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Abstract

In this note, we complete the classification of extremal doubly even

self-dual codes with 2-transitive automorphism groups.
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1 Introduction

As described in [5], self-dual codes are an important class of linear codes for
both theoretical and practical reasons. It is a fundamental problem to classify
self-dual codes of modest lengths and determine the largest minimum weight
among self-dual codes of that length (see [2, 5]). It was shown in [4] that the
minimum weight d of a doubly even self-dual code of length n is bounded
by d ≤ 4⌊ n

24
⌋+ 4. A doubly even self-dual code meeting the bound is called
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extremal. A common strategy for the problem whether there is an extremal
doubly even self-dual code for a given length is to classify extremal doubly
even self-dual codes with a given nontrivial automorphism group (see [2, 5]).
Recently, Malevich and Willems [3] have shown that if C is an extremal
doubly even self-dual code with a 2-transitive automorphism group then C is
equivalent to one of the extended quadratic residue codes of lengths 8, 24, 32,
48, 80, 104, the second-order Reed–Muller code of length 32 or a putative
extremal doubly even self-dual code of length 1024 invariant under the group
T ⋊ SL(2, 25), where T is an elementary abelian group of order 1024.

The aim of this note is to complete the classification of extremal doubly
even self-dual codes with 2-transitive automorphism groups. This is com-
pleted by excluding the open case in the above characterization [3], using
Theorem A in [1].

Theorem 1. Let C be an extremal doubly even self-dual code with a 2-
transitive automorphism group. Then C is equivalent to one of the the ex-

tended quadratic residue codes of lengths 8, 24, 32, 48, 80, 104 or the second-

order Reed–Muller code of length 32.

2 Proof of Theorem 1

For an n-element set Ω, the power set P(Ω) – the family of all subsets of Ω –
is regarded as an n-dimensional binary vector space with the inner product
(X, Y ) ≡ |X ∩ Y | (mod 2) for X, Y ∈ P(Ω). The weight of X is defined to
be the integer |X|. A subspace C of P(Ω) is called a code of length n. Note
that all codes in this note are binary. The dual code C⊥ of C is the set of
all X ∈ P(Ω) satisfying (X, Y ) = 0 for all Y ∈ C. A code C is said to be
self-orthogonal if C ⊂ C⊥, and self-dual if C = C⊥. A doubly even code is a
code whose codewords have weight a multiple of 4.

Let G be a permutation group on an n-element set Ω. We define the code
C(G,Ω) by

C(G,Ω) = 〈Fix(σ) | σ ∈ I(G)〉⊥,

where I(G) denotes the set of involutions of G and Fix(σ) is the set of fixed
points of σ on Ω.

Theorem 2 (Chigira, Harada and Kitazume [1]). Let C be a binary self-

orthogonal code of length n invariant under the group G. Then C ⊂ C(G,Ω).
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By using Theorem 2, some self-dual codes invariant under sporadic almost
simple groups were constructed in [1]. In this note, we apply Theorem 2 to
a family of 2-transitive groups containing the group (210)⋊ SL(2, 25).

Let r, s be positive integers. We consider the following group G

G = T ⋊H (T = (2r)2s, H = SL(2s, 2r)),

where the group T is regarded as the natural module GF (2r)2s of H . Here
T acts regularly on T itself and H acts on T as the stabilizer of the unit of
T , which is regarded as the zero vector of GF (2r)2s. Then G naturally acts
2-transitively on T .

Lemma 3. There is no self-dual code of length 22rs invariant under G =
T ⋊H.

Proof. By the fundamental theory of Jordan canonical forms in basic linear
algebra, the dimension of the subspace of GF (2r)2s spanned by the vectors
fixed by an involution in H = SL(2s, 2r) is equal to or greater than s. Then
it is easily seen that there exist two involutions σ, τ in H such that each
of them fixes some s-dimensional subspace of GF (2r)2s, and the zero vector
is the only vector fixed by both of them (i.e. T = Fix(σ) ⊕ Fix(τ)). As
codewords in C(G,Ω)⊥, the inner product (Fix(σ),Fix(τ)) is equal to 1,
since |Fix(σ)∩Fix(τ)| = 1. This yields that C(G, T )⊥ is not self-orthogonal.

Suppose that B is a self-dual code invariant under G. By Theorem 2, B ⊂
C(G, T ). Since B⊥ ⊃ C(G, T )⊥ and B = B⊥, C(G, T )⊥ is self-orthogonal.
This is a contradiction.

The case (r, s) = (5, 1) in the above lemma completes the proof of Theo-
rem 1.

Remark 4. In the above proof, the cardinality of the fixed subspace of di-
mension s is 2rs, which is smaller than the value 4⌊22rs

24
⌋ + 4, except for

the cases (r, s) = (1, 2), (2, 1). This shows immediately that there is no ex-
tremal doubly even self-dual code of length 22rs invariant under the group
G = T ⋊ SL(2s, 2r) if rs > 2.

On the other hand, the smallest cardinality of the fixed subspace of an
involution in SL(2s− 1, 2r) is 2rs. If s > 1 then this number is smaller than

the value 4⌊2(2s−1)r

24
⌋+4, except for the small cases (r, s) = (1, 2), (1, 3), (2, 2).

When (r, s) = (1, 2) or (1, 3), the code C(G, T ), for G = T ⋊ SL(2s− 1, 2r)
where T = (2r)2s−1, is equivalent to the extended Hamming code of length 8,
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or the second-order Reed–Muller code of length 32 (see [1, Example 2.10]),
respectively. For the remaining case (r, s) = (2, 2) (i.e.G = T⋊SL(3, 22), T =
26), the smallest cardinality of the fixed subspace of an involution is 16 (> 12),
and so such an argument does not work. (Indeed the code C(G, T )⊥ is self-
orthogonal with minimum weight 16.)
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