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Abstract

The existence and construction of self-dual codes in a permutation

module of a finite group for the semisimple case are described from two

aspects, one is from the point of view of the composition factors which are

self-dual modules, the other one is from the point of view of the Galois

group of the coefficient field.
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1 Introduction

Let F be a finite field of order q which is a power of a prime integer; and let X
be a finite set. By FX we denote the F -vector space with the basis X and with
the usual scalar product as its standard inner product. Any subspace C of FX
is just the usual linear code over F . In coding-theoretic notation, with respect
to the standard inner product, the orthogonal subspace C⊥ of a linear code C
is called the dual code of C; and C is called a self-orthogonal code if C ⊆ C⊥;
and C is called a self-dual code if C = C⊥.

If X is a group, then FX is an algebra with multiplication induced by the
multiplication of the group X , which is called the group algebra of the group X
over F ; and any left ideal C of FX is said to be a group code. It is an interesting
question to find conditions such that a group algebra has a self-dual group codes.
More generally, this question can be extended to the group algebras over finite
rings.

In [9], finite abelian groups are considered and some results on the non-
existence of self-dual group codes are shown. For the direct product of a finite
2-group and a finite 2′-group, reference [4] showed when the self-dual group
codes do not exist. Using the representation theory of finite groups, for group
algebras over finite Galois rings reference [11] gave a complete answer for this
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question. In particular, it is an easy conclusion that there is no self-dual code
for finite groups of odd order.

Thus it is reasonable to consider the self-dual extended group codes for
finite groups of odd order. And [7] obtained some interesting conditions for
the existence of such self-dual codes in characteristic 2: one is from the point
of view of self-dual modules, another one is an elementary number-theoretical
condition; and [7] also showed some constructions of such codes.

Extending group codes, [3] discussed the so-called permutation codes of finite
groups. If G is a finite group and X is a finite G-set, then FX is called a
permutation FG-module, which has the standard inner product with respect to
the basis X ; any FG-submodule C of FX is said to be an FG-permutation
code. If X is a transitive G-set, the permutation cades of FX is called transitive
permutation codes. View the base set of the group G as a left regular G-set,
then the group codes are just the permutation codes of FG. Some important
codes are permutation codes in natural ways, but may not be group codes; e.g.
the so-called multiple-cyclic codes; see [3] for details. Moreover, the research of
permutation codes is of interests from the point of view of automorphism groups
of linear codes, for: any permutation automorphism of a linear code is just a
permutation of the standard basis of the linear code. In [3] some conditions
are obtained for the non-existence of the self-dual transitive permutation codes
of finite groups. And it is also an easy conclusion that there is no self-dual
transitive permutation code for finite groups of odd order.

In this paper we discuss the existence and construction of self-dual permu-
tation codes for the semisimple case. The outline is as follows.

Throughout the paper, F denotes a finite field of order q, and G denotes a
finite group of order coprime to q, and any FG-module is finite-dimensional.

In §2, we first make observations on the related module-theoretical aspects,
and then turn to the permutation codes. Since FG is a semisimple algebra
(Maschke’s theorem), any FG-module V is decomposed into a direct sum of ir-
reducible FG-modules with the collection of the irreducible summands is unique
determined up to isomorphism; any irreducible FG-module W which appears
in the direct sum is called a composition factor of V , and the number of the
direct summands which are isomorphic to W is called the multiplicity of W in
V . The dual space V ∗ := HomF (V, F ) consisting of all the linear form of V is
an FG-module with G-action: (gϕ)(v) = ϕ(g−1v), ∀ g ∈ G, ϕ ∈ HomF (V, F ),
v ∈ V . We call V a self-dual FG-module if V ∼= V ∗. So, “self-dual module”
and “self-dual code” are different concepts. After the module-theoretical results
which we need are obtained, we turn to coding-theoretical notation, and show
that, for even q and odd |G|, an FG-permutation module FX has self-dual per-
mutation codes if and only if any self-dual composition factor of the FG-module
FX has even multiplicity. For odd q, only a sufficient condition is obtained.

In §3, we discuss transitive permutation codes, i.e. codes of an permutation
module FX with a transitive G-set X . We first reduce the existence of the
so-called self-dual extended transitive permutation codes to the existence of such
transitive permutation codes C of FX that C⊥ = C ⊕ F . And we show that,
for a transitive G-set X with length n = |X |, if the integer q as an element of
the multiplicative group Z×

n has odd order, then there is a permutation code C
of FX such that C⊥ = C ⊕ F . It is easy to see that this elementary number-
theoretical condition is similar to that in [7]. However, the situation of transitive
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permutation codes is more delicate than that of group codes, so that we take
a way different from [7] to treat our cases; and we obtained no necessary and
sufficient conditions, though some more results are shown in §3 which seem
interesting.

2 Self-dual modules and self-dual codes

We adopt the usual notation about linear forms, bilinear forms etc. from the
usual linear algebra. A bilinear form f(−,−) on an FG-module V is said to be
G-invariant if

f
(

g(u), g(v)
)

= f(u, v) , ∀ u, v ∈ V .

Let V be an FG-module with a G-invariant non-degenerate bilinear form
〈−,−〉. Let U , W be submodules of V . Denote

AnnlW (U) = {w ∈W | 〈w, u〉 = 0, ∀ u ∈ U} ,

AnnrW (U) = {w ∈W | 〈u,w〉 = 0, ∀ u ∈ U} ;

in particular, denote U⊥ = AnnrV (U) and ⊥U = AnnlV (U). From the G-
invariancy of 〈−,−〉, it is easy to see that AnnlW (U) and AnnrW (U) are FG-
submodules. Note that AnnlW (U) = AnnrW (U) and ⊥U = U⊥ once 〈−,−〉 is
symmetric. For any v0 ∈ V we have the linear form 〈−, v0〉 : V → F , v 7→ 〈v, v0〉;
and restricting it to U , we have the linear form 〈−, v0〉|U on U and it is easy to
check that

V −→ U∗, v0 7−→ 〈−, v0〉|U (1)

is a surjective FG-homomorphism with kernel U⊥; thus we have an exact se-
quence of FG-homomorphisms:

0 −→ U⊥ −→ V −→ U∗ −→ 0 ; (2)

in particular, dimV = dimU+dimU⊥ because dimU = dimU∗. Restricting the
bilinear form 〈−,−〉 to the FG-submodule U , we get a G-invariant symmetric
bilinear form on U . If the restricted bilinear form on U is non-degenerate
(equivalently, AnnrU (U) = U ∩ U⊥ = 0), we say that U is a non-degenerate
submodule. On the other hand, if the restricted bilinear form on U is zero
(equivalently, U ⊆ U⊥), we say, in module-theoretical notation, that U is an
isotropic submodule.

Recall that any FG-module V is written into a direct sum of irreducible
modules, and the irreducible direct summands are partitioned by isomorphism,
hence V = V1 ⊕ · · · ⊕ Vh, with every Vi consisting of the irreducible direct
summands which are isomorphic to one and the same irreducible module Wi,
but Vi and Vj for i 6= j have no composition factors in common; thus Vi ∼= miWi

with mi being the multiplicity of Wi in V , and Vi is called the homogeneous
component of V associated with the irreducible moduleWi, and V = V1⊕· · ·⊕Vh
is called the canonical decomposition (or homogeneous decomposition) of V , see
[10, §2.6]; the canonical decomposition of V is unique, so that for any submodule
U of V we have

U = (U ∩ V1)⊕ · · · ⊕ (U ∩ Vh) . (3)
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Lemma 1. Let V be an FG-module with a G-invariant non-degenerate bilinear
form; and U be an FG-submodule.

(1) If U is non-degenerate then U is an self-dual FG-module.

(2) If U is irreducible, then U is either non-degenerate or isotropic.

(3) If U is a homogeneous component associated with an irreducible module
W , then W is self-dual if and only if U is non-degenerate. W is not self-dual if
and only if U is isotropic.

Proof. (1). The non-degeneracy of U implies U ∩U⊥ = 0; thus from that
dimV = dimU + dimU⊥ we get V = U⊥ ⊕ U , and it follows from the exact
sequence (2) that U ∼= V/U⊥ ∼= U∗.

(2). Because U ∩ U⊥ is an FG-submodule of U , the irreducibility of U
implies that either U ∩ U⊥ = 0 or U ∩ U⊥ = U .

(3). From the exact sequence (2) and the semi-simplicity, we have that
V = U⊥⊕U ′ with U ′ ∼= U∗. Since FG is an Frobenius algebra, it is known (e.g.
see [12]) that the dual modules of all the composition factors of U are just all
the composition factors of U∗. Thus U ′ is a homogeneous component too. Thus
the conclusions follows from the uniqueness of the homogeneous decomposition.

Remark. It is well-known that “there is a G-invariant non-degenerate bi-
linear form on a FG-module V if and only if V is a self-dual FG-module”. The
necessity is a special case of Lemma 1(1); and the sufficiency follows that, with
an FG-isomorphism α : V → V ∗, the composition map

V × V −→ V ∗ × V −→ F ,
(v, v′) 7−→ (α(v), v′) 7−→ α(v)(v′) .

is a G-invariant non-degenerate bilinear form on V . For more details, please see
[6, Ch.VII, §8].

Lemma 2. Let V be an FG-module with a G-invariant non-degenerate sym-
metric bilinear form; let U be an isotropic FG-submodule of V . Then the fol-
lowing are equivalent:

(i) U⊥ = U ;

(ii) dimU = dimV/2;

(iii) the collection of the composition factors of U and the dual modules of
the composition factors of U is the collection of the composition factors of V .

Proof. (i) ⇔ (ii) is obvious since dimV = dimU⊥ + dimU .

(i) ⇔ (iii). Similar to the proof for Lemma 1(3), V = U⊥⊕U ′ with U ′ ∼= U∗;
but now U ⊆ U⊥ by hypothesis, so the equivalence is obvious.

Recall from the usual linear algebra that, for an FG-module V , any bilinear
form f on V corresponds to exactly one linear form f̄ on the tensor product
space V ⊗F V : f̄(v⊗ v′) = f(v, v′); in other words, the dual space (V ⊗F V )∗ is
identified with the space of all the bilinear forms on V . As usually, V ⊗F V is
an FG-module by diagonal action of G, hence (V ⊗F V )∗ is also an FG-module
by diagonal action of G; and the space of all the G-invariant bilinear forms is
identified with the subspace of all the G-fixed points of (V ⊗F V )∗, denoted by
((V ⊗F V )∗)G.
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On the other hand, G acts on the space HomF (V, V ) of all the linear trans-
formations of V in the following way:

(gα)(v) = g(α(g−1v) , ∀ g ∈ G, α ∈ Hom(V, V ), v ∈ V ;

and the subspace HomFG(V, V ) of all the FG-endomorphisms of V is just the
set of all the G-fixed points of HomF (V, V ).

Lemma 3. Let V be an FG-module with a G-invariant non-degenerate sym-
metric bilinear form 〈−,−〉. For any linear transformation α ∈ HomF (V, V )
define

ϕα(u, v) = 〈α(u), v〉 , ∀ u, v ∈ V .

Then ϕα is a bilinear form on V , and

ϕ : HomF (V, V ) −→ (V ⊗F V )∗, α 7−→ ϕα .

is an FG-isomorphism, and:

(1) ϕα is G-invariant if and only if α is an FG-endomorphism;

(2) ϕα is non-degenerate if and only if α is a non-degenerate transforma-
tion;

(3) ϕα is a symmetric if and only if α is a symmetric transformation.

Proof. It is easy to check that ϕα is a bilinear form on V , and that ϕ is
a linear map; and that ϕ is injective because 〈−,−〉 is non-degenerate, hence ϕ
is bijective since dimHomF (V, V ) = dim(V ⊗F V )∗. Next, for any g ∈ G, any
α ∈ HomF (V, V ), and any u, v ∈ V , we have

ϕgα(u ⊗ v) = 〈(gα)(u), v〉 = 〈gα(g−1u), v〉 = 〈α(g−1u), g−1v〉

= ϕα(g
−1u⊗ g−1v) = ϕα(g

−1(u⊗ v)) = (gϕα)(u ⊗ v) .

So ϕ is an FG-isomorphism. Hence we have the following isomorphism

HomFG(V, V )
∼=
−→ ((V ⊗F V )∗)G, α 7−→ ϕα ; (4)

that is, (1) holds. The (2) and (3) can be verified straightforwardly.

Let V and V ′ be FG-modules equipped with G-invariant bilinear forms f and
f ′ respectively. We say that an FG-homomorphism α : V → V ′ is compatible
with the bilinear forms f and f ′ if f ′(α(u), α(v)) = f(u, v) for all u, v ∈ V .

If f is a non-degenerate bilinear form on V , then any FG-homomorphism α :
V → V ′ which is compatible with f and f ′ must be injective; for: α(u) = 0 im-
plies that for any v ∈ V we have that f(u, v) = f ′(α(u), α(v)) = f ′(0, α(v)) =
0, hence u = 0 by the non-degeneracy of the form f .

Lemma 4. Assume that q is even, and V is a self-dual irreducible FG-module.
If both f and f ′ are G-invariant non-degenerate symmetric bilinear forms on
V , then there is an FG-automorphism β : V → V which is compatible with f
and f ′.

Proof. Apply the isomorphism (4) to the FG-module V with the G-
invariant non-degenerate symmetric bilinear form f . Since V is irreducible,
by the Schur’s lemma, F̃ := HomFG(V, V ) is a finite dimensional division F -
algebra, hence F̃ is a field extension of F as it is finite. By the commutativity
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of F̃ , it is easy to check that the sum and the product of any two symmetric
transformations in F̃ are still symmetric transformations, so all the symmetric
transformations in F̃ form a subfield F̂ of F̃ .

By Lemma 3, for the G-invariant non-degenerate symmetric bilinear form
f ′, there is an α ∈ F̂ − {0} such that

f ′(u, v) = ϕα(u, v) = f
(

α(u), v
)

, ∀ u, v ∈ V .

Since F̂ is a finite field of characteristic 2, the map F̂ → F̂ , λ 7→ λ2, is an
automorphism of F̂ . So there is a β ∈ F̂ such that β2 = α−1. Then β : V → V
is an FG-automorphism of V and a symmetric transformation with respect to
the bilinear form f ; and, noting that αβ = βα, for any u, v ∈ V we have

f ′
(

β(u), β(v)
)

= f
(

α(β(u)), β(v)
)

= f
(

(βαβ)(u)), v
)

= f
(

u, v
)

.

That is, β is compatible with the bilinear form f and f ′.

Theorem 1. Let F be a finite field of characteristic 2 and G be a finite group
of odd order. Let V be an FG-module with a G-invariant non-degenerate sym-
metric bilinear form. Then the following are equivalent:

(i) every self-dual composition factor of V has even multiplicity;

(ii) there is an FG-submodule U of V such that U⊥ = U .

Proof. We denote 〈−,−〉 for the G-invariant non-degenerate symmetric
bilinear form on V .

(ii) ⇒ (i). This is an easy consequence of Lemma 2 (i)⇒(iii).

(i) ⇒ (ii). Let W be an irreducible FG-submodule of V .

Case 1: W ⊆ W⊥. By the exact sequence (2), we have a submodule W ′ of
V such that V =W⊥⊕W ′ and the homomorphism (1) induces an isomorphism

W ′
∼=−→ W ∗, w′ 7−→ 〈w′,−〉|W .

Therefore, the matrix of the symmetric bilinear form 〈−,−〉|W ′⊕W restricted to
W ′ ⊕W is as follows

(

0 A
AT ∗

)

where A is the matrix of the bilinear form W ′ ×W → F , (w′, w) 7→ 〈w′, w〉
and AT denotes the transpose of A; so A is invertible, and hence W ′ ⊕W is a
non-degenerate submodule of V . Then

V = (W ′ ⊕W )⊕ (W ′ ⊕W )⊥

and (W ′ ⊕W )⊥ is also non-degenerate submodule.

If W is not a self-dual module, then W ′ ∼= W ∗ is not self-dual, and hence
(W ′ ⊕W )⊥ also satisfies the condition (i). Otherwise, W is a self-dual module,
and W ′ ∼= W ∗ ∼= W is a self-dual module too, hence (W ′ ⊕W )⊥ still satisfies
the condition (i). In a word, by induction, there is a submodule S of (W ′⊕W )⊥

such that Ann(W ′⊕W )⊥(S) = S. Take U =W ⊕ S; then it is easy to check that

U⊥ = U and (ii) holds.

6



Case 2: W 6⊆ W⊥. Then W is non-degenerate, i.e. V = W ⊕W⊥, and W
is a self-dual module, see Lemma 1(2). By the condition (i), there is a direct
decomposition W⊥ = W̃ ⊕ U such that W̃ ∼=W , and V =W ⊕ W̃ ⊕ U .

If W̃ ⊆ W̃⊥, then it is reduced to Case 1 and the (ii) holds by induction. So
we assume that W̃ 6⊆ W̃⊥, and hence W̃ is also non-degenerate. Since W⊥W̃ ,
the submodule W ⊕ W̃ is non-degenerate too.

Let f and f̃ denote the restrictions of 〈−,−〉 on W and on W̃ respectively;
so f and f̃ are G-invariant non-degenerate symmetric bilinear forms on W and
W̃ respectively. Let α : W → W̃ be an FG-isomorphism. Then α induces a
G-invariant non-degenerate symmetric bilinear form f ′ on W as follows:

f ′(u,w) := f̃
(

α(u), α(w)
)

, ∀ u,w ∈W .

By Lemma 4, there is an FG-automorphism β : W → W which is compatible
with f and f ′, i.e.

f ′
(

β(u), β(w)
)

= f(u, w) , ∀ u,w ∈ W .

Let γ = αβ. Then γ : W → W̃ is an FG-isomorphism, and for any u,w ∈ W
we have

f̃
(

γ(u), γ(w)
)

= f̃
(

α(β(u)), α(β(w))
)

= f ′
(

β(u), β(w)
)

= f(u, w) ;

that is, γ is an FG-isomorphism compatible with the bilinear forms f and f̃ .
Let

W ′ = {w + γ(w) | w ∈W} ⊆W ⊕ W̃ .

It is a routine to check that W ′ is a submodule and W ′ ∼=W ; but, noting that
W⊥W̃ and charF = 2, for any u+γ(u) ∈W ′ and w+γ(w) ∈ W ′ with u,w ∈W
we have

〈

u+ γ(u), w + γ(w)
〉

=
〈

u, w
〉

+
〈

γ(u), γ(w)
〉

= f(u, w) + f̃
(

γ(u), γ(w)
)

= f(u, w) + f(u, w) = 0 .

So W ′ ∼= W is an irreducible FG-submodule of V and W ′ ⊆ W ′⊥, and it is
reduced to the Case 1 and (ii) holds by induction again.

Remark. In the proof of Theorem 1, Lemma 4 is quoted only in Case 2
where W and W̃ are self-dual composition factors of V . Thus, as a consequence
of the proof, we have the following conclusion.

Proposition 1. Let G be a finite group of order coprime to the character-
istic (not necessary 2) of the finite field F , and V be an FG-module with a
G-invariant non-degenerate symmetric bilinear form. If V has no self-dual com-
position factor, then V has a submodule U such that U⊥ = U .

Now we turn to permutation codes. Let X be a finite set; by Sym(X) we
denote the group of all the permutations ofX . If there is a group homomorphism
G → Sym(X), then X is called a G-set. In that case, any g ∈ G is mapped to
a permutation: X → X , x 7→ gx. Hence, (gg′)x = g(g′x) for all g, g′ ∈ G and
x ∈ X ; and 1x = x for all x ∈ X .
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Let FX = {
∑

x∈X ax x | ax ∈ F } be the vector space over F with basis X .
Extending the G-action on X linearly, FX becomes an FG-module, called an
FG-permutation module with permutation basis X , please cf. [1, §12].

We say that C is an FG-permutation code of FX , denoted by C ≤ FX , if
C is an FG-submodule of the FG-permutation module FX ; and a permutation
code C is said to be irreducible if C is an irreducible FG-submodule of FX .
Further, if X is a transitive G-set, then any FG-permutation code C of FX is
said to be a transitive permutation code.

Recall that, for a linear code C of length n over F , a permutation of the
components of a word of length n is said to be a permutation automorphism
of C if the permutation keeps every code word of C still a code word. By
PAut(C) we denote the automorphism group of C consisting of all the permu-
tation automorphisms of C. It is easy to see that C is an FG-permutation
code of a G-permutation set X of cardinality n if and only if there is a group
homomorphism of G to PAut(C).

There is a so-called scalar product of any two words of FX as follows:

〈w, w′〉 =
∑

x∈X

wxw
′
x , ∀ w =

∑

x∈X

wxx, w
′ =

∑

x∈X

w′
xx ∈ FX ,

which is obvious a non-degenerate symmetric bilinear form on FX , we call it
the standard inner product on FX with respect to the permutation basis X .
Moreover, the standard inner product is G-invariant, since for any g ∈ G and
any words w =

∑

x∈X wxx and w′ =
∑

x∈X w
′
xx of FX , we have

〈g(w), g(w′)〉 =

〈

g
(

∑

x∈X

wxx
)

, g
(

∑

x∈X

w′
xx

)

〉

=

〈

∑

x∈X

wx(gx),
∑

x∈X

w′
x(gx)

〉

=
∑

x∈X

wxw
′
x

= 〈w, w′〉 ;

equivalently,

〈g(w), w′〉 = 〈w, g−1(w′)〉 , ∀ g ∈ G , ∀ w,w′ ∈ FX .

Thus, FX is a self-dual FG-module. In fact, we can make the duality more
precisely. Just like the formula (1), the standard inner product induces an
isomorphism

FX
∼=
−→ (FX)∗ , u 7−→ u∗ := 〈u,−〉 ,

where
u∗ : FX −→ F , w 7−→ u∗(w) = 〈u,w〉 ;

and
X∗ := {x∗ | x ∈ X}

is a G-set with G-action

g(x∗) = (g−1x)∗ , ∀ g ∈ G , x∗ ∈ X∗ ,
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such that (FX)∗ is an FG-permutation module of the G-set X∗, and u 7→ u∗

is a permutation isomorphism.

Let FX be an FG-permutation module. For any permutation code C of FX ,
since C is an FG-submodule, C⊥ = {w ∈ FX | 〈c, w〉 = 0 , ∀ c ∈ C} is an FG-
submodule again, i.e. C⊥ is a permutation code again. In coding-theoretical
notation, C⊥ is said to be the dual permutation code of C.

An FG-permutation code C ≤ FX is said to be self-orthogonal if C ⊆ C⊥.
And a permutation code C ≤ FX is said to be self-dual if C = C⊥.

With the coding-theoretical notation introduced above, from Theorem 1 and
Proposition 1, we have the following results at once.

Theorem 2. Let F be a finite field of characteristic 2, and G be a finite group
of odd order, and X be a finite G-set. Then the following are equivalent:

(i) every self-dual composition factor of FX has even multiplicity;

(ii) there is a self-dual FG-permutation code C of FX.

Proposition 2. Let G be a finite group of order coprime to the characteristic
(not necessary 2) of the field F , and X be a finite G-set. If FX has no self-dual
composition factor, then there is a self-dual FG-permutation code of FX.

3 Self-dual extended

transitive permutation codes

If a G-set X = {x0} contains of only one element, then X is said to be the trivial
G-set and the permutation module FX ∼= F is just the trivial FG-module, which
is obviously a self-dual module.

An elementary known fact is that, in the semisimple case, for any transitive
G-set X the trivial FG-module F is a composition factor of multiplicity 1 of
the FG-permutation module FX ; e.g. see [3, Lemma 1]; we denote the unique
trivial submodule of FX by F if there is no confusion, thus FX = F ⊕F⊥. By
Theorem 1, FX has no self-dual codes.

Let X be a transitive G-set. Let X̂ = X
⋃

{x0} be the disjoint union of
X with a trivial G-set {x0}, i.e. x0 /∈ X . Then FX̂ = FX ⊕ Fx0, and any
permutation code C of FX̂ is said to be an extended transitive permutation code
of FX .

Lemma 5. Notation as above, and let n = |X |. The following are equivalent:

(i) there is a permutation code C of FX such that C⊥ = C ⊕ F and, as
an element of the field F , −n has a square root in F ;

(ii) there is a self-dual permutation code Ĉ of FX̂.

Proof. Let e =
∑

x∈X x; then Fe is the unique submodule of FX which is

isomorphic to F , so Fx0⊕Fe is the homogeneous component of FX̂ associated
with the trivial module F . Noting that Fx0⊥Fe and 〈x0, x0〉 = 1 and 〈e, e〉 =
n 6= 0 (because n

∣

∣ |G| which is coprime to q = |F |), we see that Fx0 ⊕ Fe is a

non-degenerate submodule of FX̂. Thus

FX̂ = (Fx0 ⊕ Fe)⊕ (Fx0 ⊕ Fe)⊥

9



and

(Fx0 ⊕ Fe)⊥ = (Fx0)
⊥ ∩ (Fe)⊥ = FX ∩ (Fe)⊥ = AnnFX(Fe) .

(ii) ⇒ (i). By the formula (3) we have

Ĉ =
(

Ĉ ∩ (Fx0 ⊕ Fe)
)

⊕
(

Ĉ ∩ AnnFX(Fe)
)

.

From the condition (ii) that Ĉ⊥ = Ĉ, by Lemma 2(ii), we have

dim
(

Ĉ ∩ (Fx0 ⊕ Fe)
)

= 1 , dim
(

Ĉ ∩AnnFX(Fe)
)

=
n− 1

2
.

Set C = Ĉ ∩ AnnFX(Fe); it is easy to check that, C is a permutation code of
FX and C⊥ = C ⊕ Fe in FX . On the other hand, for C ∩ (Fx0 ⊕ Fe) which
is a one-dimensional subspace, we assume that λ ∈ F such that

Ĉ ∩ (Fx0 ⊕ Fe) = F · (λx0 + e) ;

then 〈λx0 + e, λx0 + e〉 = 0; i.e.

0 = 〈λx0, λx0〉+ 〈e, e〉 = λ2 + n ;

that is, λ2 = −n.

(i) ⇒ (ii). In FX , since dimC+dimC⊥ = n, from the condition that C⊥ =
C ⊕ Fe we have that dimC = n−1

2 . Turn to FX̂, set λ ∈ F such that λ2 = −n

and Ĉ := F · (λx0 + e) ⊕ C; as shown above, the 1-dimensional submodule
F · (λx0 + e) of Fx0 ⊕ Fe is isotropic, hence Ĉ is an isotropic submodule. But
dim Ĉ = n+1

2 ; and by Lemma 2, Ĉ is a self-dual permutation code of FX̂ .

Remark. In the above lemma, the condition “−n has a square root in F”
in (i) always satisfies for characteristic 2.

For any positive integer n we denote Zn the residue ring of the integer ring Z
modulo n, and denote Z×

n the multiplicity group consisting of all the invertible
elements of Zn. So q is considered as an element of Z×

n , and we can speak of
the order of q in the group Z×

n .

Lemma 6. Let n be an odd integer coprime to q. The following are equivalent:

(i) The order of q in Z×
n is odd.

(ii) For any prime p|n the order of q in Z×
p is odd.

Proof. Let n = pm1

1 · · · pmk

k . By Chinese Remainder Theorem we have the
following isomorphism about the multiplicative groups:

Z×
n

∼=
−→ Z×

p
m1

1

× · · · × Z×

p
mk

k

, a 7−→ (a, · · · , a)

The order of q ∈ Z×
n is odd if and only if the order q ∈ Z×

p
mi

i

is odd for every

i = 1, · · · , k. Consider the exact sequence of multiplication groups:

1 −→ 1 + piZpmi

i

incl
−→ Z×

p
mi

i

ρ
−→ Z×

pi −→ 1

10



where “incl” is the inclusion map and ρ is the natural map:

Z×

p
mi

i

−→ Z×
pi , a 7−→ a .

Since the order |1+ piZpmi

i

| = pmi−1
i is odd, the order of q ∈ Z×

p
mi

i

is odd if and

only if the order of q ∈ Z×
pi is odd.

Recall that F is a finite field of order q. For any positive integer n, in
a suitable extension we can take a primitive n’th root ξn of unity, and the
extension F (ξn) is independent of the choice of ξn; and the order of the Galois
group

∣

∣Gal
(

F (ξn)/F
)
∣

∣ = |F (ξn) : F | is just the order of q in the multiplicative
group Z×

n . As a consequence we have the following at once.

Corollary 1. Let n be an odd integer coprime to q. The following are equiv-
alent:

(i). The extension degree |F (ξn) : F | is odd.

(ii). For any prime p|n the extension degree |F (ξp) : F | is odd.

Let H be a subgroup of the group G, and let Y be a finite H-set; then FY
is an FH-permutation module. We have the induced FG-module

IndGH(FY ) = FG
⊗

FH

FY =
⊕

t∈T

t⊗ FY ,

where T is a representative set of the left cosets of G over H ; and IndGH(FY ) is
a vector space with basis

X := IndGH(Y ) =
⋃

t∈T

t⊗ Y =
⋃

t∈T

{t⊗ y | y ∈ Y }

which is a G-set with G-action as follows:

g(t⊗ y) = tg ⊗ t−1
g gty , ∀ g ∈ G, t ∈ T, y ∈ Y ,

where tg is the representative of the unique left coset tgH such that gt ∈ tgH , or

equivalently t−1
g gt ∈ H . We say that IndGH(FY ) is the induced FG-permutation

module with the induced G-set IndGH(Y ).

Lemma 7. Notation as above; and let D be an FH-permutation code of the
FH-permutation module FY ; then

IndGH(D)⊥ = IndGH(D⊥) .

Proof. It is obvious that the induced module C := IndGH(D) is a submodule
of IndGH(FY ) =

⊕

t∈T t⊗FY , and we have a direct decomposition of F -spaces:

IndGH(D) =
⊕

t∈T

t⊗D ,

where each t⊗D is an F -subspace of t⊗ FY . Each t⊗ FY is an F -space with
bases t⊗ Y , hence with the standard inner product:

〈

∑

y∈Y

ay(t⊗ y),
∑

y∈Y

by(t⊗ y)
〉

=
∑

y∈Y

ayby ;
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and
FY −→ t⊗ FY ,

∑

y∈Y

ayy 7−→
∑

y∈Y

ay(t⊗ y) ,

is an isometric F -isomorphism. With respect to the isometries, it is clear that
(t⊗D)⊥ = t⊗D⊥; hence

IndGH(D)⊥ =
⊕

t∈T

(t⊗D)⊥ =
⊕

t∈T

t⊗D⊥ = IndGH(D⊥) .

Lemma 8. Let p be an odd prime which is coprime to q such that the order of
q in Z×

p is odd. Let A be a finite abelian p-group, and H be a finite group of odd
order which acts on the group A. Then there is a group code C ≤ FA which is
stable by the action of H and C⊥ = C ⊕ F , where F denotes the unique trivial
module of FA.

Proof. Let |A| = n which is a power of p; take a primitive n’th root ξ of
unity, and denote F̃ = F (ξ). Then F̃A is a splitting semisimple commutative
algebra. Let Γ = Gal(F̃ /F ) denote the Galois group of F̃ = F (ξ) over F ; by
Lemma 6 and its corollary, |Γ| is odd.

Let A∗ denote the set of all the irreducible characters of A over F̃ (i.e. all
the homomorphisms χ : A → F̃×). With the usual multiplication of functions,
A∗ is an abelian group and A∗ ∼= A. Note that for any integer k,

χk(a) = χ(ak) , ∀ χ ∈ A∗ , a ∈ A .

in particular, χ−1(a) = χ(a−1).

Each χ ∈ A∗ corresponds exactly one irreducible module F̃ eχ of F̃A, where

eχ =
1

n

∑

a∈A

χ(a−1)a

is a primitive idempotent of the algebra F̃A. And we have the direct decompo-
sition of irreducible F̃A-modules:

F̃A =
⊕

χ∈A∗

F̃ eχ .

For χ, ψ ∈ A∗ and λ, µ ∈ F̃ , the standard inner product

〈λeχ, µeψ〉 = nλµ · (χ|ψ−1) ,

where (χ|ψ−1) denotes the usual inner product of characters:

(χ|ψ−1) =
1

n

∑

a∈A

χ(a)ψ−1(a−1) =
1

n

∑

a∈A

χ(a)ψ(a) .

By the orthogonal relations of characters,

〈

F̃ eχ, F̃ eψ

〉

=

{

F̃ , if χ = ψ−1,
0, otherwise.
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Any submodule C̃ of F̃A corresponds exactly to a subset B ⊆ A∗ such that

C̃ =
⊕

χ∈B

F̃ eχ .

Thus
C̃⊥ =

⊕

ψ/∈B−1

F̃ eψ

where B−1 := {χ−1 | χ ∈ B}; in particular, C̃ is self-orthogonal code if and
only if B ∩B−1 = ∅.

Recall that Γ = Gal(F̃ /F ) is a cyclic group generated by the following
automorphism

γ : F (ξ) −→ F (ξ) , λ 7−→ λq .

The group Γ acts on F̃ hence acts on the ring F̃A in the following way:

γ
(

∑

a∈A

λaa
)

=
∑

a∈A

γ(λa)a , ∀
∑

a∈A

λaa ∈ F̃A.

We denote (F̃A)Γ the subring consisting of all the Γ-fixed elements of F̃A. It
is obvious that (F̃A)Γ = FA .

And Γ acts on the set {eχ | χ ∈ A∗} of the primitive idempotents of F̃A:

γ(eχ) = γ
( 1

n

∑

a∈A

χ(a−1)a
)

=
1

n

∑

a∈A

γ(χ(a−1))a = eγ(χ) ,

where γ(χ) ∈ A∗ is the composition homomorphism

A
χ

−→ F̃
γ

−→ F̃ , a 7−→ γ(χ(a)) = (χ(a))q ,

i.e. γ(χ) = χq. In this way, Γ acts on the abelian group A∗.

On the other hand, H acts on the ring F̃A:

h
(

∑

a∈A

λaa
)

=
∑

a∈A

λah(a) , ∀
∑

a∈A

λaa ∈ F̃A .

Similarly, H acts on the set {eχ | χ ∈ A∗} of the primitive idempotents of F̃A:

h(eχ) = h
( 1

n

∑

a∈A

χ(a−1)a
)

=
1

n

∑

a∈A

χ(a−1)h(a) =
1

n

∑

b∈A

χ(h−1(b−1))b = eh(χ) ,

where h(χ) ∈ A∗ is the composition homomorphism

A
h−1

−→ A
χ

−→ F̃ , a 7−→ χ(h−1(a)) .

In this way, H acts on the abelian group A∗.

In a word, Γ×H acts on the ring F̃A, and the action induces the action of
Γ×H on the abelian group A∗.

Let C ≤ FA be an H-stable submodule; denote C̃ = F̃ ⊗F C. Then C̃ is a
both H-stable and Γ-stable submodule of F̃A such that C̃Γ = C. Let B ⊂ A∗
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be the subset such that C̃ =
⊕

χ∈B F̃ eχ . Since C̃ is H-stable, we see that B is
H-stable; and similarly, B is Γ-stable. So B is a (Γ×H)-stable subset of A∗.

Conversely, if B is a (Γ×H)-stable subset of A∗, then C̃ =
⊕

χ∈B F̃ eχ is a

(Γ×H)-stable submodule of F̃A, and C̃Γ is an H-stable submodule of FA.

Let Ω be a non-trivial (Γ×H)-orbit of A∗, i.e. 1 /∈ Ω. Let χ ∈ Ω, then χ 6= 1
hence the order of χ is a power of p, say pℓ (recall that A∗ ∼= A is an abelian
p-group). We claim that χ−1 /∈ Ω. Suppose it is not the cases, then there is
γi ∈ Γ and h ∈ H such that γih(χ) = χ−1, and

h(χ) = γ−i(χ−1) = χ(−1)(−qi) = χq
i

;

thus 〈γ〉×〈h〉 acts on the cyclic group 〈χ〉 of order pℓ, and γih acts on 〈χ〉 as the
nvolution χ 7→ χ−1; but the automorphism group Aut(〈χ〉) is a cyclic group,
hence the product γih of the two automorphisms γi and h of odd order still has
odd order; it contradicts to that the χ 7→ χ−1 is an involution.

The involution τ : A∗ → A∗, χ 7→ χ−1, commutes with both Γ and H
clearly. So τ permutes all the (Γ ×H)-orbits of A∗. For any non-trivial orbit
Ω 6= {1}, since τ(χ) /∈ Ω for any χ ∈ Ω, the subset τ(Ω) is an orbit different
from Ω. Thus we can partition all the non-trivial orbits into two collections B
and B−1 = {χ−1 | χ ∈ B}, and we get the disjoint union

A∗ = {1}
⋃

B
⋃

B−1 .

Then the code C̃ =
⊕

χ∈B F̃ eχ is H-stable and C̃⊥ = C̃ ⊕ F̃ ; hence the code

C = C̃Γ of FA is H-stable and C⊥ = C ⊕ F .

Theorem 3. Let G be a finite group of odd order, and X be a finite transitive
G-set and n = |X |. Assume that q = |F | is coprime to n, and the order of q in
the multiplicative group Z×

n is odd. Then there is a permutation code C ≤ FX
such that C⊥ = C ⊕ F .

Proof. We prove it by induction on the order of G. It is trivial for |G| = 1.
Assume |G| > 1. Let x1 ∈ X and denote G1 the stabilizer of x1 in G. Then G1

is a subgroup and FX = IndGG1
(F ). Since G is solvable by Feit-Thompson Odd

Theorem, a minimal normal subgroup A of G is an elementary abelian p-group,
where p is a prime. Since A is normal, the product AG1 is a subgroup of G.
There are three cases.

Case 1: AG1 = G1. Then A ⊆ G1, and hence A is contained in every
conjugate of G1 as A is normal. Thus A acts trivially on X , and X is a G/A-set
and FX is a permutation module over G/A. Since |G/A| < |G|, the conclusion
holds by induction.

Case 2: AG1 = G. Since A ∩ G1 is both normal in G1 and in A, we have
that A ∩G1 is normal in AG1 = G; but A is a minimal normal subgroup of G,
so A ∩G1 = 1. Then we have a bijection

β : A −→ X , a 7−→ a(x1) .

Let A acts on A by left translation, and let G1 acts on A by conjugation; hence
G = AG1 is mapped into the group Sym(A) of all the permutations of A:

(bh)(a) = bhah−1 , ∀ a, b ∈ A, h ∈ H .
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Noting that G1 stabilizes x1, we have that

β
(

(bh)(a)
)

= (bhah−1)(x1) = bha(x1) = (bh)β(a) .

Thus, mapping bh ∈ G to the permutation a 7→ bhah−1 of A is an action of
G on A, and β is an isomorphism of G-sets. Then n = |A| hence p|n, so p is
coprime to q, and by the assumption of the lemma, the order of q in Z×

p is odd
(see Lemma 6). The conclusion is derived from Lemma 8.

Case 3: G1 � AG1 � G. In this case,

FX ∼= IndGG1
(F ) = IndGAG1

IndAG1

G1
(F ) .

Let Y = {gx1 | g ∈ AG1}, which is an AG1-set and IndAG1

G1
(F ) ∼= FY . By

induction, there is a code D ≤ FY such that D⊥ = D ⊕ FeY where eY =
∑

y∈Y y. Turn to the permutation module FX = IndGAG1
(FY ), by Lemma 7,

we have

IndGAG1
(D)⊥ = IndGAG1

(D⊥) = IndGAG1
(D⊕FeY ) = IndGAG1

(D)⊕IndGAG1
(FeY ) .

Noting that, FeY is the unique trivial module of FY , and

IndGAG1
(FeY ) =

⊕

t∈G/AG1

t⊗ FeY ;

by induction again, there is a code E ≤ IndGAG1
(FeY ) such that

AnnIndG

AG1
(FeY )(E) = E ⊕ FeX ,

where eX =
∑

x∈X x. So we can write IndGAG1
(FeY ) = E′⊕E⊕FeX , and have

IndGAG1
(D)⊥ = IndGAG1

(D)⊕ IndGAG1
(FeY ) = IndGAG1

(D)⊕ E′ ⊕ E ⊕ FeX .

Let
C = IndGAG1

(D)⊕ E

which is a permutation code of FX and

C⊥ = IndGAG1
(D)⊥

⋂

E⊥ = AnnFX

(

IndGAG1
(D)

)

⋂

AnnFX(E)

=
(

IndGAG1
(D)⊕ E′ ⊕ E ⊕ FeX

)

⋂

AnnIndG

AG1
(D)⊕E′⊕E⊕FeX (E)

=
(

IndGAG1
(D)⊕ E′ ⊕ E ⊕ FeX

)

⋂

(

IndGAG1
(D)⊕ E ⊕ FeX

)

= IndGAG1
(D) ⊕ E ⊕ FeX

= C ⊕ FeX .

As a consequence of Theorem and Lemma 5 (cf. its remark), we get the
followings at once.

Corollary 2. Assume that q = |F | is even and |G| is odd and X is a transitive
G-set and n = |X |. If the order of q in the multiplicity group Z×

n is odd, then
there is a self-dual extended code of FX.

Corollary 3. Assume that |G| is odd and X is a transitive G-set and n = |X |.
If q = |F | is coprime to n and the order of q in the multiplicity group Z×

n is odd,
and −n has square root in F , then there is a self-dual extended code of FX.
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