Skip to main content
Log in

Room squares with super-simple property

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Constant-composition codes are a special type of constant-weight codes and have attracted recent interest due to their numerous applications. In a recent work, the authors found that an optimal (n, 5, [2, 1, 1])4-code of constant-composition can be obtained from a Room square of side n with super-simple property. In this paper, we study the existence problem of super-simple Room squares. The problem is solved leaving only two minimal possible n undetermined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abel R.J.R., Brouwer A.E., Colbourn C.J., Dinitz J.H.: Mutually orthogonal Latin squares (MOLS). In: Colbourn C.J., Dinitz J.H.(eds.) The CRC Handbook of Combinatorial Designs, 2nd edn, pp. 160–193. CRC Press, Boca Raton (2007).

  2. Abel R.J.R., Bennett F.E., Greig M.: PBD-closure. In: Colbourn C.J., Dinitz J.H.(eds.) The CRC Handbook of Combinatorial Designs, 2nd edn, pp. 247–254. CRC Press, Boca Raton (2007).

  3. Bogdanova G.T., Kapralov S.N.: Enumeration of optimal ternary codes with a given composition. Probl. Peredachi Inform. 39(4), 35–40 (2003)

    MathSciNet  Google Scholar 

  4. Chee Y.M., Dau S.H., Ling A.C.H., Ling S.: Linear size optimal q-ary constant-weight codes and constant-composition codes. IEEE Trans. Inform. Theory 56(1), 140–151 (2010)

    Article  MathSciNet  Google Scholar 

  5. Chee Y.M., Ge G., Ling A.C.H.: Group divisible codes and their application in the construction of optimal constnant-composition codes of weight three. IEEE Trans. Inform. Theory 54(8), 3552–3564 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chee Y.M., Ling S.: Improved lower bounds for constant GC-content DNA codes. IEEE Trans. Inform. Theory 54(1), 391–394 (2008)

    Article  MathSciNet  Google Scholar 

  7. Chee Y.M., Ling A.C.H., Ling S., Shen H.: The PBD-closure of constant-composition codes. IEEE Trans. Inform. Theory 53(8), 2685–2692 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chu W., Colbourn C.J., Dukes P.: Constructions for permutation codes in powerline communications. Des. Codes Cryptogr. 32(1–3), 51–64 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chu W., Colbourn C.J., Dukes P.: On constant composition codes. Discret. Appl. Math. 154(6), 912–929 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Colbourn C.J., Stinson D.R., Zhu L.: More frames with block size four. J. Combin. Math. Combin. Comput. 23, 3–19 (1997)

    MATH  MathSciNet  Google Scholar 

  11. Colbourn C.J., Klϕve T., Ling A.C.H.: Permutation arrays for powerline communication and mutually orthogonal Latin squares. IEEE Trans. Inform. Theory 50(6), 1289–1291 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Costello D.J., Formey G.D.: Channel coding: the road to channel capacity. Proc. IEEE 95(6), 1150–1177 (2007)

    Article  Google Scholar 

  13. D’yachkov A.G.: Random constant composition codes for multiple access channels. Probl. Control Inform. Theory 13(6), 357–369 (1984)

    MATH  MathSciNet  Google Scholar 

  14. Ding C.: Optimal constant composition codes from zero-difference balanced functions. IEEE Trans. Inform. Theory 54(12), 5766–5770 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ding C., Yin J.: Algebraic constrctions of constant-composition codes. IEEE Trans. Inform. Theory 51(4), 1585–1589 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ding C., Yin J.: Combinatorial constructions of optimal constant-composition codes. IEEE Trans. Inform. Theory 51(10), 3671–3674 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ding C., Yuan J.: A family of optimal constant-composition codes. IEEE Trans. Inform. Theory 51(10), 3668–3671 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ding C., Yin J.: A construction of optimal constant composition codes. Des. Codes Cryptogr. 40(2), 157–165 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ding Y.: A construction for constant-composition codes. IEEE Trans. Inform. Theory 54(10), 3738–3741 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Dinitz J.H.: Room squares. In: Colbourn C.J., Dinitz J.H. (eds.) The CRC Handbook of Combinatorial Designs, 2nd edn, pp. 584–590. CRC Press, Boca Raton (2007).

  21. Ericson T., Zinoview V.: Spherical codes generated by binary parititions of symmetric pointsets. IEEE Trans. Inform. Theory 41(1), 107–129 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gao F., Ge G.: Optimal ternary constant composition codes of weight four and distance five. IEEE Trans. Inform. Theory 57(6), 3742–3757 (2011)

    Article  MathSciNet  Google Scholar 

  23. Ge G.: Group divisible designs. In: Colbourn C.J., Dinitz J.H. (eds.) The CRC Handbook of Combinatorial Designs, 2nd edn, pp. 255–260. CRC Press, Boca Raton (2007).

  24. Ge G., Zhu L.: Existence of almost resolvable directed 5-cycle systems. Australas. J. Combin. 11, 181–195 (1995)

    MATH  MathSciNet  Google Scholar 

  25. Huczynska S., Mullen G.L.: Frequency permutation arrays. J. Combin. Des. 14(6), 463–478 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Huczynska S.: Equidistant frequency permutation arrays and related constant composition codes. Des. Codes Cryptogr. 54(2), 109–120 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. King O.D.: Bounds for DNA codes with constant GC-content. Electron. J. Combin. 10(1), 33 (2003)

    MathSciNet  Google Scholar 

  28. Luo Y., Fu F.W., Vinck A.J.H., Chen W.: On constant-composition codes over \({\mathbb{Z}_q}\). IEEE Trans. Inform. Theory 49(11), 3010–3016 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Milenkovic O., Kashyap N.: On the design of codes for DNA computing. In: Lecture Notes in Computer Science 3969, pp. 100–119. Springer, Berlin (2006).

  30. Mullin R.C., Wallis W.D.: The existence of Room squares. Aequationes Math. 13(1/2), 1–7 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  31. Rodger C.A.: Linear spaces with many small lines. Discret. Math. 129(1–3), 167–180 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  32. Room T.G.: A new type of magic square. Math. Gazette. 39, 307 (1955)

    Article  Google Scholar 

  33. Stinson D.R.: The spectrum of skew Room squares. J. Austral. Math. Soc. Ser. A 31(4), 475–480 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  34. Svanström M.: Ternary codes with weight constraints. Ph.D. Dissertation, Linköpings Universitet, Linköping (1999).

  35. Svanström M.: Constructions of ternary constant-composition codes with weight three. IEEE Trans. Inform. Theory 46(7), 2644–2647 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  36. Svanström M., Östergård P.R.J., Bogdanova G.T.: Bounds and constructions for ternary constant-composition codes. IEEE Trans. Inform. Theory 48(1), 101–111 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  37. Telatar I.E., Gallager R.G.: Zero error decision feedback capacity of discrete memoryless channels. In: Arikan E. (ed.) Proceedings of Bilkent International Conference on New Trends in Communication, Control, and Signal Processing, pp. 228–233. Elsevier, London (1990).

  38. Wallis W.D.: A Room square of side 257. In: Proceedings of the Fourth Southeastern Conference on Combinatorics, Graph Theory and Computing, p. 533. Florida Atlantic University, Boca Raton (1973).

  39. Wen B., Wang J., Yin J.: Optimal grid holey packings with block size 3 and 4. Des. Codes Cryptogr. 52(1), 107–124 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  40. Yan J., Yin J.: Constructions of optimal GDRP(n, λ ; v)’s of type λ1μm-1. Discret. Appl. Math. 156(14), 2666–2678 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  41. Yan J., Yin J.: A class of optimal constant composition codes from GDRPs. Des. Codes Cryptogr. 50(1), 61–76 (2009)

    Article  MathSciNet  Google Scholar 

  42. Yin J., Tang Y.: A new combinatorial approach to the construction of constant composition codes. Sci. China Ser. A 51(3), 416–426 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  43. Yin J., Yan J., Wang C.: Generalized balanced tournament designs and related codes. Des. Codes Cryptogr. 46(2), 211–230 (2008)

    Article  MathSciNet  Google Scholar 

  44. Zhu M., Ge G.: Quaternary constant-composition codes with weight four and distance five or six. IEEE Trans. Inform. Theory 58(9), 6012–6022 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennian Ge.

Additional information

Communicated by C. J. Colbourn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, M., Ge, G. Room squares with super-simple property. Des. Codes Cryptogr. 71, 365–381 (2014). https://doi.org/10.1007/s10623-012-9746-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-012-9746-7

Keywords

Mathematics Subject Classification (2010)

Navigation