Skip to main content
Log in

On the linear complexity of Legendre–Sidelnikov sequences

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Linear complexity is an important cryptographic index of sequences. We study the linear complexity of \(p(q-1)\)-periodic Legendre–Sidelnikov sequences, which combine the concepts of Legendre sequences and Sidelnikov sequences. We get lower and upper bounds on the linear complexity in different cases, and experiments show that the upper bounds can be attained. Remarkably, we associate the linear complexity of Legendre–Sidelnikov sequences with some famous primes including safe prime and Fermat prime. If \(2\) is a primitive root modulo \(\frac{q-1}{2}\), and \(q\) is a safe prime greater than 7, the linear complexity is the period if \(p\equiv 3 \pmod 8\); \(p(q-1)-p+1\) if \(p\equiv q \equiv 7 \pmod 8\), and \(p(q-1)-\frac{p-1}{2}\) if \(p \equiv 7 \pmod 8, q \equiv 3 \pmod 8\). If \(q\) is a Fermat prime, the linear complexity is the period if \(p \equiv 3 \pmod 8\), and \(p(q-1)-q+2\) if \(p \equiv 5 \pmod 8\). It is very interesting that the Legendre–Sidelnikov sequence has maximal linear complexity and is balanced if we choose \(p=q\) to be some safe prime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brandstatter N., Pirsic G., Winterhof A.: Correlation of the two-prime Sidel’nikov sequence. Des. Codes Cryptogr. 59, 59–68 (2011).

    Google Scholar 

  2. Cusick T.W., Ding C., Renvall A.: Stream Ciphers and Number Theory. North-Holland, Amsterdam (1998).

  3. Ding C.: Linear complexity of generalized cyclotomic binary sequences of order 2. Finite Fields Appl. 3, 159–174 (1997).

    Google Scholar 

  4. Ding C.: Autocorrelation values of generalized cyclotomic sequences of order two. IEEE Trans. Inf. Theory 44(4), 1699–1702 (1998).

    Google Scholar 

  5. Ding C., Helleseth T., Shan W.: On the linear complexity of Legendre sequences. IEEE Trans. Inf. Theory 44(3), 1276–1278 (1998).

    Google Scholar 

  6. Granville A.: Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers. Organic mathematics (Burnaby BC, 1995). CMS Conference Proceedings, vol. 20, pp. 253–276. American Mathematical Society, Providence (1997).

  7. Hasse H.: Theorie der höheren Differentiale in einem algebraischen Funktionenkörper mit vollkommenem Konstantenkörper bei beliebiger Charakteristik. J. Reine Angew. Math. 175, 50–54 (1936).

    Google Scholar 

  8. Helleseth T., Yang K.: On binary sequences with period \(n = p^m-1\) with optimal autocorrelation. In: Helleseth T., Kumar P., Yang K. (eds.) SETA 2001. Lecture Notes in Computer Science, pp. 209–217. Springer, Berlin (2002).

  9. Jungnickel D.: Finite Fields. BI-Wissenschaftsverlag, Mannheim (1993).

  10. Kyureghyan G.M., Pott A.: On the linear complexity of the Sidelnikov–Lempel–Cohn–Eastman sequences. Des. Codes Cryptogr. 29, 149–164 (2003).

    Google Scholar 

  11. Lidl R., Niederreiter H.: Finite Fields. Addison-Wesley, Reading (1983).

  12. Lucas M.E.: Sur les congruences des nombres euleriennes et des coefficients differentiels des fuctions trigonometriques, suivant un-module premier. Bull. Soc. Math. France 6, 122–127 (1878).

    Google Scholar 

  13. Meidl W., Winterhof A.: Some notes on the linear complexity of Sidel’nikov–Lempel–Cohn–Eastman sequences. Des. Codes Cryptogr. 38(2), 159–178 (2006).

    Google Scholar 

  14. Sidel’nikov V.M.: Some \(k\)-valued pseudo-random sequences and nearly equidistant codes. Probl. Inf. Transm. 5(1), 12–16 (1969).

  15. Storer T.: Cyclotomy and Difference Sets. Markham Publishing, Chicago (1967).

  16. Su M.: On the \(d\)-ary generalized Legendre-Sidelnikov sequence. In: Helleseth T., Jedwab J. (eds.) Proceedings of Sequences and their Applications 2012, Waterloo, ON, Canada. Lecture Notes in Computer Science, pp. 233–244 (2012).

  17. Su M., Winterhof A.: Autocorrelation of Legendre–Sidelnikov sequences. IEEE Trans. Inf. Theory 56, 1714–1718 (2010).

    Google Scholar 

  18. Su M., Winterhof A.: Correlation measure of order \(k\) and linear complexity profile of Legendre-Sidelnikov sequences. IEICE Trans. 95–A(11), 1851–1854 (2012).

  19. Topuzoğlu A., Winterhof A.: Pseudorandom Sequences. Topics in Geometry, Coding Theory and Cryptography, vol. 6, pp. 135–166. Springer, Dordrecht (2007).

  20. Winterhof A.: A note on the linear complexity profile of the discrete logarithm in finite fields. In: Feng K.Q., Niederreiter H., Xing C.P. (eds.) Coding, Cryptography and Combinatorics, pp. 359–368. Birkhäuser, Basel (2004).

  21. http://en.wikipedia.org/wiki/Artin%27s_conjecture_on_primitive_roots. Accessed 28 Feb 2013.

  22. http://en.wikipedia.org/wiki/Sophie_Germain_prime. Accessed 12 Oct 2013.

Download references

Acknowledgments

The author would like to thank anonymous referees for valuable comments, and express his sincere thanks for hospitality during his visit to RICAM, Austrian Academy of Science, and some useful discussions with Arne Winterhof that led to this work. He is supported by National Natural Science Foundation of China (No. 61003070), and partially by NSFC (No. 61070014, 61373018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Su.

Additional information

Communicated by A. Winterhof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, M. On the linear complexity of Legendre–Sidelnikov sequences. Des. Codes Cryptogr. 74, 703–717 (2015). https://doi.org/10.1007/s10623-013-9889-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-013-9889-1

Keywords

Mathematics Subject Classification

Navigation