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Abstract

We give the parameters of any evaluation code on a smooth quadric surface. For hyperbolic

quadrics the approach uses elementary results on product codes and the parameters of codes on

elliptic quadrics are obtained by detecting a BCH structure on these codes and using the BCH

bound. The elliptic quadric is a twist of the surface P
1
×P

1 and we detect a similar BCH structure

on twists of the Segre embedding of a product of any d copies of the projective line.
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Introduction

The parameters of evaluation codes on quadric surfaces have been studied by Aubry (who also considered
higher dimensional quadrics) in [1] and by Edoukou in [4]. Most of the results on the topic concern the
evaluation of forms of degree one or two. The reason of this restriction is that the estimate of the
minimum distance of such codes by geometric methods becomes harder when the degree increases.

In this article, we give the parameters of all evaluation codes on smooth quadric surfaces. The
approach is not based on point counting but on the detection of a particular structure on the codes.
Namely, we prove that codes on hyperbolic quadrics are tensor products of two extended Reed–Solomon
codes and that codes on elliptic quadrics are extensions of some BCH codes studied by Pellikaan and the
second author in [3]. A nice consequence of these results is that they solve a point counting problem which
was not proved up to now. It should be underlined that usually, one tries to estimate the parameters
of an Algebraic Geometry code by solving some equivalent geometric problem. In the present paper we
proceed in the opposite direction. Namely, we are able to solve open geometric problems using known
coding theoretic results.

Basically, studying codes on hyperbolic and elliptic quadrics reduces to study codes on P1 ×P1 and
a twist of it. This approach has a natural generalisation to products of d ≥ 2 copies of P1 yielding
naturally tensor products of d extended Reed–Solomon codes and their twists yielding extended BCH
codes of length qd + 1. In particular, this construction gives a geometric realisation of a large class of
BCH codes as evaluation codes and without using a subfield subcode operation.

The paper is organised as follows. The prerequisites on evaluation codes, twists and quadric surfaces
are given in Section 1. Evaluation codes on hyperbolic quadric surfaces are considered in Section 2 and
codes on elliptic quadrics are treated in Section 3. The higher dimensional case is studied in Section 4.
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†University of Illinois at Urbana-Champaign – Department of Mathematics
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1 Prerequisites

1.1 Evaluation codes

Consider the projective space Pr
Fq

with its coordinate ring Fq[x0, . . . , xr]. For an integer s, denote by

Fr(s) the space of homogeneous forms of degree s in r + 1 variables, i.e. the space H0(Pr,OPr (s)).
Given f ∈ Fr(s) and P a point of Pr, we define the evaluation of f at P as f(P ) := f(p0, . . . , pr), where
(p0 : . . . : pr) is the system of homogeneous coordinates of P such that the first nonzero coordinate
starting from the left is set to 1, i.e. is of the form (0 : . . . : 0 : 1 : pi : . . . : pr).

Definition 1.1. Let X ⊂ Pr be a smooth projective variety over Fq. The evaluation code CX(s) is
defined as the image of the evaluation map

ev :

{

Fr(s) −→ Fn
q

f 7−→ (f(P1), . . . , f(Pn))
,

where P1, . . . , Pn are the Fq–points of X .

If we denote by IX(s) the degree s part of the homogeneous ideal IX ⊂ Fq[x0, . . . , xr ] associated to X ,
then the above map ev obviously factors as ev : Fr(s)/IX(s) −→ Fn

q .
The codes CX(s) for X = Pr are the projective Reed-Muller codes PCs(r, q) whose parameters were

obtained by Sørensen [12, Theorem 1]. In this paper, we first consider the case that X ⊂ P3 is a smooth
quadric. The case of a hyperbolic quadric corresponds to the Segre embedding of P1 ×P1 in P3 and the
case of an elliptic quadric to a twist of such an embedding. We will then consider more generally the

case that X is the Segre embedding of the product P1 × · · · ×P1 →֒ P2d−1 of d copies of the projective
line, or a twist of such an embedding.

1.2 Twists

Given two varieties X and Y over a field k, one says that Y is a twist of X if the two varieties are not
isomorphic as k–varieties but are as K–varieties, where K is a finite extension of k. For instance, the
plane curves over Q defined by the homogeneous equations x2 + y2 − z2 = 0 and x2 + y2 + z2 = 0 are
Q(

√
−1)–isomorphic but not Q–isomorphic.

1.3 Smooth quadric surfaces

1.3.1 Elliptic and hyperbolic quadrics

Over a finite field Fq there exist two distinct isomorphism classes of smooth quadric surfaces, respectively
called elliptic quadrics and hyperbolic quadrics. In P3, a hyperbolic quadric is projectively equivalent to
the surface of equation

x0x3 − x1x2 = 0. (1)

Given an irreducible homogeneous polynomial Q(x, y) of degree two over Fq, then any elliptic quadric
is projectively equivalent to the surface of equation

x0x3 −Q(x1, x2) = 0. (2)

We refer the reader to [8] for further details on these surfaces.

Remark 1.2. One can easily prove that the elliptic quadric is a twist of the hyperbolic one. Let (x +
wy)(x + wqy) be the factorisation of Q over Fq2 (with w ∈ Fq2 \ Fq). The Fq2–linear automorphism of
P3

µtw : P 7−→ AP, A =









1 0 0 0
0 1 ω 0
0 1 ωq 0
0 0 0 1









. (3)

induces an Fq2–isomorphism between the elliptic and the hyperbolic quadric.

2



1.3.2 Rational parametrisation of quadrics.

Elliptic and hyperbolic quadrics are both rational. Here is a birational map from P2 to the hyperbolic
quadric defined in (1).

{

P2
99K P3

(x : y : z) 7−→ (z2 : xz : yz : xy)
. (4)

Here is a birational map from P2 to the elliptic quadric defined in (2).

{

P2
99K P3

(x : y : z) 7−→ (z2 : xz : yz : Q(x, y))
. (5)

Remark 1.3. The map (4) is regular on P2 \ {(1 : 0 : 0), (0 : 1 : 0)}. Denote by C the subvariety
H ∩ {x0 = 0}, then the image of the map (4) is (H \ C) ∪ {(0 : 0 : 0 : 1)}.
Remark 1.4. Let P be the closed point of degree 2 of P2 defined by

{P} = {z = 0} ∩ {Q(x, y) = 0},

then the map (5) is regular on P2 \ {P}. It is in particular regular at all the Fq–rational points of P
2.

Denote by C the subvariety E ∩ {x0 = 0}, then the image of the map (4) is (E \ C) ∪ {(0 : 0 : 0 : 1)}. It
is worth noting that the unique Fq–rational point of C is (0 : 0 : 0 : 1). Thus, the image of the map (5)
contains all the rational points of E .

2 Codes from hyperbolic quadrics

From now on, the hyperbolic quadric is denoted by H. It is well–known that H is isomorphic to P1×P1.
Indeed, the quadric H with equation x0x3 − x1x2 = 0 is the image of the Segre embedding (see [5,
Chapter 4 §4], [11, Chapter I §5.1]):

φs :

{

P1 ×P1 −→ P3

((u0 : v0), (u1 : v1)) 7−→ (u0u1 : u0v1 : v0u1 : v0v1)
. (6)

A homogeneous form f ∈ F3(s) pulled back by φ yields the bi-homogeneous form f(u0u1, u0v1, v0u1, v0v1)
of bi-degree (s, s). Afterwards, one sees easily that the pullback map φ⋆ induces an isomorphism
F3(s)/IH(s)

∼−→ F1(s) ⊗ F1(s), where IH(s) is the degree s part of the homogeneous ideal associ-
ated to H. Consequently, the code CH(s) is nothing but the code CP1(s) ⊗ CP1(s). The code CP1(s)
is an extended Reed–Solomon code with parameters [(q + 1), (s + 1), q − s + 1]. It is well–known that
the minimum distance of a tensor product of two codes is the product of the minimum distances. This
yields the following result.

Theorem 2.1. Let H be a hyperbolic quadric over Fq, let s be an integer such that s < q, then the code
CH(s) has parameters [(q + 1)2, (s+ 1)2, (q − s+ 1)2].

Remark 2.2. The above result is already partially proved by S.H. Hansen in [7, Example 3.2], where the
author obtains (q−s+1)2 as a lower bound for the minimum distance without proving that it is reached.

Actually, Hansen considers more general evaluation codes on H: the codes obtained by evaluating
spaces of forms whose pullback by φ are of the form F1(a)⊗F1(b). Using the above approach, one proves
easily that such codes have parameters [(q + 1)2, (a+ 1)(b+ 1), (q − a+ 1)(q − b+ 1)]. This proves that
the lower bound of Hansen is the actual minimum distance.

Remark 2.3. For s = 2, the result has been proved in [4, Theorem 6.2].

Remark 2.4. Using the structure of the Picard group of H, one can prove that any evaluation code on
H is equivalent to one of the codes described in Remark 2.2. Therefore, using Remark 2.2, we have the
exact parameters of any evaluation code on H.

Theorem 2.1 has the following geometric corollary.
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Corollary 2.5 (Maximum number of points of an (s, s)–curve). Let X be a curve obtained by the
intersection of H with a surface of degree s of P3 which does not contain H. Then, the number of
rational points of X satisfies

♯X(Fq) ≤ 2s(q + 1)− s2

and the equality holds if and only if X is a union of s lines of the form φ({a} ×P1) and s lines of the
form φ(P1 × {b}).

Proof. The upper bound comes from Theorem 2.1. Moreover, it is easy to see that the union of s rational
lines of the first ruling and s lines of the other one has 2s(q + 1)− s2 rational points.

Conversely, it is well–known that the minimum weight codewords of a tensor product of codes are
tensor products of minimum weight codewords. Thus, minimum weight codewords of CH(s) are obtained
by the evaluation of forms f whose pullback φ⋆f equals g(u0, v0)h(u1, v1), where g, h both split in
products of s distinct polynomials of degree one. Thus, the vanishing locus of f is a union of lines and
any f whose vanishing locus is not such a union has strictly less rational points in its vanishing locus on
H.

About the geometry of the minimum weight codewords of CH(s)

In Corollary 2.5, one can prove easily that if ♯X(Fq) = 2s(q + 1) − s2, then, one of the surfaces S of
degree s such that S ∩H = X is a union of s distinct planes such that each one of them is tangent to H
at some rational point. This claim generalises [4, Theorem 6.3], which treats the case s = 2.

Remark 2.6. In [4, Theorem 6.3], the author asserts that if X = H∩S, with S a quadric, has 4q rational
points, then S is either a pair of planes or another hyperbolic quadric with 4 common lines with H.
Actually, the set of quadrics S such that S ∩ H = X is a linear system of dimension 1 which always
contains a pair of planes.

3 BCH codes and codes on elliptic quadrics

From now on, the elliptic quadric is denoted by E and s denotes a positive integer. The aim of this
section is to prove that the codes CE(s) are extended BCH codes. More precisely, these codes of length
q2 + 1 (the elliptic quadric has q2 + 1 rational points, see [8, Table IV.15.4]) punctured at two positions
yield BCH codes of length q2 − 1.

3.1 The cyclic structure

The cyclic structure of the punctured codes can be explained geometrically. Indeed, the automorphism
group of the elliptic quadric contains an element fixing two rational points and shifting cyclically the
q2 − 1 other ones.

Let us describe such an automorphism. Consider the description of E given in (2) and assumemoreover
that w is a primitive element of Fq2/Fq. The multiplication by w in Fq2 provides an automorphism
σw ∈ AutFq

(A2) which extends to AutFq
(P2) and, thanks to the parametrisation map (5), yields an

automorphism σ̃w ∈ AutFq
(E). The map σ̃w is the restriction to E of a linear automorphism of P3

described by the matrix








1 0 0 0
0 0 −N(w) 0
0 1 Tr(w) 0
0 0 0 N(w)









,

where N(w) and Tr(w) denote respectively the norm N(w) := wq+1 and the trace Tr(w) := w + wq .
One can check that this automorphism fixes the points (1 : 0 : 0 : 0) and (0 : 0 : 0 : 1) and shifts cyclically
the q2 − 1 other rational points of E .
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3.2 A class of BCH codes

3.2.1 The cyclic codes

Definition 3.1. For a given field Fq and a positive integer s < q, let B(s) be the cyclic code defined
over the extension field Fq2 which is generated by the vectors of the form (ζr |ζ ∈ F×

q2
), for r = i + qj

such that 0 ≤ i, j ≤ s. In addition, let B0(s) be the subfield subcode B(s)|Fq
.

This class of codes is studied in [3] where the following result is proved.

Proposition 3.2. The code B0(s) has parameters [q2 − 1, (s+ 1)2, q2 − 1 − s(q + 1)]. Moreover it is a
BCH code.

Proof. [3, Proposition 12].

Remark 3.3. The condition 0 ≤ i, j ≤ s differs from the condition 0 ≤ i+ j ≤ s that is used to describe
punctured Reed-Muller codes as cyclic codes.

3.2.2 The extended BCH codes

Actually the codes from elliptic quadrics are related to some extended version of the above described
BCH codes. Thus, we introduce a new class of codes.

Definition 3.4. Consider the projective line P1 over Fq2 and let 0 ≤ s ≤ q−1 be an integer. We denote
by Bext(s) the subcode of CP1(s(q + 1)) spanned by the evaluation at P1(Fq2) of the forms

xi+qjys−i+q(s−j), 0 ≤ i, j ≤ s.

The extended BCH code Bext
0 (s) is defined as the subfield subcode Bext(s)|Fq

.

Remark 3.5. Clearly, B(s) and B0(s) can be respectively obtained by puncturing Bext(s) and Bext
0 (s)

at the positions corresponding to (0 : 1) and (1 : 0).

Remark 3.6. An interesting feature of the codes Bext
0 (s) compared to B0(s) is that they have a large

permutation group. Indeed, the group PSL(2,Fq2) acts on Bext(s) and Bext
0 (s) by permutation. In

particular, these codes are 3–transitive.

Proposition 3.7. For 0 ≤ s ≤ q− 2, the code Bext
0 (s) has parameters [q2+1, (s+1)2, q2+1− s(q+1)].

Proof. The length is obvious. For the dimension, let us prove that the puncturing map p : Bext
0 (s) −→

B0(s) evoked in Remark 3.5 is injective. Denote respectively by P0 and P∞ the points (0 : 1) and (1 : 0)
of P1. The kernel of p is the subspace of codewords of Bext

0 (s) with supports contained in {P0, P∞}.
If such a nonzero word exists, then from Remark 3.6, there exists a word of weight ≤ 2 whose support
avoids P0 and P∞. By puncturing, this would yield a codeword of weight ≤ 2 in B0(s), which contradicts
Proposition 3.2.

For the minimum distance, using Proposition 3.2 and Remark 3.5 we know that the minimum distance
d of Bext

0 (s) satisfies
d ≤ q2 + 1− s(q + 1). (7)

Take a codeword w ∈ Bext
0 (s) of minimum weight d. Using Remark 3.6, one can assume that P0 and P∞

are contained in the support of w. The punctured codeword p(w) ∈ B0(s) has weight d − 2 and from
Proposition 3.2, we have d− 2 ≥ q2 − 1− s(q+1). This inequality together with (7) yield the result.

3.3 A twisted embedding of the projective line

The elliptic quadric E ⊂ P3 over Fq contains q2 +1 rational points. Using (5) together with Remark 1.4
they are described by

P = {(1 : u : v : Q(u, v)) : u, v ∈ Fq} ∪ {(0 : 0 : 0 : 1)}, (8)

where Q(u, v) = (u+ ωv)(u+ ωqv) as in (5).
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Set

φf :

{

P1 −→ P1 ×P1

(x : y) 7−→ ((x : y), (xq : yq))
. (9)

Consider the Fq–embedding

ψ :

{

P1 φf−→ P1 ×P1 φs−→ P3

(x : y) 7−→ ((x : y), (xq : yq)) 7−→ (yq+1 : xyq : xqy : xq+1)
, (10)

where φf is defined in (9) and φs is the Segre embedding (6). Over Fq2 , the projective line has q2 + 1
rational points {(x : 1) : x ∈ Fq2} ∪ (1 : 0). Writing x = u+ ωv, for u, v ∈ Fq, their images in P3 by the
map (10) are

P ′ = {(1 : u+ ωv : u+ ωqv : Q(u, v)) : u, v ∈ Fq} ∪ {(0 : 0 : 0 : 1)}. (11)

Clearly, a point P ′ ∈ P ′ differs from a point P ∈ P by the linear transformation µtw of (3). Consequently,
we state the following lemma.

Lemma 3.8. We have an Fq2–embedding of P1

ψtw := µ−1
tw ◦ ψ : P1 φf−→ P1 ×P1 φs−→ P3 µ

−1

tw−→ P3 (12)

inducing a one-to-one map P1(Fq2 ) −→ E(Fq).

Thanks to the Fq2–embedding ψtw, the Fq2–codes CE(s) ⊗ Fq2 can be regarded as codes over P1.
This is the key point of the proof of the equality CE(s) = Bext

0 (s) (up to a permutation) established in
the following subsection.

3.4 The parameters of the codes on the elliptic quadric

The objective is to determine the parameters and in particular the minimum distance of the codes CE(s).
This objective is reached by Theorem 3.10. Recall that except for the case s = 1, 2, the minimum distance
of these codes was unknown up to now.

For the proof of Theorem 3.10 we need the following combinatorial lemma.

Lemma 3.9. The sets of pairs of integers U (s) = {(i + k, j + k) : 0 ≤ i, j, k and i + j + k ≤ s} and
V (s) = {(i, j) : 0 ≤ i, j ≤ s} are equal.

Proof. Clearly U (s) ⊂ V (s). Conversely, for (i, j) ∈ V (s) and for k = min{i, j}, we have (i, j) =
((i − k) + k, (j − k) + k) ∈ U (s).

Theorem 3.10. The code CE(s) is permutation equivalent to the extended BCH code Bext
0 (s) introduced

in Definition 3.1. Therefore, for all 0 ≤ s < q − 1, the code CE(s) has parameters [q2 + 1, (s+ 1)2, q2 +
1− s(q + 1)].

Proof. The code CE(s), which is defined over Fq, and the code CE (s)⊗ Fq2 , which has coefficients over
Fq2 , use the same generator matrix and have the same parameters.

Clearly, the subfield subcode (CE (s)⊗ Fq2)|Fq
equals CE(s). Thus, to prove that CE(s) = Bext

0 (s),

it is sufficient to prove that CE (s) ⊗ Fq2 = Bext(s) (see Definition 3.4). Afterwards, the parameters of
CE(s) are given by Proposition 3.7.

Step 1. We first prove that CE(1) ⊗ Fq2 = Bext(1). The code CE(1) ⊗ Fq2 is obtained by evaluating
F3(1)⊗ Fq2 at the set P described in (8).

Because of the bijection induced by ψtw in Lemma 3.8 between the Fq–rational points of E and the
Fq2–rational points of P

1, the code can equivalently be obtained by evaluating the pullbacks ψ⋆
tw(F3(1)⊗

Fq2) at the elements of P1(Fq2 ).
Recall that, from §3.3, we have ψtw = µ−1

tw ◦φ, where µtw and ψ are respectively defined in (3) and (10).

Since µtw is Fq2–linear, one sees easily that (µ−1
tw )

⋆
(F3(1)⊗ Fq2) = F3(1)⊗Fq2 and hence ψ⋆

tw(F3(1)⊗
Fq2) = ψ⋆(F3(1)⊗ Fq2). Finally, (10) entails that ψ

⋆(F3(1)⊗ Fq2) is generated by yq+1, xyq, xqy, xq+1.
Evaluating these forms at P1(Fq2 ) yields B

ext(1) (see Definition 3.4).
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Step 2. For the general case we just copy Step 1. By the same manner CE (s)⊗ Fq2 can be obtained by
evaluating the elements of ψ⋆

tw(F3(s) ⊗ Fq2) at the elements of P1(Fq). In addition, one proves, as in
Step 1, that ψ⋆

tw(F3(s)⊗ Fq2) = ψ⋆(F3(s)⊗ Fq2).
The space ψ⋆(F3(s) ⊗ Fq2) is generated by monomials of degree s in yq+1, xyq, xqy, xq+1. Such a

monomial is of the form

ya(q+1)(xyq)
b
(xqy)

c
xd(q+1) = x(b+d)+q(c+d)y(a+c)+q(a+b), for a+ b+ c+ d = s.

From Lemma 3.9, this set of monomials equals
{

x(i+qj)y(s−i)+q(s−j) | 0 ≤ i, j ≤ s
}

,

which yields the result by definition of Bext(s).

Remark 3.11. It is worth noting that the above proof points out a very interesting property of B(s).
Indeed, even if B(s) is defined over Fq2 , it is generated by words defined over Fq. Thus, the Fq–
dimension of its subfield subcode B0(s) equals the Fq2–dimension of B(s). This explains why the codes
B0(s) provide many of the best known codes (see [6]): in general the subfield subcode operation entails
a dramatic reduction of the dimension. This reduction does not happen for the codes B(s).

Remark 3.12. Since the Picard group of E is generated by OE(1), any evaluation code on this surface is
equivalent to CE (s) for some s. Thus, as for the hyperbolic quadric, we have here the exact parameters
of any evaluation code on E .

Theorem 3.10 has a geometric corollary.

Corollary 3.13. Let s < q − 1. Let X ⊂ E be a curve obtained by the intersection of E with a surface
of degree s which does not contain E. Then,

♯X(Fq) ≤ s(q + 1).

Proof. It is a straightforward consequence of Theorem 3.10.

About the geometry of the minimum weight codewords of CE(s)

Comparing Corollary 3.13 with Corollary 2.5, it is natural to ask: If equality holds in Corollary 3.13, is
the curve X a cut out of E by s planes?

Consider s distinct planes Π1, . . . ,Πs non tangent to E and such that for all i, j, the line Πi∩Πj does
not meet E at rational points and set S := Π1 ∪ . . . ∪ Πs. Clearly, the curve X := S ∩ E has s(q + 1)
rational points. Conversely, if s = 1, 2, the curves reaching this upper bound are always cut outs by s
planes. The claim is elementary for s = 1 and the case s = 2 is treated in [4, Theorem 6.9] (an argument
similar to that of Remark 2.6 leads to this conclusion). However, for s ≥ 3, there exist curves reaching
this bound but which are not cut outs by planes, some of them are actually irreducible. Computer aided
calculations using the software Magma [2] provided the following example.

Example 3.14. Let s = 3 and q = 5. The surface E is defined by the equation 3y2 + 3yz + z2 + 4xt = 0.
Let S be the surface of equation

(S) 3x3 + 2x2y + 2xy2 + 3x2z + 4xyz + 3y2z + 2x2t+ 2xyt+ 4xzt+ 4yzt+ xt2 + 3yt2 + 2zt2 = 0,

then the curve X = E ∩ S is irreducible and has 18 = 3(5 + 1) rational points.

4 Higher dimensional analogues

The results in the previous sections give us the actual parameters of evaluation codes on smooth quadric
surfaces. The case of a hyperbolic quadric was proved by establishing a relation with tensored Reed-
Solomon codes and the case of an elliptic quadric was proved using a correspondence with a suitable
class of BCH codes. The hyperbolic quadric is the image H of P1×P1 in P3 under the Segre embedding
and the elliptic quadric E is a quadratic twist of this embedding. Both embeddings generalise and in

this section we will describe evaluation codes defined on the image H ⊂ P2d−1 of the Segre embedding

φ : P1 × · · · ×P1 −→ P2d−1 of d copies of P1 and on twists E of H.
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4.1 The non-twisted case

Let H ⊂ P2d−1 be the Segre embedding of d copies of P1 and let IH ⊂ Fr be its associated homogeneous
ideal. As in (6) denote by φs the Segre’s embedding. Similar to the case of the hyperbolic quadric, the
pullback map φ⋆s induces an isomorphism Fd(s)/IH(s)

∼−→ F1(s)⊗ · · · ⊗F1(s) (d copies). Consequently,
the evaluation code CH(s) over Fq with s < q can be described as a tensor product CP1(s)⊗ CP1(s) of
extended Reed-Solomon codes.

Theorem 4.1. Let H be the Segre embedding of the product P1 × · · · × P1 →֒ P2d−1 of d copies
of projective line over Fq, let s be an integer such that s < q, then the code CH(s) has parameters
[(q + 1)d, (s + 1)d, (q − s + 1)d]. Moreover, the code is the d-fold tensor product of an extended Reed-
Solomon code.

It is well–known that the homogeneous ideal IH ⊂ F2d−1 = Fq[x0, . . . , xr] for H is generated by
quadrics. In fact this is true more generally for the larger class of Segre embeddings of projective space
of any dimension (details and further references can be found in [10]). The Segre embedding H of
P1 ×P1 ×P1 in P7 is the intersection of nine quadrics. Here is a birational map from P3 to H.

{

P3
99K P7

(t : x : y : z) 7−→ (t3 : t2x : t2y : t2z : txy : tyz : tzx : xyz)
(13)

The nine quadrics that defineH correspond to the relations (t2x)(t2y) = (t3)(txy), (t2x)(tyz) = (t3)(xyz),
(t2x)(xyz) = (txy)(tzx) and their cyclic permutations under x 7−→ y 7−→ z 7−→ x. The full resolution,
given in [9], is

0 −→ F7[−6] −→ F7[−4]9 −→ F7[−3]16 −→ F7[−2]9 −→ F7 −→ F7/IH −→ 0.

4.2 The twisted case

We will first define the twisted variety E of H, for H the Segre embedding of d copies of P1. We will
then show how similar to the case d = 2 the qd +1 rational points E(Fq) are in bijection with the qd +1
rational points P1(Fqd). Finally this allows us to interpret the evaluation codes CE (s) as extended BCH
codes. Set r := 2d − 1. For d ≥ 2, let φ : Pd

99K Pr be the natural rational map with image in H ⊂ Pr.
The special case d = 3 is given by (13).

Definition 4.2. For d ≥ 2, let (x0 : x1 : · · · : xd) be coordinates for Pd, let α1, . . . , αd be an Fq–basis
of Fqd and let

λ :

{

Pd −→ Pd

(x′0 : x′1 : . . . : x′d) 7−→ (x0 : x1 : . . . : xd)

be the Fqd -linear transformation

{

x0 := x′0
xj := αqj−1

1 x′1 + · · ·+ αqj−1

d x′d, for j ∈ {1, . . . , d} .

The rational map φ ◦ λ : Pd
99K Pr factors as µtw ◦ φ′ : Pd

99K Pr for a linear transformation
µtw : Pr −→ Pr over Fqd and a rational map φ′ : Pd

99K Pr over Fq. The embedding φ′ is called the
twisted embedding with image E .

We illustrate the twisted embeddings for the cases d = 2 and d = 3.

Example 4.3. For d = 2, the variety H ⊂ P3. Over Fq it contains the rational points (1 : x : y : xy), for
x, y ∈ Fq. For the twisted variety E , let {b, bq} be a basis for Fq2/Fq and let

(

x
y

)

= A

(

u
v

)

, for A =

(

b bq

bq b

)

.

Then
(1 : x : y : xy)T = (I1 ⊕A⊕ I1)(1 : u : v : Q)T ,
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for xy = (bu+ bqv)(bqu+ bv) =: Q(u, v) irreducible of degree two over Fq. The rational map φ′ is given
by

φ′ :

{

P2
99K P3

(1 : u : v) 7−→ (1 : u : v : Q)
. (14)

The finite rational points on the image E correspond to {(1 : u : v : Q) : u, v ∈ Fq}.
Example 4.4. For d = 3, the variety H ⊂ P7. Over Fq it contains the rational points (1 : x : y : z : xy :

yz : zx : xyz) for x, y, z ∈ Fq. For the twisted variety E , let {c, cq, cq2} be a basis for Fq3/Fq and let





x
y
z



 = A





u
v
w



 , for A =







c cq cq
2

cq cq
2

c

cq
2

c cq






.

Then

(1 : x : y : z : xy : yz : zx : xyz)T = (I1 ⊕ A ⊕ B ⊕ I1)(1 : u : v : w : Q1 : Q2 : Q3 : R)T , (15)

for xyz =: R(u, v, w) irreducible of degree three over Fq, and for a Fqd -linear transformation B and
polynomials Q1, Q2, Q3 of degree two over Fq. The rational map φ′ is given by

φ′ :

{

P3
99K P7

(1 : u : v : w) 7−→ (1 : u : v : w : Q1 : Q2 : Q3 : R)
. (16)

The finite rational points on the image E correspond to {(1 : u : v : w : Q1 : Q2 : Q3 : R) : u, v, w ∈ Fq}.
A convenient choice for the polynomials Q1, Q2, Q3 is as partial derivatives of the polynomial R(u, v, w).
The partial derivatives of R(u, v, w) are defined over Fq and up to a linear transformation over Fq3

correspond to the partial derivatives of xyz. We include the details.




∂/∂u
∂/∂v
∂/∂w



 = AT





∂/∂x
∂/∂y
∂/∂z





In particular, for xyz = R(u, v, w),




yz
zx
xy



 =





∂/∂x
∂/∂y
∂/∂z



 (xyz) = (AT )−1





∂/∂u
∂/∂v
∂/∂w



R(u, v, w).

For the variety E defined over Fq we obtain evaluation codes CE(s) defined over Fq. To determine
the parameters of the codes we use a bijection between the rational points E(Fq) and the rational points
P1(Fqd) of the projective line over Fqd . In analogy with (10) consider the Fq–embedding

ψ : P1 φf−→ P1 ×P1 × · · · ×P1 φs−→ Pr, (17)

where

φf :

{

P1 −→ P1 ×P1 × · · · ×P1

(x : y) 7−→ ((x : y), (xq : yq), . . . (xq
d−1

: yq
d−1

))
,

and φs is the Segre embedding such that ψ(x : y) = (yq
d−1+···+q+1 : · · · : xqd−1+···+q+1).

Lemma 4.5. We have an Fqd–embedding of P1

ψtw := µ−1
tw ◦ ψ : P1 φf−→ P1 × · · · ×P1 φs−→ Pr µ

−1

tw−→ Pr (18)

inducing a one-to-one map P1(Fqd) −→ E(Fq).

Proof. The proof is similar to the proof of Lemma 3.8. Let (x : 1) be a finite rational point on the
projective line over Fqd . If we write (x : 1) = (α1x

′
1+ · · ·+αdx

′
d : 1), with x′1, . . . , x

′
d ∈ Fq, for α1, . . . , αd

as in Definition 4.2, then the image of (x : 1) under ψ differs from a finite rational point in E(Fq) by the
linear transformation µtw.
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Definition 4.6. Consider the projective line P1 over Fqd and let 0 ≤ s ≤ q − 1 be an integer. For
m = s(qd − 1)/(q− 1), denote by Bext(s) the subcode of CP1(m) spanned by the evaluation at P1(Fqd)
of the forms

{xiym−i : i = i0 + i1q + · · ·+ id−1q
d−1 and 0 ≤ i0, i1, . . . , id−1 ≤ s,}. (19)

The code Bext
0 (s) is defined as the subfield subcode Bext(s)|Fq

.

The codes Bext(s) and Bext
0 (s) admit the group PSL(2,Fqd) as a 3-transitive automorphism group.

After puncturing at (0 : 1) and (1 : 0) the code Bext
0 (s) is a BCH code of type [qd−1, (s+1)d, qd−1−m]

([3, Proposition 12]).

Theorem 4.7. For all s < q−1, the code CE (s) has parameters [qd+1, (s+1)d, qd+1−s(qd−1)/(q−1)].
Moreover, the code CE(s) is permutation equivalent with an extended BCH code.

Proof. The proof is similar to the proof of Theorem 3.10. Because of the bijection induced by ψtw in
Lemma 4.5 between the Fq–rational points of E and the Fqd–rational points of P

1, the code CE(s)⊗Fqd

can be obtained by evaluating the pullbacks ψ⋆
tw(Fr(s) ⊗ Fqd) at the elements of P1(Fqd). The linear

transformation µtw does not affect the code over Fqd and it suffices to consider the pullbacks ψ⋆(Fr(s)⊗
Fqd). The definition of ψ in (17) entails that ψ⋆(Fr(s) ⊗ Fqd) is generated by forms xiym−i that, in
affine form, are the product of s monomials chosen from

{1j0xj1 (xq)j2 · · · (xqd−1

)jd−1 : 0 ≤ j0, j1, . . . , jd−1 ≤ 1}. (20)

Every such product is of the form (19). Conversely, each from in (19) can be written as a product of s
monomials in (20). The latter is clear if for a given monomial xiym−i we use an ordering on i0, i1, . . . , id−1

to choose the monomials needed for the product. Thus we have shown that CE(s)⊗Fqd is the code B(s)
in Definition 4.6. This clearly implies that CE(s) is permutation equivalent with the extended BCH code
B0(s). Moreover, using the 3−transitivity of the automorphism group it implies that the parameters of
CE(s) are as claimed (as in the proof of Proposition 3.7).

We observe that the last theorem has applications in two directions. It shows first that the maximum
number of Fq–rational zeros in E ⊂ Pr of a homogeneous form of degree s agrees with the BCH bound,
that is to say it can be obtained using fairly elementary coding theory and without using geometric
tools. On the other hand it gives certain BCH codes a geometric interpretation as evaluation codes on
an algebraic variety.

Acknowledgements.

The first author is supported by the French ANR Defis program under contract ANR-08-EMER-003
(COCQ project).

References

[1] Y. Aubry. Reed-Muller codes associated to projective algebraic varieties. In Coding theory and
algebraic geometry (Luminy, 1991), volume 1518 of Lecture Notes in Math., pages 4–17. Springer,
Berlin, 1992.

[2] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user language. J.
Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra and number theory (London,
1993).

[3] I. M. Duursma and R. Pellikaan. A symmetric Roos bound for linear codes. J. Combin. Theory
Ser. A, 113(8):1677–1688, 2006.

[4] F. A. B. Edoukou. Codes defined by forms of degree 2 on quadric surfaces. IEEE Trans. Inform.
Theory, 54(2):860–864, 2008.

[5] W. Fulton. Algebraic curves. Advanced Book Classics. Addison-Wesley Publishing Company Ad-
vanced Book Program, Redwood City, CA, 1989.

10



[6] M. Grassl. Bounds on the minimum distance of linear codes and quantum codes. Online available
at http://www.codetables.de, 2007. Accessed on 2010-07-22.

[7] S. H. Hansen. Error-correcting codes from higher-dimensional varieties. Finite Fields Appl.,
7(4):531–552, 2001.

[8] J. W. P. Hirschfeld. Finite projective spaces of three dimensions. Oxford Mathematical Monographs.
The Clarendon Press Oxford University Press, New York, 1985. Oxford Science Publications.

[9] E. Rubei. On syzygies of Segre embeddings. Proc. Amer. Math. Soc., 130(12):3483–3493 (electronic),
2002.

[10] E. Rubei. Resolutions of Segre embeddings of projective spaces of any dimension. J. Pure Appl.
Algebra, 208(1):29–37, 2007.

[11] I. R. Shafarevich. Basic algebraic geometry. 1. Springer-Verlag, Berlin, second edition, 1994.

[12] A. B. Sørensen. Projective Reed-Muller codes. IEEE Trans. Inform. Theory, 37(6):1567–1576, 1991.

Alain Couvreur
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