Skip to main content
Log in

Completely reducible super-simple designs with block size four and related super-simple packings

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

A design is said to be super-simple if the intersection of any two blocks has at most two elements. A super-simple design \({\mathcal{D}}\) with point set X, block set \({\mathcal{B}}\) and index λ is called completely reducible super-simple (CRSS), if its block set \({\mathcal{B}}\) can be written as \({\mathcal{B}=\bigcup_{i=1}^{\lambda} \mathcal{B}_i}\), such that \({\mathcal{B}_i}\) forms the block set of a design with index unity but having the same parameters as \({\mathcal{D}}\) for each 1 ≤ i ≤ λ. It is easy to see, the existence of CRSS designs with index λ implies that of CRSS designs with index i for 1 ≤ i ≤ λ. CRSS designs are closely related to q-ary constant weight codes (CWCs). A (v, 4, q)-CRSS design is just an optimal (v, 6, 4)q+1 code. On the other hand, CRSS group divisible designs (CRSSGDDs) can be used to construct q-ary group divisible codes (GDCs), which have been proved useful in the constructions of q-ary CWCs. In this paper, we mainly investigate the existence of CRSS designs. Three neat results are obtained as follows. Firstly, we determine completely the spectrum for a (v, 4, 3)-CRSS design. As a consequence, a class of new optimal (v, 6, 4)4 codes is obtained. Secondly, we give a general construction for (4, 4)-CRSSGDDs with skew Room frames, and prove that the necessary conditions for the existence of a (4, 2)-CRSSGDD of type g u are also sufficient except definitely for \({(g,u)\in \{(2,4),(3,4),(6,4)\}}\). Finally, we consider the related optimal super-simple (v, 4, 2)-packings and show that such designs exist for all v ≥ 4 except definitely for \({v\in \{4,5,6,9\}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abel R.J.R., Bennett F.E.: Super-simple Steiner pentagon systems. Discrete Appl. Math. 156(5), 780–793 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abel R.J.R., Colbourn C.J., Yin J., Zhang H.: Existence of incomplete transversal designs with block size five and any index λ. Des. Codes Cryptogr. 10(3), 275–307 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abel R.J.R., Colbourn C.J., Dinitz J.H.: Mutually Orthogonal Latin Squares (MOLS). In: Colbourn, C.J., Dinitz, J.H. (eds) The CRC Handbook of Combinatorial Designs, 2nd edn, pp. 160–193. CRC Press, Boca Raton (2007)

    Google Scholar 

  4. Abel R.J.R., Bennett F.E., Ge G.: Super-simple holey Steiner pentagon systems and related designs. J. Combin. Des. 16(4), 301–328 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Adams P., Bryant D.E., Khodkar A.: On the existence of super-simple designs with block size 4. Aequationes Math. 51(3), 230–246 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Assaf A.M.: The packing of pairs by quadruples. Discrete Math. 90(3), 221–231 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Billington E.J., Stanton R.G., Stinson D.R.: On λ-packings with block size four \({(v\not\equiv 0\,{\rm mod}\,3)}\) . Ars Combin. 17(A), 73–84 (1984)

    MathSciNet  Google Scholar 

  8. Blake-Wilson S., Phelps K.T.: Constant weight codes and group divisible designs. Des. Codes Cryptogr. 16(1), 11–27 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bluskov I.: New designs. J. Combin. Math. Combin. Comput. 23, 212–220 (1997)

    MathSciNet  MATH  Google Scholar 

  10. Bluskov I., Hämäläinen H.: New upper bounds on the minimum size of covering designs. J. Combin. Des. 6(1), 21–41 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bogdanova G.: New bounds for the maximum size of ternary constant weight codes. Serdica Math. J. 26(1), 5–12 (2000)

    MathSciNet  MATH  Google Scholar 

  12. Cao H., Chen K., Wei R.: Super-simple balanced incomplete block designs with block size 4 and index 5. Discrete Math. 309(9), 2808–2814 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chee Y.M., Ling S.: Constructions for q-ary constant-weight codes. IEEE Trans. Inform. Theory 53(1), 135–146 (2007)

    Article  MathSciNet  Google Scholar 

  14. Chee Y.M., Dau S.H., Ling A.C.H., Ling S.: The sizes of optimal q-ary codes of weight three and distance four: a complete solution. IEEE Trans. Inform. Theory 54(3), 1291–1295 (2008)

    Article  MathSciNet  Google Scholar 

  15. Chen K.: On the existence of super-simple (v, 4, 3)-BIBDs. J. Combin. Math. Combin. Comput. 17, 149–159 (1995)

    MathSciNet  MATH  Google Scholar 

  16. Chen K.: On the existence of super-simple (v, 4, 4)-BIBDs. J. Statist. Plann. Inference 51(3), 339–350 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen K., Wei R.: Super-simple (v, 5, 5) designs. Des. Codes Cryptogr. 39(2), 173–187 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen K., Wei R.: Super-simple (v, 5, 4) designs. Discrete Appl. Math. 155(8), 904–913 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen K., Zhu L.: On the existence of skew Room frames of type t u. Ars Combin. 43, 65–79 (1996)

    MathSciNet  Google Scholar 

  20. Chen K., Ge G., Zhu L.: Generalized Steiner triple systems with group size five. J. Combin. Des. 7(6), 441–452 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen K., Cao Z., Wei R.: Super-simple balanced incomplete block designs with block size 4 and index 6. J. Statist. Plann. Inference 133(2), 537–554 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Colbourn C.J., Dinitz J.H.: Mutually orthogonal Latin squares: a brief survey of constructions. J. Stat. Plan. Inference 95(1–2), 9–48 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Colbourn C.J., Dinitz J.H. (eds.): The CRC Handbook of Combinatorial Designs. CRC Press Series on Discrete Mathematics and Its Applications, 2nd edn. CRC Press, Boca Raton (2007).

  24. Colbourn C.J., Hoffman D.G., Rees R.: A new class of group divisible designs with block size three. J. Combin. Theory Ser. A 59(1), 73–89 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Etzion T.: Optimal constant weight codes over Z k and generalized designs. Discrete Math. 169(1–3), 55–82 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fu F.-W., Vinck A.J.H., Shen S.-Y.: On the constructions of constant-weight codes. IEEE Trans. Inform. Theory 44, 328–333 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fu F.-W., Kløve T., Luo Y., Wei V.K.: On the Svanström bound for ternary constant-weight codes. IEEE Trans. Inform. Theory 47(5), 2061–2064 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ge G. (2000). Generalized Steiner triple systems with group size g ≡ 1, 5 (mod 6). Australas. J. Combin. 21, 37–47

    Google Scholar 

  29. Ge G.: Further results on the existence of generalized Steiner triple systems with group size g≡ 1, 5 (mod 6). Australas. J. Combin. 25, 19–27 (2002a)

    MathSciNet  MATH  Google Scholar 

  30. Ge G.: Generalized Steiner triple systems with group size g ≡ 0, 3 (mod 6). Acta Math. Appl. Sin. Engl. Ser. 18(4), 561–568 (2002b)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ge G.: Group divisible designs with block size four and group type g u m 1 with minimum m. Des. Codes Cryptogr. 34(1), 117–126 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ge G.: Group divisible designs. In Colbourn C.J., Dinitz J.H. (eds.) The CRC Handbook of Combinatorial Designs, 2nd edn, pp. 255–260. CRC Press, Boca Raton (2007).

  33. Ge G.: Construction of optimal ternary constant weight codes via Bhaskar Rao designs. Discrete Math. 308(13), 2704–2708 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ge G., Ling A.C.H.: Group divisible designs with block size four and group type g u m 1 for small g. Discrete Math. 285(1–3), 97–120 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ge G., Rees R.S.: On group-divisible designs with block size four and group-type g u m 1. Des. Codes Cryptogr. 27(1–2), 5–24 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ge G., Rees R.: On group-divisible designs with block size four and group-type 6u m 1. Discrete Math. 279(1–3), 247–265 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ge G., Wu D.: Generalized Steiner triple systems with group size ten. J. Math. Res. Exposition 23(3), 391–396 (2003)

    MathSciNet  MATH  Google Scholar 

  38. Ge G., Wu D.: Some new optimal quaternary constant weight codes. Sci. China Ser. F 48(2), 192–200 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ge G., Rees R.S., Zhu L.: Group-divisible designs with block size four and group-type g u m 1 with m as large or as small as possible. J. Combin. Theory Ser. A 98(2), 357–376 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. Gronau H.-D.O.F.: Super-simple designs. In: Colbourn, C.J., Dinitz, J.H. (eds) The CRC Handbook of Combinatorial Designs, 2nd edn, pp. 633–635. CRC Press, Boca Raton (2007)

    Google Scholar 

  41. Gronau H.-D.O.F., Mullin R.C.: On super-simple 2-(v, 4, λ) designs. J. Combin. Math. Combin. Comput. 11, 113–121 (1992)

    MathSciNet  MATH  Google Scholar 

  42. Gronau H.-D.O.F., Kreher D.L., Ling A.C.H.: Super-simple (v, 5, 2)-designs. Discrete Appl. Math. 138(1–2), 65–77 (2004)

    MathSciNet  MATH  Google Scholar 

  43. Ji L., Wu D., Zhu L.: Existence of generalized Steiner systems GS(2, 4, v, 2). Des. Codes Cryptogr. 36(1), 83–99 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  44. Khodkar A.: Various super-simple designs with block size four. Australas. J. Combin. 9, 201–210 (1994)

    MathSciNet  MATH  Google Scholar 

  45. Kim H.K., Lebedev V.: Cover-free families, superimposed codes and key distribution patterns. J. Combin. Des. 12, 79–91 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  46. Krotov D.S.: Inductive constructions of perfect ternary constant-weight codes with distance 3. Problemy Peredachi Informatsii 37(1), 3–11 (2001)

    MathSciNet  Google Scholar 

  47. Ling A.C.H., Zhu X., Colbourn C.J., Mullin R.C.: Pairwise balanced designs with consecutive block sizes. Des. Codes Cryptogr. 10(2), 203–222 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  48. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. II, vol. 16. North-Holland Publishing Co., Amsterdam, North-Holland Mathematical Library (1977).

  49. Mendelsohn E.: Mendelsohn designs. In: Colbourn, C.J., Dinitz, J.H. (eds) The CRC Handbook of Combinatorial Designs, 2nd edn, pp. 528–534. CRC Press, Boca Raton (2007)

    Google Scholar 

  50. Östergård P.R.J., Svanström M.: Ternary constant weight codes. Electron. J. Combin. 9(1), Research Paper 41, 23 pp. (electronic) (2002).

  51. Phelps K., Yin C.: Generalized Steiner systems with block size three and group size g≡ 3 (mod 6). J. Combin. Des. 5(6), 417–432 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  52. Phelps K., Yin C.: Generalized Steiner systems with block size three and group size four. Ars Combin. 53, 133–146 (1999)

    MathSciNet  MATH  Google Scholar 

  53. Rees R., Stinson D.R.: On the existence of incomplete designs of block size four having one hole. Utilitas Math. 35, 119–152 (1989)

    MathSciNet  MATH  Google Scholar 

  54. Rodger C.A.: Linear spaces with many small lines. Discrete Math. 129, 167–180 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  55. Rodger C.A., Wantland E.B., Chen K., Zhu L.: Existence of certain skew Room frames with application to weakly 3-chromatic linear spaces. J. Combin. Des. 2, 311–324 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  56. Stinson D.R., Wei R., Zhu L.: New constructions for perfect hash families and related structures using combinatorial designs and codes. J. Combin. Des. 8(3), 189–200 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  57. Stinson D.R., Wei R., Yin J.: Packings. In: Colbourn, C.J., Dinitz, J.H. (eds) The CRC Handbook of Combinatorial Designs, 2nd edn, pp. 550–556. CRC Press, Boca Raton (2007)

    Google Scholar 

  58. Svanström M.: A lower bound for ternary constant weight codes. IEEE Trans. Inform. Theory 43(5), 1630–1632 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  59. Svanström M.: A class of perfect ternary constant-weight codes. Des. Codes Cryptogr. 18(1–3), 223–229 (1999a)

    Article  MathSciNet  MATH  Google Scholar 

  60. Svanström M.: Ternary codes with weight constraints. Ph.D. thesis, Linköpings Universitety, Linköping, Sweden (1999b).

  61. Svanström M., Östergård P.R.J., Bogdanova G.T.: Bounds and constructions for ternary constant-composition codes. IEEE Trans. Inform. Theory 48(1), 101–111 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  62. van Lint J., Tolhuizen L.: On perfect ternary constant weight codes. Des. Codes Cryptogr. 18(1–3), 231–234 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  63. Wilson R.M.: Constructions and uses of pairwise balanced designs. Math. Centre Tracts 55, 18–41 (1974)

    Google Scholar 

  64. Yin J., Assaf A.M.: Constructions of optimal packing designs. J. Combin. Des. 6(4), 245–260 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  65. Yin J., Lu Y., Wang J.: Maximum distance holey packings and related codes. Sci. China Ser. A 42(12), 1262–1269 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  66. Zhang H., Ge G.: Optimal ternary constant-weight codes of weight four and distance six. IEEE Trans. Inform. Theory 56(5), 2188–2203 (2010)

    Article  MathSciNet  Google Scholar 

  67. Zhang X., Ge G.: On the existence of partitionable skew Room frames. Discrete Math. 307(22), 2786–2807 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  68. Zhu L.: Some recent developments on BIBDs and related designs. Discrete Math. 123(1–3), 189–214 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennian Ge.

Additional information

Communicated by L. Teirlinck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Ge, G. Completely reducible super-simple designs with block size four and related super-simple packings. Des. Codes Cryptogr. 58, 321–346 (2011). https://doi.org/10.1007/s10623-010-9411-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-010-9411-y

Keywords

Mathematics Subject Classification (2000)

Navigation