adic criterion the third D-order must be equal to 2,

the following result is arrived at.

Theorem 5.4. Let q be odd, q ≡ 2 (mod 3). Then F̄ is an Fq2-maximal function field

with Frobenius dimension 3 such that

(ǫ0, ǫ1, ǫ2, ǫ3) = (0, 1, 2, q),

and having an Fq2-rational point P with

j0(P∞) = 0, j1(P∞) = 1, j2(P∞) = 3, j3(P∞) = q + 1.
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[2] A. Cossidente, G. Korchmáros and F. Torres, On curves covered by the Hermitian curve, J. Algebra

216 (1999), 56–76.

[3] Fuhrmann, R., Garcia, A., Torres, F.: On maximal curves. J. Number Theory 67(1), 29–51 (1997).

[4] Fuhrmann, R., Torres, F.: The genus of curves over finite fields with many rational points.

Manuscripta Math. 89, 103–106 (1996).

[5] Garcia, A.: Curves over finite fields attaining the Hasse–Weil upper bound. In: European Congress

of Mathematics, Vol. II (Barcelona, 2000), Progr. Math. 202, pp. 199–205. Birkhäuser, Basel (2001).
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[14] G. Korchmáros and F. Torres, Embedding of a maximal curve in a Hermitian variety, Compositio

Math. 128 (2001), 95–113.

[15] Rück, H.G., Stichtenoth, H.: A characterization of Hermitian function fields over finite fields, J.

Reine Angew. Math. 457, 185–188 (1994).

[16] H. Stichtenoth, Algebraic function fields and codes, Springer-Verlag, New York, Berlin, Heidelberg

(1993).

[17] Stichtenoth, H., Xing, C.P.: The genus of maximal function fields. Manuscripta Math. 86, 217–224

(1995).

[18] van der Geer, G.: Curves over finite fields and codes: In: European Congress of Mathematics, Vol.

II (Barcelona, 2000), Progr. Math. 202, pp. 225–238. Birkhäuser, Basel (2001).
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