Skip to main content
Log in

Optimal three-dimensional optical orthogonal codes of weight three

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Using polarization technique in optical code division multiple access, we can schedule the transmission of optical pulses in spatial domain, in addition to the frequency domain and time domain. An optical orthogonal code (OOC) which spreads in these dimensions is called a three-dimensional (3-D) OOC. In this paper, we study 3-D OOC with at most one optical pulse per wavelength/time plane, which have the favorable property that the Hamming auto-correlation is identically equal to 0. An upper bound on the number of codewords for general Hamming cross-correlation requirement is given. A 3-D OCC with at most one pulse per wavelength/time plane and Hamming cross-correlation no more than 1 is shown to be equivalent to a generalized Bhaskar Rao group divisible design (GBRGDD), signed over a cyclic group. Through this equivalence, necessary and sufficient conditions for the existence of GBRGDD of weighted 3, signed over a cyclic group, are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abel R.J.R., Buratti M.: Some progress on \((v,\,4,\,1)\) difference families and optical orthogonal codes. J. Comb. Theory A 106(1), 59–75 (2004).

  2. Abel R.J.R., Chan N.H.N., Combe D., Palmer W.D.: Existence of GBRDs with block size 4 and BRDs with block size 5. Des. Codes Cryptogr. 61(3), 285–300 (2011).

    Google Scholar 

  3. Beth T., Jungnickel D., Lenz H.: Design theory. In: Encyclopedia of Mathematics and Its Applications, vol. 78, 2nd edn. Cambridge University Press, Cambridge (1999).

  4. Blake-Wilson S., Phelps K.T.: Constant weight codes and group divisible designs. Des. Codes Cryptogr. 16, 11–27 (1999).

    Google Scholar 

  5. Buratti M.: Cyclic designs with block size 4 and related optimal optical orthogonal codes. Des. Codes Cryptogr. 26, 111–125 (2002).

    Google Scholar 

  6. Buratti M., Pasotti A.: Further progress on difference families with block size 4 or 5. Des. Codes Cryptogr. 56(1), 1–20 (2010).

    Google Scholar 

  7. Chang Y., Fuji-Hara R., Miao Y.: Combinatorial constructions of optimal optical orthogonal codes with weight 4. IEEE Trans. Inf. Theory 49(5), 1283–1292 (2003).

    Google Scholar 

  8. Chang Y., Yin J.: Further results on optimal optical orthogonal codes with weight 4. Discret. Math. 279(1–3), 135–151 (2004).

    Google Scholar 

  9. Chee Y.M., Ge G., Ling A.C.H.: Group divisible codes and their application in the construction of optimal constant-composition codes of weight three. IEEE Trans. Inf. Theory 54(8), 3552–3564 (2008).

    Google Scholar 

  10. Chen K., Zhu L.: Existence of \((q,\,6,\,1)\) difference families with \(q\) a prime power. Des. Codes Cryptogr. 15(2), 167–173 (1998).

  11. Chung F.R.K., Salehi J.A., Wei V.K.: Optical orthogonal codes: design, analysis, and applications. IEEE Trans. Inf. Theory 35, 595–604 (1989).

    Google Scholar 

  12. Colbourn C.J., Rosa A.: Triple Systems. Oxford Mathematics Monographs. Oxford University Press, Oxford (1999).

  13. Dai P., Wang J., Yin J.: Combinatorial constructions for optimal 2-D optical orthogonal codes with AM-OPPTS property. Des. Codes Cryptogr. 1–16 (2012). doi: 10.1007/s10623-012-9733-z.

  14. de Launey W.: Bhaskar Rao designs. In: CRC Handbook of Combinatorial Designs, pp. 299–301. CRC Press, Boca Raton (2007).

  15. Djordjevic I.B., Vasic B.: Novel combinatorial constructions of optical orthogonal codes for incoherent optical CDMA systems. J. Lightwave Technol. 21(9), 1869–1875 (2003).

    Google Scholar 

  16. Etzion T.: Optimal constant weight codes over \(Z_k\) and generalized designs. Discret. Math. 169, 55–82 (1997).

    Google Scholar 

  17. Feng T., Chang Y.: Combinatorial constructions for optimal two-dimensional optical orthogonal codes with \(\lambda = 2\). IEEE Trans. Inf. Theory 57(10), 6796–6819 (2011).

    Google Scholar 

  18. Fuji-Hara R., Miao Y.: Optical orthogonal codes: their bounds and new optimal constructions. IEEE Trans. Inf. Theory 46(11), 2396–2406 (2000).

    Google Scholar 

  19. Gallant R.P., Jiang Z., Ling A.C.H.: The spectrum of cyclic group divisible designs with block size three. J. Comb. Des. 7, 95–105 (1999).

    Google Scholar 

  20. Gao F., Ge G.: Optimal ternary constant-composition codes of weight four and distance five. IEEE Trans. Inf. Theory 57(6), 3742–3757 (2011).

    Google Scholar 

  21. Garg M.: Performance analysis and implementation of three dimensional codes in optical code division multiple access system. Master, Thapar University, Punjab (2012).

  22. Ge G.: On \((g,\,4;\,1)\)-difference matrices. Discret. Math. 301, 164–174 (2005).

  23. Ge G.: Construction of optimal ternary constant weight codes via Bhaskar Rao designs. Discret. Math. 308(13), 2704–2708 (2008).

    Google Scholar 

  24. Ge G., Greig M., Seberry J.: Generalized Bhaskar Rao designs with block size 4 signed over elementary Abelian groups. J. Comb. Math. Comb. Comput. 46, 3–45 (2003).

    Google Scholar 

  25. Ge G., Greig M., Seberry J., Seberry, R.: Generalized Bhaskar Rao designs with block size 3 over finite Abelian groups. Graphs Comb. 23(3), 271–290 (2007).

    Google Scholar 

  26. Hanani H.: Balanced incomplete block designs and related designs. Discret. Math. 11, 255–369 (1975).

    Google Scholar 

  27. Jiang Z.: Concerning cyclic group divisible designs with block size three. Australas. J. Comb. 13, 227–245 (1996).

    Google Scholar 

  28. Jindal S., Gupta N.: Performance evaluation of optical CDMA based 3D code with increasing bit rate in local area network. In: IEEE Region 8 Computational Technologies in Electrical and Electronics Engineering (SIBIRCON), Novosibirsk, Russia, pp. 386–388, 2008.

  29. Kim S., Yu K., Park N.: A new family of space/wavelength/time spread three-dimensional optical code for OCDMA network. J. Lightwave Technol. 18(4), 502–511 (2000).

    Google Scholar 

  30. Li X., Fan P., Shum K.W.: Construction of space/wavelength/time spread optical code with large family size. IEEE Commun. Lett. 16(6), 893–896 (2012).

    Google Scholar 

  31. Li X., Fan P., Suehiro N., Wu D.: New classes of optimal variable-weight optical orthogonal codes with Hamming weights 3 and 4. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E95–A(11), 1843–1850 (2012).

  32. McGeehan J.E., Motaghian Nezam S.M.R., Saghari P., Willner A.E., Omrani R., Kumar P.V.: Experimental demonstration of OCDMA transmission using a three-dimensional (time–wavelength-polarization) codeset. J. Lightwave Technol. 23(10), 3283–3289 (2005).

    Google Scholar 

  33. Miyamoto N., Mizuno H., Shinohara S.: Optical orthogonal codes obtained from conics on finite projective planes. Finite Fields Appl. 10(3), 405–411 (2004).

    Google Scholar 

  34. Omrani R., Kumar P.V., Elia P., Bhambhani P.: Large families of optimal two-dimensional optical orthogonal codes. IEEE Trans. Inf. Theory 58(2), 1163–1185 (2012).

    Google Scholar 

  35. Ortiz-Ubarri J., Moreno O., Tirkel A.: Three-dimensional periodic optical orthogonal code for OCDMA systems. In: IEEE Information Theory Workshop (ITW), Paraty, Brazil, pp. 170–174, 2011.

  36. Rotman J.J.: Advanced Modern Algebra. Graduate Studies in Mathematics, 2nd edn. American Mathematic Society, Providence (2009).

  37. Sawa M.: Optical orthogonal signature pattern codes with maximum collision parameter 2 and weight 4. IEEE Trans. Inf. Theory 56(7), 3613–3620 (2010).

    Google Scholar 

  38. Wang J., Shan X., Yin J.: On constructions for optimal two-dimensional optical orthogonal codes. Des. Codes Cryptogr. 54, 43–60 (2010).

    Google Scholar 

  39. Wang J., Yin J.: Two-dimensional optimal optical orthogonal codes and semicyclic group divisible designs. IEEE Trans. Inf. Theory 56(5), 2177–2187 (2010).

    Google Scholar 

  40. Wang K., Wang J.: Semicyclic 4-GDDs and related two-dimensional optical orthogonal codes. Des. Codes Cryptogr. 63(3), 305–319 (2012).

    Google Scholar 

  41. Wang X., Chang Y., Feng T.: Optimal 2-D (\(n\times m\), 3, 2, 1)-optical orthogonal codes. IEEE Trans. Inf. Theory 59(1), 710–725 (2013).

    Google Scholar 

  42. Wilson R.M.: An existence theory for pairwise balanced designs. J. Comb. Theory A 13, 220–245 (1972).

    Google Scholar 

  43. Yin J.: Some combinatorial constructions for optical orthogonal codes. Discret. Math. 185, 201–219 (1998).

    Google Scholar 

  44. Zhang H., Zhang X., Ge G.: Optimal ternary constant-weight codes with weight 4 and distance 5. IEEE Trans. Inf. Theory 58(5), 2706–2718 (2012).

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by a Grant from University Grants Committee of the Hong Kong Special Administrative Region, China (Project No. AoE/E-02/08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth W. Shum.

Additional information

Communicated by J. D. Key.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shum, K.W. Optimal three-dimensional optical orthogonal codes of weight three. Des. Codes Cryptogr. 75, 109–126 (2015). https://doi.org/10.1007/s10623-013-9894-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-013-9894-4

Keywords

Mathematics Subject Classification

Navigation