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Abstract

The existence of certain monomial hyperovals D(xk) in the finite De-
sarguesian projective plane PG(2, q), q even, is related to the existence
of points on certain projective plane curves gk(x, y, z). Segre showed that
some values of k (k = 6 and 2i) give rise to hyperovals in PG(2, q) for
infinitely many q. Segre and Bartocci conjectured that these are the only
values of k with this property. We prove this conjecture through the
absolute irreducibility of the curves gk.

1 Introduction

An oval in the finite Desarguesian projective plane PG(2, q) is a set of q + 1
points with the property that no three points are collinear. If q is odd then such
a set is maximal with that property, and a celebrated theorem of Segre (1955)
states that all such ovals are given algebraically by irreducible conics. If q is
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even however, the situation is more interesting. Here, a set of points in PG(2, q)
of largest possible size such that no three are collinear has cardinality q+2, and
is called a hyperoval.

From now on in this paper we assume that q is even. A hyperoval can be
constructed from a (nonsingular) conic by adjoining the point at which all the
tangents of the conic meet, the nucleus. Such hyperovals are generally called
regular hyperovals. For q > 8 there also exist irregular hyperovals which are not
of the form conic plus nucleus, see [2],[3],[9] for example.

We represent the points of PG(2, q) as homogeneous triples with coordinates
from GF (q). It is well known that all hyperovals can be written in the form

{

(1, x, f(x)) : x ∈ GF (q)
}

∪
{

(0, 0, 1), (0, 1, 0)
}

where f(x) is a polynomial with certain properties, see [4],[3]. Denote the
above set by D(f(x)). In this paper we shall examine the case where f(x) is
a monomial, say f(x) = xk. If q = 2e, Segre showed that the set D(xk) is a
hyperoval for the following values of k and the values of e indicated:

k = 2i, when (i, e) = 1 ([10], 1957),
k = 6, when (2, e) = 1 ([11], 1962). (1)

We wish to consider other values of k. In particular, we wish to consider the
question of whether there are other such infinite sequences, i.e. other fixed values
of k for which D(xk) is a hyperoval for infinitely many q. This question was
previously studied by Segre and Bartocci [12]. Our main result is the following
theorem, which was conjectured in [12].

Theorem 1.1. For any fixed even positive integer k, if k 6= 6 and k 6= 2i then
the set D(xk) is a hyperoval in PG(2, q) for at most a finite number of values
of q.

In [8] the permutation properties of 1+x+ · · ·+xk−1 on GF (q) are studied.
It follows from [7] (p.505) that this polynomial is a permutation polynomial if
and only if D(xk) is a hyperoval. Hence our result sheds some light on this
problem. It is now trivial to see that k must be even in order for D(xk) to be
a hyperoval, since 1 + x+ · · ·+ xk−1 maps both 0 and 1 to 1 if k is odd. So we
assume k is even from now on. Values of k which are functions of e have been
studied, see [2], but we do not consider this here.

In case D(xk) is a hyperoval, we call it a monomial hyperoval because f(x)
is a monomial. Following [4], we will write D(k) instead of D(xk).

We note some projective equivalences among these hyperovals. If D(k) is a
hyperoval, then so isD(m) wherem = 1/k, 1−k, 1/(1−k), (k−1)/k, k/(k−1),
and everything is modulo q− 1. (If (k, q− 1) 6= 1 or (k− 1, q− 1) 6= 1 then D(k)
is not a hyperoval.) These hyperovals are all projectively equivalent, see [4].
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In Section 2 we shall prove the connection between the polynomials gk(x, y, z)
and the hyperovals D(k). Section 3 contains background information about al-
gebraic curves, and classifies the singular points of gk(x, y, z). Section 4 com-
putes the possible intersection multiplicities of putative factors of gk. We shall
completely factorize gk(x, y, z) for k = 2i and k = 6 in section 5, and there we
will reprove Segre’s theorems on these values. In sections 6, 7, 8, we will use
Bezout’s theorem to prove the main theorem in parts. The result of section 6,
the case k ≡ 2 (mod 4), was already proved by Segre and Bartocci [12].

2 Background

The set D(k) being a hyperoval in PG(2, q) is equivalent to the determinant

det





1 1 1
x y z
xk yk zk





being nonzero for all distinct x, y, z ∈ GF (q). Divide the determinant by (x +
y)(x + z)(y + z) and call the resulting polynomial gk(x, y, z). In other words,
we define a binary polynomial gk(x, y, z) by

gk(x, y, z) :=
xyk + yxk + xzk + zxk + yzk + zyk

(x+ y)(x+ z)(y + z)
.

Our main theorem rests on the following, which is also used by Segre and Bar-
tocci.

Theorem 2.1. If the polynomial gk(x, y, z) is absolutely irreducible over GF (2),
or has an absolutely irreducible factor defined over GF (2), then D(k) is a hy-
peroval in PG(2, q) for only a finite number of values of q.

Proof. A form of the Weil bound due to W. Schmidt [13] on the number of ratio-
nal points on curves over finite fields shows that one can weaken the hypothesis
of nonsingularity of a curve f(x, y) over GF (q) to absolute irreducibility, and
still obtain a bound essentially the same as that of Weil.

If the polynomial gk(x, y, z) of degree k − 2 is absolutely irreducible over
GF (2), then applying this form of Weil’s theorem shows that the number Ne of
(projective) rational points (x, y, z) on gk(x, y, z) where x, y, z ∈ GF (2e) satisfies

|Ne − 2e| < (k − 3)(k − 4)2e/2 + (k − 2)2 (1)

for every e. Once we show that the number of such rational points where some of
the coordinates are equal is at most 3k− 2, it will follow that there are rational
points over GF (2e) with x, y, z distinct for all e sufficiently large. Should it
happen that gk(x, y, z) is not absolutely irreducible over GF (2) but has an
absolutely irreducible factor defined over GF (2), apply the same argument to
this factor.
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To this end we let p(x, y, V ) = gk(x, y, x+V ), and note that projective points
(x, y, z) on gk(x, y, z) with x = z are in 1 − 1 correspondence with projective
points (x, y, 0) on p(x, y, V ). A simple computation (using the fact that k is
even) shows that

p(x, y, 0) =
xk + yk

(x+ y)2
.

Again we let q(x,W ) = p(x, x+W, 0), and note that projective points (x, y, z)
on gk(x, y, z) with x = z 6= y are in 1−1 correspondence with affine points (x, 1)
on q(x,W ). Since q(x, 1) = xk + (x + 1)k, there are at most k − 1 projective
points (x, y, z) on gk(x, y, z) with x = z 6= y. A similar argument holds for
points (x, y, z) with x = y 6= z and y = z 6= x. Counting the projective point
(1, 1, 1) we get that there are at most 3k−2 rational points (x, y, z) on gk(x, y, z)
with x, y, z not all distinct.

Remark: From the form of the Weil bound in (1), we can actually compute
the value of e, say e0, for which Ne > 3k − 2 for all e ≥ e0.

Armed with this theorem, our task now is to demonstrate the absolute irre-
ducibility of the polynomials gk(x, y, z) over GF (2). This is how we shall prove
the results of this paper.

Bearing in mind Segre’s results, gk(x, y, z) cannot be absolutely irreducible
when k = 2i or k = 6.

Segre and Bartocci made the following conjecture (we are paraphrasing here).

Conjecture: gk(x, y, z) has an absolutely irreducible factor over F2 for every
even k except k = 2i and k = 6.

We shall prove this conjecture in this paper. By Theorem 2.1 this is enough
to prove our main theorem, Theorem 1.1.

3 Singular Points

It will be shown shortly that we are allowed to work with the affine parts of the
homogeneous polynomials fk(x, y, z) and gk(x, y, z). There will be no confusion
if we use the same names, and so

fk(x, y) := xyk + yxk + xk + yk + x+ y

gk(x, y) :=
fk(x, y)

(x+ y)(x+ 1)(y + 1)
, (2)

and we consider the algebraic curves defined by these polynomials over the
algebraic closure of GF (2). Of course, gk(x, y, z) is absolutely irreducible if and
only if gk(x, y) is absolutely irreducible.

For a polynomial h and a point P = (α, β), write

h(x+ α, y + β) = H0(x, y) +H1(x, y) +H2(x, y) + · · ·

4



where each Hi(x, y) is 0 or homogeneous of degree i. If m is the smallest integer
such that Hm 6= 0 but Hi = 0 for i < m, then m is called the multiplicity of h
at P , and is denoted by mP (h). In particular, P is on the curve associated to
h if and only if mP (h) ≥ 1. Also, by definition, P is a singular point of h if and
only if mP (h) ≥ 2. The m linear factors of Hm are the tangent lines to h(x, y)
at P . The collection of tangent lines is called the tangent cone.

The singular points can be found by equating the first partial derivatives to
zero. We easily calculate (k is even)

∂fk
∂x

(x, y) = yk + 1,
∂fk
∂y

(x, y) = xk + 1.

Hence if P = (α, β) is a singular point of fk(x, y), then α and β are k-th roots
of unity. Write k = 2iℓ where ℓ is odd and i ≥ 1. Then α and β are ℓ-th roots
of unity, This proves

Lemma 3.1. P = (α, β) is a singular point of fk if and only if αℓ = βℓ = 1.

It follows that fk(x, y) has ℓ
2 singular points. It is easy to check that there

are no singular points at infinity — the three partial derivatives of fk(x, y, z)
are xk + yk, xk + zk, yk + zk, and if these all vanish and z = 0 then x = y = 0
which is impossible. This proves

Lemma 3.2. fk(x, y, z) has no singular points at infinity.

Next we pin down the multiplicities of these singular points P = (α, β) on
fk(x, y), and how things change for gk(x, y). We compute that

fk(x+ α, y + β) =

k
∑

j=1

(

k

j

)

(

α−jxjy + β−jyjx+ (β + 1)α−jxj + (α+ 1)β−jyj
)

= F0 + F1(x, y) + F2(x, y) + · · · (3)

using αk = 1 = βk. Since
(

k
j

)

is even for 1 ≤ j < 2i and odd for j = 2i, and

even for j = 2i + 1, we see that all singular points of fk(x, y) have multiplicity
2i, except (1, 1) which has multiplicity 2i + 1. This claim follows from

F0 = α2iℓ(β + 1) + β2iℓ(α+ 1) + α+ β,

F1(x, y) = α2iℓy + β2iℓx+ x+ y,

F2i(x, y) = (β + 1)α−2ix2i + (α + 1)β−2iy2
i

,

F2i+1(x, y) = α−jx2iy + β−jy2
i

x. (4)

We classify the points into three types:

(I) P = (1, 1).

(II) Either α = 1 or β = 1 or α = β.

(III) α 6= β and α 6= 1 6= β.
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Remark 3.1. If ℓ = 1 and i > 1 the only singular point is (1, 1).

Defining w(x, y) := (x+ y)(x+1)(y+1) we note the following multiplicities
on w: mP (w) = 3 if P = (1, 1) (Type I), mP (w) = 1 if P has Type II, and
mP (w) = 0 for all other singular points P = (α, β) of Type III. At long last we
arrive at the multiplicities for gk(x, y).

Type Number of Points mP (fk) mP (gk)
I 1 2i + 1 2i − 2
II 3(ℓ− 1) 2i 2i − 1
III (ℓ− 1)(ℓ− 2) 2i 2i

There are 3(ℓ−1) points of multiplicity 2i−1, and so there are (ℓ−1)(ℓ−2)
singular points of multiplicity 2i on gk(x, y).

Let u and v be projective plane curves over GF (2); we assume that u and
v have no common component. The intersection multiplicity I(P, u, v) of u
and v at P is the unique nonnegative integer satisfying and determined by the
seven properties listed on pages 74–75 of [1]. For our purposes there are two
important properties. One is that I(P, u, v) 6= 0 if and only if both mP (u) and
mP (v) are ≥ 1. Another important property is that I(P, u, v) ≥ mP (u)mP (v),
with equality occurring if and only if u and v do not have a common tangent at
P (their tangent cones are disjoint).

We will use the following theorem from classical algebraic geometry, whose
proof can be found in [1].

Theorem 3.3 (Bezout’s Theorem). Let u and v be projective plane curves with
no common component. Then

∑

P

I(P, u, v) = (deg u)(deg v).

Our method of proving absolute irreducibility will be to assume that gk(x, y, z)
is reducible, say gk(x, y, z) = u(x, y, z)v(x, y, z), and obtain a contradiction by
applying Bezout’s theorem to the curves u and v. If a point P has I(P, u, v) 6= 0,
then mP (gk) = mP (u) +mP (v) ≥ 2, and so P is a singular point of gk(x, y, z).
We have seen that the projective curves gk(x, y, z) have no singular points at
infinity. Therefore, since the only points P that give a nonzero contribution to
the sum in Bezout’s theorem are singular points of gk(x, y, z), we may just work
with the affine part of gk(x, y, z).

4 Homogeneous Components and Intersection

Multiplicity

The following result is clear, because we are in characteristic 2.

Lemma 4.1. F2i = (σx + τy)2
i

where σ = (α2i(ℓ−1)(β + 1))1/2
i

and τ =

(β2i(ℓ−1)(α+ 1))1/2
i

6



Lemma 4.2. F2i+1 consists of 2i + 1 different linear factors.

Proof. Consider h(x) = F2i+1(x, 1) = α2i(ℓ−1)x2i + β2i(ℓ−1)x. If h(x) has a

repeated root at a then h′(a) = 0. Consider the derivative h′(x) = β2i(ℓ−1)

which is never zero and therefore there are no repeated factors in F2i+1.

Next we make a crucial observation for our proofs. For the rest of this paper,
we let L = σx + τy, so that F2i = L2i . Suppose gk(x, y) = u(x, y)v(x, y), and
suppose that the Taylor expansion at a singular point P = (α, β) is

u(x+ α, y + β) = Lr1 + u1, v(x+ α, y + β) = Lr2 + v2

where wlog r1 ≤ r2. Then F2i+1 = Lr1(v1 + Lr2−r1u1). From Lemma 4.2 we
deduce that:

Lemma 4.3. With the notation of the previous paragraph,

(i) Either r1 = 1 or r1 = 0.

(ii) If r1 = 1 then gcd(L, v1 + Lr2−r1u1) = 1.

We next make two quick remarks to aid us in moving between fk(x, y) and
gk(x, y). Recall the notation of section 3, and suppose that P = (α, β) 6= (1, 1)
is a singular point of gk(x, y) such that F2i(x, y) 6= 0 at P . To apply Proposition
2 to gk we need to know the greatest common divisor (Gm(x, y), Gm+1(x, y))
where m = mP (gt). This can be found from (F2i(x, y), F2i+1(x, y)) as follows.

Again letting w(x, y) = (x+ y)(x + 1)(y + 1), we have

fk(x+ α, y + β) = w(x + α, y + β)gk(x+ α, y + β),

and so

F2i(x, y)+F2i+1(x, y)+· · · = (W0+W1(x, y)+· · · )(Gm(x, y)+Gm+1(x, y)+· · · ).

where polynomials with subscript i are 0 or homogeneous of degree i.

Remark 4.1. Here we assume W0 6= 0 which is equivalent to saying that P is a
Type III point, and m = 2i. Multiplying out and using (2) gives

F2i = W0G2i = (σx+ τy)2
i

F2i+1 = W0G2i+1 +W1G2i , (5)

where σ2i = (β+1)α−2i and τ2
i

= (α+1)β−2i . It follows from these equations
that (F2i , F2i+1) = (G2i , G2i+1).

Remark 4.2. Here we assume W0 = 0 which is equivalent to saying P is a Type
II point, and m = 2i − 1. As in Remark 4.1 we get

F2i = W1G2i−1 = (σx + τy)2
i

F2i+1 = W1G2i +W2G2i−1. (6)

It is clear that (up to scalars) W1 = σx+ τy, and so (F2i , F2i+1) = σx+ τy be-
cause F2i+1(x, y) has distinct linear factors (Lemma 4.2). Hence (G2i−1, G2i) =
1.
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The next result will help us to compute intersection multiplicities.

Proposition 4.4. Let h(x, y) be an affine curve. Write h(x + α, y + β) =
Hm + Hm+1 + · · · where P = (α, β) is a point on h(x, y) of multiplicity m.
Suppose that Hm and Hm+1 are relatively prime, and that there is only one
tangent direction at P . If h = uv is reducible, then I(P, u, v) = 0.

Proof. See [6]

4.1 Type I

We upper bound the intersection multiplicity at the Type I point.

Lemma 4.5. If gk(x, y) = u(x, y)v(x, y) and P = (1, 1) then I(P, u, v) ≤
(2i−1 − 1)2.

Proof. Let P be of Type I. We know that mP (gk) = 2i − 2 = mP (u) +mP (v).
From Lemma 4.2 we know that F2i+1 has 2i + 1 different linear factors. Thus,
I(P, u, v) = mp(u)mp(v). This quantity is maximized when mP (u) = mP (v)
and in this case mp(u)mp(v) = (2i−1 − 1)2.

4.2 Type II

We show that intersection multiplicities at Type II points are 0, so these points
may be disregarded.

Lemma 4.6. If gk(x, y) = u(x, y)v(x, y) and P = (α, β) is a point of type (II)
then I(P, u, v) = 0.

Proof. There are three kinds of Type (II) point.

• If P = (α, 1) then F2i = (α + 1)y2
i

. Hence gcd(F2i , F2i+1) = y and
therefore gcd(G2i−1, G2i) = 1 by Remark 4.2. The proof concludes using
Proposition 4.4.

• If P = (1, β) use the same argument with gcd(F2i , F2i+1) = x.

• If P = (α, α) use the same argument with gcd(F2i , F2i+1) = x+ y.

4.3 Type III

We show that there are two possibilites for the intersection multiplicity at a
Type III point.

Lemma 4.7. Let k = 2iℓ where ℓ is odd. If gk(x, y) = u(x, y)v(x, y) and
P = (α, β) is a point of type (III) then either I(P, u, v) = 2i or I(P, u, v) = 0.

8



Proof. Assume gk(x, y) = u(x, y)v(x, y). Since P is not in w(x, y) = (x+1)(y+
1)(x + y) by Lemma 4.3 we know that mP (u) is either 1 or 0. If mP (u) = 0
then I(P, u, v) = 0. If mP (u) = 1 we proceed as follows.

Let L(x, y) = σx+ τy and suppose we have the following Taylor expansions
at P :

u(x+ α, y + β) = L(x, y) + U2(x, y) + · · ·

v(x+ α, y + β) = L(x, y)2
i−1 + V2i(x, y) + · · ·

It follows that

u(x+α, y+β)L(x, y)2
i−2+v(x+α, y+β) = L(x, y)2

i−2U2(x, y)+V2i(x, y)+· · · .

By definition of intersection multiplicity we have

I(P, u, v) = I(0, u(x+ α, y + β), u(x + α, y + β)L(x, y)2
i−2 + v(x+ α, y + β))

so we compute the righthand side. Notice that L(x, y) ∤ L(x, y)2
i−2U2(x, y) +

V2i(x, y) because L(x, y)(L(x, y)
2i−2U2(x, y)+V2i(x,y)) = G2i+1(x, y) andG2i+1(x, y)

may contain L(x, y) at most one time. Therefore, u(x + α, y + β) and u(x +

α, y + β)L2i−2 + v(x+ α, y + β) have different tangent cones. It follows from a
property of I(P, u(x, y), v(x, y)) that

I(0, u(x+ α, y + β), u(x+ α, y + β)L2i−2 + v(x+ α, y + β)) =

m0(u(x+ α, y + β))m0(u(x+ α, y + β)L2i−2 + v(x + α, y + β)) = 2i.

5 Segre Revisited.

In this section we study the polynomials gk(x, y) when k = 2i and k = 6. First
let us examine k = 2i.

fk(x + 1, y + 1) = (x+ 1)2
i

y + (y + 1)2
i

x+ x+ y

= x2iy + y2
i

x
= xy

∏

γ∈GF (2i)∗(x+ γy). (7)

Replace x by x+ 1, y by y + 1, and divide by (x+ y)(x+ 1)(y + 1) to get

Theorem 5.1. When k = 2i we have the following factorization,

gk(x, y) =
∏

γ∈GF (2i)\{0,1}

(x + γy + γ + 1).

Corollary 5.2 (Segre). When k = 2i the set D(k) is a hyperoval in PG(2, 2e)
if and only if (i, e) = 1.
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Proof. We have to show that gk(x, y) has the necessary rational points over
GF (2e) if and only if (i, e) > 1.

Suppose that i and e are relatively prime and that there exists a, b ∈ GF (2e)
with a 6= b, a 6= 1, b 6= 1 such that gk(a, b) = 0. By the factorization above,
there exists γ ∈ GF (2i)\{0, 1} such that a + γb + γ + 1 = 0. But this implies
γ = (a+ 1)/(b+ 1) ∈ GF (2i) ∩GF (2e) = GF (2), a contradiction.

Conversely suppose (i, e) > 1, and choose a, b distinct in GF (2i) ∩ GF (2e)
but not in GF (2). Letting γ = (a + 1)/(b + 1) shows that gk(a, b) = 0, again
using the factorization.

We remark that P = (1, 1) is the only singular point in this case, and it has
multiplicity 2i − 2.

Next we consider k = 6. Here

g6(x, y) = y4+y3(1+x)+y2(1+x+x2)+y(1+x+x2+x3)+1+x+x2+x3+x4.

It is easy to show that g6 must be absolutely irreducible, or must factor over
GF (4) into absolutely irreducible factors. If GF (4) = {0, 1, ω, ω2}, then in fact
g6 = AB where

A(x, y) = 1 + ωx+ x2 + (ω + ωx)y + y2

and its conjugate

B(x, y) = 1 + ω2x+ x2 + (ω2 + ω2x)y + y2.

We have proved:

Theorem 5.3. When k = 6 we have the factorization gk(x, y) = A(x, y)B(x, y),
where A(x, y) and B(x, y) are absolutely irreducible and are given above.

Corollary 5.4 (Segre). When k = 6 the set D(k) is a hyperoval in PG(2, 2e)
if and only if (2, e) = 1.

Proof. We have to show that g6(x, y) has the necessary rational points over
GF (2e) if and only if e is even.

If e is even, then g6(ω
2, ω) = 0. Done.

Suppose now that e > 1 is any odd integer. We claim that A(x, y) and
B(x, y) have no rational points over GF (2e). For suppose that A(a, b) = 0
where a, b ∈ GF (2e). Visibly we can assume (a, b) 6= (0, 0). Then

b2 + bω + abω + a2 + aω + 1 = 0,

and provided a + b + ab 6= 0 this implies ω = (a + b + 1)2/(a + b + ab) ∈
GF (4)∩GF (2e), which is a contradiction. But if a+ b+ab = 0 then a+ b+1 =
0 ⇒ ab = 1 ⇒ 1 + b−1 + b = 0 ⇒ 1 + b+ b2 = 0 which is impossible. Similarly
for B(x, y).

Of course, these results can be proved in other ways.
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6 The case k ≡ 2 (mod 4)

This case occurs when k = 2ℓ.

Theorem 6.1. If k ≡ 2 (mod 4) and k > 6 then gk(x, y) is absolutely irre-
ducible.

Proof. Assume that gk(x, y) = u(x, y)v(x, y). Let P = (α, β) be a singular
point, depending of its type we have that:

• If P = (1, 1) then mp(gk) = 0, so I(P, u, v) = 0.

• If P is a point of type II from Lemma 4.6 we know that I(P, u, v) = 0.

• Suppose P = (α, β) has Type III. We want to apply Proposition 4.4 to
gk(x+ α, y + β) = F2 + F3 + · · · where

F2 = α2(ℓ−1)(β + 1)x2 + β2(ℓ−1)(α+ 1)y2.

F3 = α2(ℓ−1)x2y + β2(ℓ−1)y2x = xy(α2(ℓ−1)x+ β2(ℓ−1)y).

We clearly have that gcd(xy, F2) = 1. If gcd(α2(ℓ−1)x + β2(ℓ−1)y, F2) = 1
then by Proposition 4.4 we have I(P, u, v) = 0. The only way that this
gcd 6= 1 is that α2(ℓ−1)x + β2(ℓ−1)y | F2, and this occurs if α4(ℓ−1) =
α2(ℓ−1)(β + 1) and β4(ℓ−1) = β2(ℓ−1)(α + 1). Equivalently, 1 = α2(β + 1)
and 1 = β2(α+1). Adding both equations we get α+β = αβ, multiplying
then we get 1 = α2β2(αβ + α + β + 1). Substituting α + β = αβ in
1 = α2β2(αβ + α + β + 1) we get α2β2 = 1 which implies αβ = 1. So,
gcd = 1 unless αβ = 1 and α+ β = 1.

Suppose we have a point P with αβ = 1 and α + β = 1. Then α and
β are roots of x2 + x + 1, and so they lie in GF (4). This means there
can be at most two such points. By Lemma 4.7, at those points P we
have I(P, u, v) = 0 or 2, and therefore

∑

P I(P, u, v) = 0 or 2 or 4. But if
k ≡ 2 (mod 4) and k > 6 then gk has degree at least 8, so it is impossible
that (deg u)(deg v) ≤ 4. Thus we get a contradiction to Bezout’s theorem.

Note that the proof fails when k = 6, as it should, because
∑

P I(P, u, v) = 4
and the two factors of g6 have degree 2.

7 The case gk(x, y) irreducible over F2

Here is a well known result.
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Lemma 7.1. Suppose that p(x) ∈ Fq[x1, . . . , xn] is of degree t and is irreducible
in Fq[x1, . . . , xn]. There there exists r | t and an absolutely irreducible polyno-
mial h(x) ∈ Fqr [x1, . . . , xn] of degree

t
r such that

p(x) = c
∏

σ∈G

σ(h(x)),

where G = Gal(Fqr/Fq) and c ∈ Fq. Furthermore if p(x) is homogeneous, then
so is h(x).

Remark 7.1. Notice that if u(x, y) =
∑

ai,jx
iyj then σ(u(x, y)) =

∑

σ(ai,j)x
iyj

where σ ∈ G is the Frobenius map (or a power of it). Therefore, u and σ(u)
have the same monomials and only differ in some coefficients. This means that
both u and σ(u) have the same degree.

Theorem 7.2. If gk(x, y) is irreducible over F2 then gk(x, y) is absolutely irre-
ducible for every k but k = 6 and k = 2i.

Proof. Suppose not, then gk(x, y) = u(x, y)v(x, y). Using Remark 7.1 we have
that deg(u) = deg(v) = 2i−1ℓ− 1 . We apply Bezout’s Theorem to u and v:

∑

P∈Sin(g)

I(P, u, v) = deg(u)deg(v) = (2i−1ℓ− 1)2. (8)

We can bound the left hand side as follows,
∑

P∈Sing(gk)

I(P, u, v) =
∑

P∈I

I(P, u, v) +
∑

P∈II

I(P, u, v) +
∑

P∈III

I(P, u, v) (9)

≤ (2i−1 − 1)2 + 2i(l − 1)(l − 2). (10)

We have that (8)≤(10) by Bezout’s Theorem, so if we prove that (8)>(10) we
get a contradiction. The inequality (8)>(10) is

22i−2ℓ2 − 2iℓ+ 1 > 2iℓ2 − 2i(3ℓ) + 2i + 22i−2 + 1

(22i−2 − 2i)ℓ2 + 2i+1ℓ− 2i − 22i−2 > 0

(22i−2 − 2i)(ℓ2 − 1) + 2i+1(ℓ − 1) > 0.

The question now is when the left-hand side is positive. Clearly when ℓ = 1
it is not positive. If ℓ > 1 and (22i−2 − 2i) ≥ 0 then it is clearly positive. If
(22i−2 − 2i) < 0 then it could be positive or negative. Clearly (22i−2 − 2i) < 0
when i = 0 or i = 1.

If i = 0, we have the inequality 3
4ℓ

2 − 2ℓ + 5
4 < 0. The solutions of the

equation 3
4ℓ

2 − 2ℓ + 5
4 = 0 are 1 and 5/3. Thus for i = 0 and ℓ > 1 the

polynomial gk(x, y) is absolutely irreducible over F2.
If i = 1 the possible ℓ for which the latter equation is not positive are those

solutions of the equation:

−ℓ2 + 1 + 4ℓ− 3 = −ℓ2 + 4ℓ− 3 = 0.

The possible solutions are ℓ = 1 or ℓ = 3. Hence, we conclude that except for
k = 6 (i = 1 and ℓ = 3) and k = 2i (ℓ = 1) the polynomial gk(x, y) is absolutely
irreducible over F2.
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8 Case gk(x, y) not irreducible over F2

Suppose gk = f1 · · · fr is the factorization into irreducible factors over F2. Let
fj = fj,1 · · · fj,nj

be the factorization of fj into nj absolutely irreducible factors.
Each fj,s has degree deg(fj)/nj .

Lemma 8.1. If P is a point of type III then one of the following holds:

1. mP (fj,s) = 0 for all j ∈ {1, . . . , r} and s ∈ {1, . . . , nj} except for a pair
(j1, s1) with mP (fj1,s1) = 2i.

2. mP (fj,s) = 0 for all j ∈ {1, . . . , r} and s ∈ {1, . . . , nj} except for two pair
(j1, s1) and (j2, s2) with mP (fj1,s1) = 1 and mP (fj2,s2) = 2i − 1.

Proof. This is a consequence of Lemma 4.1 and Lemma 4.3. Consider u = fa,b
and v =

∏

j 6=a,s6=b fj,s from Lemma 4.3 we know that mP (fa,b) is either 0 or 1

or 2i − 1 or 2i (resp mp(v) is either 2
i or 2i − 1 or 1 or 0). But this is true for

any pair (a, b).
Clearly no two components fa,b and fa′,b′ has multiplicity greater than or

equal to 2i − 1 because the total multiplicity mP (gk) = 2i. And there are
no two components fa,b and fa′,b′ with multiplicity equal to 1, because then

u = fa,bfa′,b′ has L two times in the tangent cone and v = g/u has L2i−2

in the
tangent cone which is impossible. Hence the only possibilities are:

(i) There exists (a, b) with mP (fa,b) = 2i, and mP (fj,s) = 0 for (j, s) 6= (a, b).

(ii) There exist (a, b) and (a′, b′) with mP (fa,b) = 1 and mP (fa′,b′) = 2i − 1,
and mP (fj,s) = 0 for (j, s) 6= (a, b) , (j, s) 6= (a′, b′).

Lemma 8.2. If P is a point of type I, then for any two components fa,b and
fa′,b′ we have that I(P, fa,b, fa′,b′) = mP (fa,b)mP (fa′,b′).

Proof. From Lemma 4.2 the tangent cones of fa,b and fa′,b′ has no common
factors.

Lemma 8.3. If P is a point of type II, then for any two components fa,b and
fa′,b′ we have that I(P, fa,b, fa′,b′) = 0.

Proof. Consider u = fa,b and v = gm/u. From Lemma 4.6 we know that
I(P, u, v) = 0 =

∑

(j,s) 6=(a,b) I(P, u, fj,s), then I(P, fa,b, fa′,b′) = 0.

Lemma 8.4. Let P is a point of type III and gk(x, y) =
∏r

j=1

∏nj

s=1 fj,s. The
intersection multiplicity I(P, fa,b, fa′,b′) of any two components fa,b and fa′,b′ is
either 0 or 2i.

Proof. Consider u = fa,b and v = gm/u. From Lemma 4.6 we know that
either I(P, u, v) = 0 =

∑

(j,s) 6=(a,b) I(P, u, fj,s), then I(P, fa,b, fa′,b′) = 0 or

I(P, u, v) = 2i =
∑

(j,s) 6=(a,b) I(P, u, fj,s) using Lemma 8.1 we have that there

exits (a′, b′) with I(P, fa,b, fa′,b′) = 2i.
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We need some more technical results for the main theorem, which give us
some upper bounds.

Lemma 8.5.

(i) If gk(x, y) does not have an absolutely irreducible factor over F2, then,

r
∑

j=1

deg(fj)
2/nj < deg(gk)

2/2. (11)

(ii)

r
∑

j=1

∑

1≤i<s≤nj

∑

P∈Sing(gk)
P 6=(1,1)

I(P, fj,i, fj,s) +
∑

1≤j<l≤r

∑

1≤i≤nj

1≤s≤nl

∑

P∈Sing(gk)
P 6=(1,1)

I(P, fj,i, fl,s)

≤ 2i(ℓ− 1)(ℓ− 2)

(iii)

r
∑

j=1

∑

1≤i<s≤nj

∑

P=(1,1)

I(P, fj,i, fj,s) +
∑

1≤j<l≤r

∑

1≤i≤nj

1≤s≤nl

∑

P=(1,1)

I(P, fj,i, fl,s))

≤ (2i−1 − 1)(2i − 3)

Proof. (i)

r
∑

j=1

deg(fj)
2/nj ≤

r
∑

j=1

deg(fj)
2/2 = 1/2(deg(f1)

2+· · ·+deg(fr)
2) ≤ 1/2deg(gk)

2

(ii) From Lemma 8.3 we know that if P is a point of type II then I(P, fj,i, fl,s) =
0 for every j, l ∈ {1, . . . , r} and 1 ≤ i ≤ nj ,1 ≤ s ≤ nl. From Lemma 8.4
we now that for each point P of type III there is at most two components
fa,b and fa′,b′ for which I(P, fa,b, fa′,b′) = 2i and zero otherwise. Taking
into account that there are (ℓ − 1)(ℓ − 2) points of type III we get the
result.

(iii) From Lemma 8.2 we have that if P is a point of type I, then for any two
components fa,b and fa′,b′ we have I(P, fa,b, fa′,b′) = mP (fa,b)mP (fa′,b′).
Hence we have to prove the following,

r
∑

j=1

∑

1≤i<s≤nj

mP (fj,i)mP (fj,s) +
∑

1≤j<l≤r

∑

1≤i≤nj

1≤s≤nl

mP (fj,i)mP (fj,s)

≤ (2i−1 − 1)(2i − 3).
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Notice that the left hand side is a maximum when mP (fj,s) = 1 for every
j ∈ {1, . . . , r} , s ∈ {1, . . . , nj}. The latter equation is

r
∑

j=1

∑

1≤i<s≤nj

mP (fj,i)mP (fj,s) +
∑

1≤j<l≤r

∑

1≤i≤nj

1≤s≤nl

mP (fj,i)mP (fj,s)

≤
r

∑

j=1

∑

1≤i<s≤nj

1 +
∑

1≤j<l≤r

∑

1≤i≤nj

1≤s≤nl

1

=

(

2i − 2

2

)

= (2i − 2)(2i − 3)/2 = (2i−1 − 1)(2i − 3).

Finally, here is our main result.

Theorem 8.6. gk(x, y) always has an absolutely irreducible factor over F2.

Proof. We apply Bezout’s Theorem one more time to the product

f1f2 . . . fr = (f1,1 . . . f1,n1
)(f2,1 . . . f2,n2

) . . . (fr,1 . . . fr,nr
).

The sum of the intersection multiplicities can be written

r
∑

j=1

∑

1≤i<s≤nj

∑

P∈Sing(gk)

I(P, fj,i, fj,s) +
∑

1≤j<l≤r

∑

1≤i≤nj

1≤s≤nl

∑

P∈Sing(gk)

I(P, fj,i, fl,s)

where the first term is for factors within each fj , and the second term is for cross
factors between fj and fl. Using Lemma 8.5, part (ii) and (iii), the previous
sums can be bounded by

≤ (2i−1 − 1)(2i − 3) + 2i(l − 1)(l − 2). (12)

On the other hand, the right-hand side of Bezout’s Theorem is

r
∑

j=1

∑

1≤i<s≤nj

deg(fj,i) deg(fj,s) +
∑

1≤j<l≤r

∑

1≤i≤nj

1≤s≤nl

deg(fj,i) deg(fl,s). (13)

Since each fj,s has the same degree for all s, the first term is equal to

r
∑

j=1

deg(fj)
2 nj − 1

2nj
=

1

2

r
∑

j=1

deg(fj)
2 −

1

2

r
∑

j=1

deg(fj)
2

nj
.
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Note that

(deg(gk))
2 =

( r
∑

j=1

deg(fj)

)2

=

r
∑

j=1

deg(fj)
2 + 2

(

∑

1≤j<l≤r

deg(fj) deg(fl)

)

=
r

∑

j=1

deg(fj)
2 + 2

∑

1≤j<l≤r

( nj
∑

s=1

deg(fj,s)

)( nl
∑

i=1

deg(fl,i)

)

=

r
∑

j=1

deg(fj)
2 + 2

∑

1≤j<l≤r

∑

1≤i≤nj

1≤s≤nl

deg(fj,i) deg(fl,s).

Substituting both of these into (13) shows that (13) is equal to

1

2

(

deg(gk)
2 −

r
∑

j=1

deg(fj)
2

nj

)

. (14)

Using (11) we get

1

2

(

deg(gk)
2−

r
∑

j=1

deg(fj)
2

nj

)

>
1

2

(

deg(gk)
2−deg(gk)

2/2

)

= deg(gk)
2/4. (15)

Comparing (15) and (12), so far we have shown that Bezout’s Theorem
implies the following inequality:

deg(gk)
2/4 ≤ (2i−1 − 1)(2i − 3) + 2i(ℓ− 1)(ℓ− 2).

Let us now show that the opposite is true, to get a contradiction. Suppose

deg(gk)
2/4 > (2i−1 − 1)(2i − 3) + 2i(ℓ− 1)(ℓ− 2).

Then
(22i−2ℓ2 − 2iℓ+ 1) > (2i−1 − 1)(2i − 3) + 2i(ℓ2 − 3ℓ+ 2).

22i−2(ℓ2 − 2) > 2iℓ2 − 22iℓ− 2i−1.

22i−2(ℓ2 − 2) > 2i(ℓ2 − 2ℓ+ 1)− 32i−1.

22i−2(ℓ2 − 2) > 2i(ℓ − 1)2 − 32i−1.

If ℓ > 1: the latter equation is equivalent to 2i−2 > (ℓ−1)2

(ℓ2−2)−
3

2(ℓ2−2) . One can

easily see that for ℓ > 1 we have that (ℓ−1)2 < (ℓ2−2). Thus, (ℓ−1)2

(ℓ2−2)−
3

2(ℓ2−2) <
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1 and 2i−2 ≥ 1 iff i ≥ 2. Only left to study cases i = 1. If i = 1 we apply
Theorem 6.1.

If ℓ = 1: −22i−2 > −32i−1 ⇔ 2i−2 < 3/2. For i ≥ 3 this is clearly not true.
So the only doubts arise for i = 1, 2. If i = 1, 1/2 < 3/2, and if i = 2 1 < 3/2,
therefore when ℓ = 1 and i ≥ 1 we do not have a contradiction.
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