Skip to main content
Log in

Divisibility of polynomials over finite fields and combinatorial applications

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Consider a maximum-length shift-register sequence generated by a primitive polynomial f over a finite field. The set of its subintervals is a linear code whose dual code is formed by all polynomials divisible by f. Since the minimum weight of dual codes is directly related to the strength of the corresponding orthogonal arrays, we can produce orthogonal arrays by studying divisibility of polynomials. Munemasa (Finite Fields Appl 4(3):252–260, 1998) uses trinomials over \({\mathbb{F}_2}\) to construct orthogonal arrays of guaranteed strength 2 (and almost strength 3). That result was extended by Dewar et al. (Des Codes Cryptogr 45:1–17, 2007) to construct orthogonal arrays of guaranteed strength 3 by considering divisibility of trinomials by pentanomials over \({\mathbb{F}_2}\) . Here we first simplify the requirement in Munemasa’s approach that the characteristic polynomial of the sequence must be primitive: we show that the method applies even to the much broader class of polynomials with no repeated roots. Then we give characterizations of divisibility for binomials and trinomials over \({\mathbb{F}_3}\) . Some of our results apply to any finite field \({\mathbb{F}_q}\) with q elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aumasson J.Ph., Finiasz M., Meier W., Vaudenay S.: TCHo: A hardware-oriented trapdoor Cipher. In: Proceedings ACISP’07, LNCS, vol. 4586, pp. 184–199. Springer, Heidelberg (2007).

  2. Bose R.C.: On some connections between the design of experiments and information theory. Bull. Inst. Internat. Statist. 38, 257–271 (1961)

    MathSciNet  MATH  Google Scholar 

  3. Cheng C.T.: The test suite generation problem: optimal instances and their implications. Discrete Appl. Math. 155, 1943–1957 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cohen M.B., Colbourn C.J., Collofello J.S., Gibbons P.B., Mugridge W.B.: Variable strength interaction testing of components. In: Proceedings 27th International Computer Software and Applications, pp. 413–418 (2003).

  5. Colbourn C.J.: Covering arrays. In: Handbook of Combinatorial Designs, Chapter VI10, pp. 361–364. CRC Press, Boca Raton (2007).

  6. Delsarte P.: Four fundamental parameters of a code and their significance. Inform. Control 23, 407–438 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dewar M., Moura L., Panario D., Stevens B., Wang Q.: Division of trinomials by pentanomials and orthogonal arrays. Designs Codes Cryptogr 45, 1–17 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Golomb S.: Shift Register Sequences. Aegean Park Press, Laguna Hills (1982)

    Google Scholar 

  9. Golomb S., Gong G.: Signal Design for Good Correlation. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  10. Gupta K.C., Maitra S.: Multiples of primitive polynomials over GF(2). In: Progress in Cryptology—INDOCRYPT 2001 (Chennai). Lecture Notes in Computer Science, vol. 2247, pp. 62–72. Springer, Berlin (2001).

  11. Herrmann M., Leander G.: A practical key recovery attack on basic TCHo. In: Proceedings PKC 2009, LNCS, vol. 5443, pp. 411–424. Springer, Berlin (2009).

  12. Jambunathan K.: On choice of connection-polynomials for LFSR-based stream ciphers. In: Progress in cryptology—INDOCRYPT 2000 (Calcutta). Lecture Notes in Computer Science, vol. 1977, pp. 9–18. Springer, Berlin (2000).

  13. Jordan H.F., Wood D.C.M.: On the distribution of sums of successive bits of shift-register sequences. IEEE Trans. Comput C-22, 400–408 (1973)

    Article  MathSciNet  Google Scholar 

  14. Lidl R., Niederreiter H.: Introduction to Finite Fields and Their Applications. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  15. Lindholm J.H.: An analysis of the pseudo-randomness properties of subsequences of long m-sequences. IEEE Trans. Inform. Theory IT-14, 569–576 (1968)

    Article  Google Scholar 

  16. Maitra S., Gupta K.C., Venkateswarlu A.: Results on multiples of primitive polynomials and their products over GF(2). Theor. Comput. Sci 341(1–3), 311–343 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Martin W.J.: (t, m, s)-nets. In: Handbook of Combinatorial Designs. Chapter VI.59, pp. 361–364. CRC Press, Boca Raton (2007).

  18. Meagher K., Stevens B.: Covering arrays on graphs. J. Comb. Theory Ser. B 95, 134–151 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Meagher K., Moura L., Zekaoui L.: Mixed covering arrays on graphs. J. Comb. Designs 15, 393–404 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mullen G.L., Panario D. (eds.): Handbook of Finite Fields. Discrete Mathematics and its Applications. Chapman & Hall/CRC, Boca Raton (to appear)

  21. Munemasa A.: Orthogonal arrays, primitive trinomials, and shift-register sequences. Finite Fields Their Appl. 4(3), 252–260 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sadjadpour H., Sloane N., Salehi M., Nebe G.: Interleaver design for turbo codes. IEEE J. Selected Areas Commun 19(5), 831–837 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Wang.

Additional information

Communicated by G. Mullen.

The authors are supported in part by NSERC of Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panario, D., Sosnovski, O., Stevens, B. et al. Divisibility of polynomials over finite fields and combinatorial applications. Des. Codes Cryptogr. 63, 425–445 (2012). https://doi.org/10.1007/s10623-011-9565-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-011-9565-2

Keywords

Mathematics Subject Classification (2000)

Navigation