Skip to main content
Log in

On the distribution of the coefficients of normal forms for Frobenius expansions

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Frobenius expansions are representations of integers to an algebraic base which are sometimes useful for efficient (hyper)elliptic curve cryptography. The normal form of a Frobenius expansion is the polynomial with integer coefficients obtained by reducing a Frobenius expansion modulo the characteristic polynomial of Frobenius. We consider the distribution of the coefficients of reductions of Frobenius expansions and non-adjacent forms of Frobenius expansions (NAFs) to normal form. We give asymptotic bounds on the coefficients which improve on naive bounds, for both genus one and genus two. We also discuss the non-uniformity of the distribution of the coefficients (assuming a uniform distribution for Frobenius expansions).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Avanzi R., Cohen H., Doche C., Frey G., Lange T., Nguyen K., Vercauteren F.: Handbook of elliptic and hyperelliptic cryptography. Chapman and Hall/CRC, Boca Raton (2006)

    MATH  Google Scholar 

  • Avanzi R., Heuberger C., Prodinger H.: Minimality of the Hamming weight of the τ-NAF for Koblitz curves and improved combination with point halving. In: Preneel B., Tavares S.E. (eds.) SAC 2005, LNCS, vol. 3897, pp. 332–344. Springer, Heidelberg (2006)

  • Avanzi R., Heuberger C., Prodinger H.: On Redundant τ-adic Expansions and Non-Adjacent Digit Sets. In: Biham E., Youssef A.M. (eds.) SAC 2006, LNCS, vol. 4356, pp. 285–301. Springer, Heidelberg (2007)

  • Benits Jr. W.D.: Applications of Frobenius expansions in elliptic curve cryptography, PhD thesis, Royal Holloway University of London, London (2008).

  • Brumley B.B., Järvinen K.: Koblitz curves and integer equivalents of Frobenius expansions. In: Adams C., Miri A., Wiener M. (eds.), SAC 2007, LNCS, vol. 4876, pp. 126–137, Springer, Heidelberg (2007).

  • Ebeid N., Hasan M.: On τ-adic representations of integers. Des. Codes Cryptogr. 45(3), 271–296 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Galbraith S.D., Ruprai R.S.: An improvement to the Gaudry–Schost algorithm for multidimensional discrete logarithm problems. In: Parker M. (ed.) Cryptography and Coding, LNCS, vol. 5921, pp. 368–382, Springer, Heidelberg (2009).

  • Gaudry P., Schost E.: A low-memory parallel version of Matsuo, Chao and Tsujii’s algorithm. In: Buell D.A. (ed.) ANTS VI, LNCS, vol. 3076, pp. 208–222, Springer, Heidelberg (2004).

  • Günther C., Lange T., Stein A.: Speeding up the arithmetic on Koblitz curves of genus two. In: Stinson D.R., Tavares S.E. (eds.), SAC 2000, LNCS, vol. 2012, pp. 106–117, Springer, Heidelberg (2000).

  • Heuberger C.: Redundant τ-adic expansions II: non-optimality and chaotic behaviour. Math. Comput. Sci. 3(2), 141–157 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Lange T.: Koblitz curve cryptosystems. Finite Field. Appl. 11(2), 200–229 (2005)

    Article  MATH  Google Scholar 

  • Lange T., Shparlinski I.: Collisions in fast generation of ideal classes and points on hyperelliptic and elliptic curves. Appl. Algebra Eng. Commun. Comput. 15(5), 329–337 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Lange T., Shparlinski I.: Distribution of some sequences of points on elliptic curves. J. Math. Cryptol. 1(1), 1–11 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Koblitz N.: Elliptic curve cryptosystems. Math. Comp. 48(177), 203–209 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Koblitz N.: Hyperelliptic cryptosystems. J. Cryptol. 1, 139–150 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Koblitz N.: CM curves with good cryptographic properties. In: Feigenbaum J. (ed.) CRYPTO ’91, LNCS, vol. 576, pp. 279–287, Springer, Heidelberg (1992).

  • Meier W., Staffelbach O.: Efficient multiplication on certain nonsupersingular elliptic curves. In: Brickell E.F. (ed.) CRYPTO ’92, LNCS, vol. 740, pp. 333–344, Springer, Heidelberg (1993).

  • Müller V.: Fast Multiplication on Elliptic Curves over Small Fields of Characteristic Two. J. Cryptol. 11(4), 219–234 (1998)

    Article  MATH  Google Scholar 

  • Silverman J.H.: The arithmetic of elliptic curves. Graduate texts in mathematics, vol. 106. Springer-Verlag, New York (1986)

    Google Scholar 

  • Smart N.P.: Elliptic curve cryptosystems over small fields of odd characteristic. J. Cryptol. 12(2), 141–151 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Solinas J.: An improved algorithm for arithmetic on a family of elliptic curves. In: Kaliski Jr. B.S. (ed.), CRYPTO ’97, LNCS, vol. 1294, pp. 357–371, Springer, Heidelberg (1997).

  • Solinas J.: Efficient arithmetic on Koblitz curves. Des. Codes Cryptogr. 19(2–3), 195–249 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven D. Galbraith.

Additional information

Communicated by P. Wild.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avanzi, R., Benits, W.D., Galbraith, S.D. et al. On the distribution of the coefficients of normal forms for Frobenius expansions. Des. Codes Cryptogr. 61, 71–89 (2011). https://doi.org/10.1007/s10623-010-9439-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-010-9439-z

Keywords

Mathematics Subject Classification (2000)

Navigation