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Abstract

We show for binary Armstrong codes Arm(2, k, n) that asymptotically
n/k < 1.224, while such a code is shown to exist whenever n/k < 1.12. We
also construct an Arm(2,n — 2,n) and Arm(2,n — 3,n) for all admissible
n.
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1 Introduction

An Armstrong code Arm(q, k,n) is a code of length n over an alphabet of size ¢
with minimum Hamming distance d = n—k+1 and the additional property that
for every subset of size k — 1 = n — d of the coordinate positions there are two
codewords that agree there (so the minimum distance occurs ‘in all directions’).
For example, the code consisting of the rows of an n by n identity matrix is an
Arm(g,n — 1,n) and the code of the n + 1 vectors ¢; = (1,...,1,0,...,0) with
i ones followed by n — i zeroes is an Arm(q,n,n) for all g.

Armstrong codes have their origin in Database Theory, see for instance [8].
The main questions of this note were introduced in [6] and investigated in the
papers [1, 7].

In this note we take ¢ = 2, and give necessary and sufficient conditions for
the existence of an Arm(2, k,n).

2 Armstrong codes Arm(2,k,n) for k >n —3

We have seen above that an Arm(2,n,n) and Arm(2,n — 1,n) exists for all
n > 0.

Proposition 1 An Arm(2,n —2,n) exists if and only if n > 9. An Arm(2,n —
3,n) exists if and only if n > 10.

Proof. By deleting one coordinate position in an Arm(q, k, n), one obtains an
Arm(q, k,n — 1). Consequently, the existence of an Arm(2,n —2,n) for n > 9
follows from that of an Arm(2,n — 3,n) for n > 10.
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A. Keszler showed in her diploma thesis [2] using computer that no Arm(2, n—
2,n) exists for n < 8. It follows that no Arm(2,n — 3,n) exists for n < 9.

An Arm(2,7,10)-code can be constructed by taking the Steiner system S(3, 4, 10)
and adding the all-0 vector.

It remains to construct an Arm(2,n—3,n) for n > 11. Let an (m, M, d)-code
be a binary code of word length m, size M, and minimum distance (at least) d.

First assume that n > 23. Using a Hadamard matrix of order 4t > n
one obtains an (n,n,12)-code. Partition the quadruples from an n-set into
n collections such that two quadruples in the same collection intersect in at
most 2 elements by putting quadruple {p,q,r, s} in collection T; if p+ g+ r +
s =1 (modn). Let C = {cg,...,cn_1} be an (n,n,12)-code. Construct an
Arm(2,n — 3,n) by taking the code words in C' together with the words c; + t
for every T € 7T;, where t is the characteristic vector of T'.

For 14 < n < 16, look at the 2165 extended perfect (16,2048,4)-codes
(classified in [5]). Five of these (numbers 2099, 2108, 2121, 2122 and 2124)
are Armstrong. Appropriate shortenings give Armstrong codes for n = 15 and
n = 14 (but not for n = 13).

For 14 < n < 22 Armstrong codes can be obtained by computer, using a
greedy procedure: Start by putting the zero word in the code. Then enumerate
all binary words in lexicographic order, adding a word to the code obtained so
far when it has the required minimum distance, and it provides at least one
difference that did not occur earlier. For n = 11,12,13, a randomized version
of this greedy procedure works. O

3 A lower bound

For general k we have the following. Recall that d =n —k + 1.

Theorem 2 ([1], Theorem 2.2) An Arm(2, k, n) exists if n > 9.09d. An Arm(2, k, n)
exists if n < 1.12k.

Proof. The second claim follows from the first one. Katona et al. [1] show (in

formula (9)) that Arm(2, k, n) exists when d(g)2 < 272, And this holds when
d>1 and n > ad with a > 9.08861.
O

4 Upper bounds

In [1], Theorem 3.3, it is shown that if an Arm(2, k,n) exists, and k > 7, then
n < 2(k — 1) (that is, n > 2d). Here we asymptotically improve the constant 2
to 2 (so that n > 5d when d is large).

Write L(z) = xlogy(z). Below we will use the following standard estimate
for binomial coeflicients. It follows from Stirling’s theorem, and is valid for m
sufficiently large, £,y and § —~ bounded away from zero, small compared to m,
but not necessarily constant. X log, (52) ~ L(B) — L(y) — L(B — ). With the

binary entropy function Hy(z) = —L(z)—L(1—z), we have < log, () ~ Hz(c).
We start with the binary version of a general result [7] and then give im-

provements.



Theorem 3 If an Arm(2, k,n) exists, then asymptotically n < 1.38k.

Proof. If Cis an Arm(2,k,n) then we must have (‘gl) > (kT—ll) = (Z) This is
because of the Armstrong property that every k — 1 tuple determines a (unique
in the binary case) pair of codewords that agree in exactly those positions.
On the other hand |C|(L(dfq)/2j) < 2™ because spheres of radius |(d — 1)/2]
around codewords are disjoint. These two bounds combined give d < 0.275n or

n < 1.38k. O

Let d = dn. Let ko = ko(d) be such that a code of length n with constant
weight d and minimum distance d has size at most 2°°™. Let k; = k1(6) be such
that an arbitrary code with length n and minimum distance d has size at most
2rm,

Let C be an Arm(2,k,n) of size 2¢". Since C has minimum distance d, it
follows that a < k1(0). Given a code word ¢ € C, let us call the set of code
words at distance precisely d from c in C the local code at c. Since each of the (Z)
differences is seen locally at at least two code words, we have |C[270(O)n > 2(™),
so that a > Hy(d) — ko(0). Altogether, it follows that Ho(0) < ko(0) + k1(0).
Various bounds on x¢(d) and 1 (§) now give upper bounds for n/k for Armstrong
codes.

Theorem 4 If an Armstrong code Arm(2, k,n) exists, then we have asymptot-
teally n < 1.224k.

Proof. The sphere packing bound (really, ball packing bound) gives an upper
bound k1 =1 — H3(6/2). Let C be a code of word length n, constant weight d,
and minimum distance d. Let m = |d/2]. Then |C| < (mil)/(mil), because
every (m + 1)-set of coordinates is covered by a code word from C at most
once. It follows that we can take ko = L($6) — L(6) — L(1 — 14). Solving
H3(6) < ko(0) + k1(6) yields § < 0.2271, so that n < 1.294k.

The Elias-Bassalygo bound gives k1 = 1 — Ha((1 —+/1 — 20)/2), better than
the sphere packing bound. This time we find § < 0.212, so that n < 1.27k.

A weak form of the McEliece-Rodemich-Rumsey-Welch bound ([4], (1.5))
allows us to take k1 = Ha(3 — 1/6(1 —6)). This is better again (for § > 0.15),
and yields § < 0.205, so that n < 1.258k.

An improved value for kg (see [3], p. 643) is

(13- (fhomoFo5-4)

Using it yields 6 < 0.18506 and hence n < 1.2271k.

A stronger form of the McEliece-Rodemich-Rumsey-Welch bound ([4], (1.4))
has 1 = min{l + g(u?) — g(u?® + 26u +26) | 0 < u < 1 — 26}, where g(z) =
Hy((1— /T —x)/2). With u = 0.25 this says k1 = 1+ g(&) — g(55 + 2). This
yields § < 0.183 and hence n < 1.224k. O
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