Skip to main content
Log in

Computing in degree \(2^k\)-extensions of finite fields of odd characteristic

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We show how to perform basic operations (arithmetic, square roots, computing isomorphisms) over finite fields of the form \(\mathbb F _{q^{2^k}}\) in essentially linear time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. An algorithm is quasi-linear time in \(n\) if it has complexity \(O(n\log ^kn)\) for a constant \(k\).

References

  1. Bostan A., Chowdhury M.F.I., van der Hoeven J., Schost É.: Homotopy methods for multiplication modulo triangular sets. J. Symb. Comput. 46(12), 1378–1402 (2011).

    Google Scholar 

  2. Brent R.P., Kung H.T.: Fast algorithms for manipulating formal power series. J. Assoc. Comput. Mach. 25(4), 581–595 (1978).

    Google Scholar 

  3. Cantor D.G., Kaltofen E.: On fast multiplication of polynomials over arbitrary algebras. Acta Inform. 28(7), 693–701 (1991).

    Google Scholar 

  4. Cipolla, M.: Un metodo per la risoluzione della congruenza di secondo grado. Napoli Rend. 9, 153–163 (1903)

    Google Scholar 

  5. De Feo L., Schost É.: Fast arithmetics in Artin–Schreier towers over finite fields. J. Symb. Comput. 47(7), 771–792 (2012).

    Google Scholar 

  6. Doliskani J., Schost É.: Taking roots over high extensions of finite fields. Math. Comput. (to appear) (2012).

  7. Feng W., Nogami Y., Morikawa Y.: A fast square root computation using the Frobenius mapping. In: Information and Communications Security. Lecture Notes in Computer Science, vol. 2836, pp. 1–10. Springer, Heidelberg (2003).

  8. von zur Gathen J., Gerhard J.: Modern Computer Algebra, 2nd edn. Cambridge University Press, Cambridge (2003).

  9. von zur Gathen J., Shoup V.: Computing Frobenius maps and factoring polynomials. Comput. Complex. 2(3):187–224, (1992).

    Google Scholar 

  10. Gaudry P., Schost É.: Genus 2 point counting over prime fields. J. Symb. Comput. 47(4), 368–400 (2012).

    Google Scholar 

  11. Kaltofen E., Shoup V.: Fast polynomial factorization over high algebraic extensions of finite fields. In: ISSAC’97, pp. 184–188. ACM, New York (1997).

  12. Kedlaya K.S., Umans C.: Fast polynomial factorization and modular composition. SIAM J. Comput. 40(6), 1767–1802 (2011).

    Google Scholar 

  13. Lang S.: Algebra, Graduate Texts in Mathematics vol. 211, 3rd edn. Springer, New York (2002).

  14. Schoof R.: Elliptic curves over finite fields and the computation of square roots mod \(p\). Math. Comput. 44, 483–494 (1985).

    Google Scholar 

  15. Shanks D.: Five number-theoretic algorithms. In: Proceedings of the Second Manitoba Conference on Numerical Mathematics, pp. 51–70 (1972).

  16. Shoup, V.: A library for doing number theory (NTL). http://www.shoup.net/ntl/. Accessed July 2013.

  17. Shoup V.: Fast construction of irreducible polynomials over finite fields. J. Symb. Comput. 17(5), 371–391 (1994).

    Google Scholar 

  18. Tonelli, A. : Bemerkung über die Auflösung quadratischer Congruenzen. Göttinger Nachrichten, pp. 344–346 (1891).

  19. Wang F., Nogami Y., Morikawa Y.: An efficient square root computation in finite fields \({GF}(p^{2^d})\). IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E88-A(10), 2792–2799 (2005).

Download references

Acknowledgments

The authors are supported by NSERC and the Canada Research Chairs program. We wish to thank the reviewers for their helpful remarks and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Doliskani.

Additional information

Communicated by G. Mullen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doliskani, J., Schost, É. Computing in degree \(2^k\)-extensions of finite fields of odd characteristic. Des. Codes Cryptogr. 74, 559–569 (2015). https://doi.org/10.1007/s10623-013-9875-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-013-9875-7

Keywords

Mathematics Subject Classification

Navigation