On extremal self-dual codes of length 120

Javier de la Cruz*

Abstract

We prove that the only primes which may divide the order of the automorphism group of a putative binary self-dual doubly-even $[120,60,24]$ code are $2,3,5,7,19$, 23 and 29. Furthermore we prove that automorphisms of prime order $p \geq 5$ have a unique cycle structure.

1 Introduction

Throughout the paper all codes are assumed to be binary and linear, if not explicitly stated otherwise. Let $C=C^{\perp}$ be a self-dual code of length n and minimum distance d. By results of Mallows-Sloane [13] and Rains [15], we have

$$
d \leq \begin{cases}4\left\lfloor\frac{n}{24}\right\rfloor+4 & \text { if } n \not \equiv 22 \bmod 24 \tag{1}\\ 4\left\lfloor\frac{n}{24}\right\rfloor+6 & \text { if } n \equiv 22 \bmod 24,\end{cases}
$$

and C is called extremal if equality holds. The length n of an extremal self-dual doublyeven code C is bounded by $n \leq 3928$, due to a result of Zhang [20]. Furthermore, if in addition $n=24 m$, then C is always doubly-even, as shown by Rains [15].

Already 1973 Sloane posed the question whether extremal self-dual codes of length 72 exist [17]. This is the first unsolved case if $24 \mid n$. Such codes are of particular interest since the supports of codewords of a given non-trivial weight form a 5-design according to the Assmus-Mattson Theorem [1]. Unfortunately, we know only two codes, the extended Golay code of length 24 and the extended quadratic residue code of length 48. In order to find codes of larger length non-trivial automorphisms may be helpful. The following table shows what we know about the automorphism groups so far.

parameters	codes	G	(possible) primes dividing $\|G\|$	reference
$[24,12,8]$	ext. Golay	M_{24}	$2,3,5,7,11,23$	$[12]$
$[48,24,12]$	ext. QR	$\operatorname{PSL}(2,47)$	$2,3,23,47$	$9],[11]$
$[72,36,16]$	$?$	$\|G\| \leq 24$	$2,3,5$	$[4,[8]$
$[96,48,20]$	$?$	$\|G\| \leq ?$	$2,3,5$	$[7,[6]$

[^0]Looking at the table one is naturally attempted to ask.
Question 1 Suppose that a self-dual $[120,60,24]$ code C exist. Are 2,3 and 5 the only primes which may divide the order of the automorphism group of C ?

If this turns out be true we have more evidence that for large m the automorphism group of an extremal self-dual code of length $n=24 m$ may contain only automorphisms of very small prime orders. As a consequence such a code has almost no symmetries, i.e., it is more or less a pure combinatorial object and therefore probably hard to find if it exists.

In this paper we investigate primes p which may occur in the order of the automorphism group of an extremal self-dual code of length 120. In Section III we prove that the only primes which may divide the order of the automorphism group of a putative binary selfdual doubly even $[120,60,24]$ code C are $2,3,5,7,19,23$ and 29 . Moreover, we exclude some cycle types of automorphisms of order 3,5 and 7 , which in particular shows that automorphisms of prime order $p \geq 5$ have a unique cycle structure. For involutions the possible cycle types are known by [2]. Thus, as the main result we obtain

Theorem 2 Let C be an extremal self-dual code of length 120.
a) The only primes with may divide the order of the automorphism group of C are $2,3,5,7,19,23$ and 29 .
b) If σ is an automorphism of C of prime order p then $p=2,3,5,7,19,23$ or 29 and its cycle structure is given by

p	number of p-cycles	number of fixed points
2	48,60	24,0
3	$32,34,36,38,40$	$24,18,12,6,0$
5	24	0
7	17	1
19	6	6
23	5	5
29	4	4

In a forthcoming paper we will prove that automorphisms of order 3 act fixed point freely. Thus apart from (possibly) involutions all elements in $\operatorname{Aut}(C)$ of prime order have a unique cycle structure.

Theorem 2 is part of my PhD thesis [6].

2 Preliminaries

Let C be a binary code with an automorphism σ of odd prime order p. If σ has cycles of length p and f fixed points, we say that σ is of type $p-(c ; f)$. Without loss of generality we may assume that

$$
\sigma=(1,2, \ldots, p)(p+1, p+2, \ldots, 2 p) \ldots((c-1) p+1,(c-1) p+2, \ldots, c p)
$$

Let $\Omega_{1}, \Omega_{2}, \ldots, \Omega_{c}$ be the cycle sets and let $\Omega_{c+1}, \Omega_{c+2}, \ldots, \Omega_{c+f}$ be the fixed points of σ. We put $F_{\sigma}(C)=\{v \in C \mid v \sigma=v\}$ and $E_{\sigma}(C)=\left\{v \in C \mid \operatorname{wt}\left(\left.v\right|_{\Omega_{i}}\right) \equiv 0 \bmod 2, i=\right.$ $1, \ldots, c+f\}$, where $\left.v\right|_{\Omega_{i}}$ is the restriction of v on Ω_{i}. With this notation we have

Lemma 3 (9 , Lemma 2) $\quad C=F_{\sigma}(C) \oplus E_{\sigma}(C)$.
There is an obvious relation between the weight distribution of C and its subcode $F_{\sigma}(C)$, namely

Lemma 4 If A_{i} and A_{i}^{\prime} denotes the number of codewords of weight i in C resp. $F_{\sigma}(C)$ then $A_{i} \equiv A_{i}^{\prime} \bmod p$.

Proof: If $c \in C$ and $c \notin F_{\sigma}(C)$ then the size of the orbit of c under σ is divisible by p.
Clearly, a generator matrix of C can be written in the form

$$
\operatorname{gen}(C)=\left(\begin{array}{cc}
X & Y \\
Z & 0
\end{array}\right) \begin{aligned}
& \} \operatorname{gen}\left(F_{\sigma}(C)\right) \\
& \} \operatorname{gen}\left(E_{\sigma}(C)\right),
\end{aligned}
$$

where the first part of the matrix correspond to all coordinates which are moved by σ and the second to the f fixed points.

If $\pi: F_{\sigma}(C) \rightarrow \mathbb{F}_{2}^{c+f}$ denotes the map defined by $\pi\left(\left.v\right|_{\Omega_{i}}\right)=v_{j}$ for some $j \in \Omega_{i}$ and $i=1,2, \ldots, c+f$, then $\pi\left(F_{\sigma}(C)\right)$ is a binary $\left[c+f, \frac{c+f}{2}\right]$ self-dual code (9], Lemma 1).

Note that every binary vector of length p can be identified with a unique polynomial in the factor algebra $\mathbb{F}_{2}[x] /\left(x^{p}-1\right)$ by $\left(v_{0}, v_{1}, \ldots, v_{p-1}\right) \mapsto v_{0}+v_{1} x+\ldots+v_{p-1} x^{p-1} \in \mathbb{F}_{2}[x]$. Furthermore, recall that the vector space of even-weight polynomials in $\mathbb{F}_{2}[x] /\left(x^{p}-1\right)$, which we denote by P, is a binary cyclic code of length p generated by $x-1$. Let $E_{\sigma}(C)^{*}$ be the subcode of $E_{\sigma}(C)$ where the last f coordinates have been deleted. For $v \in E_{\sigma}(C)^{*}$ we may consider the p-cycle

$$
v \mid \Omega_{i}=\left(v_{0}, v_{1}, \ldots, v_{p-1}\right) \quad(i=1, \ldots, c)
$$

as the polynomial

$$
\varphi\left(v \mid \Omega_{i}\right)(x)=v_{0}+v_{1} x+\ldots+v_{p-1} x^{p-1}
$$

in P. In this way we obtain a map $\varphi: E_{\sigma}(C)^{*} \rightarrow P^{c}$. Clearly, $\varphi\left(E_{\sigma}(C)^{*}\right)$ is a submodule of the P-module P^{c}. If the multiplicative order of 2 modulo p, usually denoted by $s(p)$, is $p-1$, then the check polynomial $1+x+x^{2}+\ldots+x^{p-1}$ of P is irreducible over \mathbb{F}_{2}. Hence P is an extension field of \mathbb{F}_{2} with identity $e(x)=x+\ldots+x^{p-1}$ and $\varphi\left(E_{\sigma}(C)^{*}\right)$ is a code over the field P.

Lemma 5 ([18], Theorem 3) Assume that $s(p)=p-1$. Then a binary code C with an automorphism σ of odd prime order p is self-dual if and only if the following two conditions hold.
a) $\pi\left(F_{\sigma}(C)\right)$ is a binary self-dual code of length $c+f$.
b) $\varphi\left(E_{\sigma}(C)^{*}\right)$ is a self-dual code of length c over the field P under the inner product $u \cdot v=\sum_{i=1}^{c} u_{i} v_{i}^{q}$ for $q=2^{\frac{p-1}{2}}$.

Lemma 6 ([19], Theorem 3) Let C be a binary self-dual code and let σ be an automorphism of C of odd prime order p. Then any Code, which can be obtained from C by
(i) a substitution $x \rightarrow x^{t}$ in $\varphi\left(E_{\sigma}(C)^{*}\right)$, where t is an integer with $1 \leq t \leq p-1$ or
(ii) a multiplication of the j th coordinate of $\varphi\left(E_{\sigma}(C)^{*}\right)$ by $x^{t_{j}}$, where t_{j} is an integer with $0 \leq t_{j} \leq p-1$ and $j=1,2, \ldots, c$,
is equivalent to C.
Lemma 5 and Lemma 6 are crucial to exclude the prime 59 in the order of the automorphism group of an extremal self-dual code of length 120 . Most of the other primes can be excluded by the following two results.

Lemma 7 (3], Theorem 7) If C is a binary extremal self-dual code of length $24 m+2 r$ where $0 \leq r \leq 11, m \geq 2$, and σ is an automorphism of C of type $p-(c ; f)$ for some prime $p \geq 5$ then $c \geq f$.

Lemma 8 ([19], Theorem 4) Let C be a binary self-dual $[n, k, d]$ code and let $\sigma \in \operatorname{Aut}(C)$ be of type $p-(c ; f)$ where p is an odd prime. If $g(s)=\sum_{i=0}^{s-1}\left\lceil\frac{d}{2^{i}}\right\rceil$ then
а) $p c \geq g\left(\frac{p-1}{2} c\right)$ and
b) $f \geq g\left(\frac{f-c}{2}\right)$ for $f>c$.

Lemma 9 (3], Lemma 4) Let C be a binary self-dual code of length n and let σ be an automorphism of C of type $p-(c ; f)$ where p is an odd prime. If $s(p)$ is even, then c is even.

Let $C_{\pi_{1}}$ be the subcode of $\pi\left(F_{\sigma}(C)\right)$ which consists of all codewords which have support in the first c coordinates and let $C_{\pi_{2}}$ be the subcode of $\pi\left(F_{\sigma}(C)\right)$ of all codewords which have support in the last f coordinates. Then $\pi\left(F_{\sigma}(C)\right)$ has a generator matrix of the form

$$
\operatorname{gen}\left(\pi\left(F_{\sigma}(C)\right)\right)=\left(\begin{array}{cc}
A & O \tag{2}\\
O & B \\
D & E
\end{array}\right)
$$

where $(A O)$ is a generator matrix of $C_{\pi_{1}}$ and $(O B)$ is a generator matrix of $C_{\pi_{2}}, O$ being the appropriate size zero matrix. With this notation we have

Lemma 10 ([10], Theorem 9.4.1) If $k_{1}=\operatorname{dim} C_{\pi_{1}}$ and $k_{2}=\operatorname{dim} C_{\pi_{2}}$, then the following holds true.
a) (Balance Principle) $k_{1}-\frac{c}{2}=k_{2}-\frac{f}{2}$.
b) $\operatorname{rank} D=\operatorname{rank} E=\frac{c+f}{2}-k_{1}-k_{2}$.
c) Let \mathcal{A} be the code of length c generate by A, \mathcal{A}_{D} the code of length c generated by the rows of A and D, \mathcal{B} the code of length f generated by B, and \mathcal{B}_{E} the code of length f generated by the rows of B and E. Then $\mathcal{A}^{\perp}=\mathcal{A}_{D}$ and $\mathcal{B}^{\perp}=\mathcal{B}_{E}$.

Lemma 11 Let C be a binary self-dual code with minimum distance d and let $\sigma \in \operatorname{Aut}(C)$ be of type $p-(c ; f)$ with $c=f<d$. Then $\pi\left(F_{\sigma}(C)\right)$ has a generator matrix of the form $\left(I \mid E^{\prime}\right)$ where I is the identity matrix of size c.

Proof: We may write gen $\left(\pi\left(F_{\sigma}(C)\right)\right)$ as in (2). The condition $f<d$ implies that $B=0$. Since $c=f$, by the Balance Principle we see that $A=0$. Thus D is regular and

$$
D^{-1} \operatorname{gen}\left(\pi\left(F_{\sigma}(C)\right)\right)=\left(I \mid E^{\prime}\right)
$$

is a generator matrix of $\pi\left(F_{\sigma}(C)\right)$.

Lemma 12 If p is an odd prime and C is a binary self-dual code with minimum distance d, then $\operatorname{Aut}(C)$ does not contain an automorphism σ of type $p-(c ; f)$ with $c=f$ and $p+c<d$.

Proof: The condition $p+c<d$ implies $c=f<d$ and by Lemma 11, we obtain a generator matrix of the form

$$
\operatorname{gen}\left(\pi\left(F_{\sigma}(C)\right)\right)=\left(I \mid E^{\prime}\right)
$$

Let v be any row vector of $\left(I \mid E^{\prime}\right)$. Then $\pi^{-1}(v)=c \in C$ has weight

$$
\mathrm{wt}(c) \leq p+f=p+c<d,
$$

a contradiction.

3 Excluding primes in the automorphism group of extremal self-dual codes of length 120

In this section C always denotes a binary self-dual code with parameters [120, 60, 24]. The weight enumerator of the code C is determined in [13] as

$$
\begin{equation*}
W_{C}(y)=1+39703755 y^{24}+6101289120 y^{28}+475644139425 y^{32}+\ldots \tag{3}
\end{equation*}
$$

Suppose that there is a $\sigma \in \operatorname{Aut}(C)$ of prime order $p \geq 3$. According to Lemma 7, 8 and 9. the only possibilities for the type of σ are the following.

p	c	f
3	$30,32,34,36$,	$30,24,18,12$,
	38,40	6,0
5	$20,22,24$	$20,10,0$
7	$15,16,17$	$15,8,1$
11	10	10
13	9	3
17	7	1
19	6	6
23	5	5
29	4	4
59	2	2

Lemma 13 The primes $p=11,13$ and $p=17$ do not divide $|\operatorname{Aut}(C)|$.
Proof: If $p=11$, then $c=f=10$ and $p+c=11+10=21<d=24$. Now we apply Lemma 12 to exclude $p=11$.

For $p=13$ we have $s(p)=12$. Thus, by Lemma 9, c must be even, which contradicts $c=9$. Hence $p=13$ is not possible.

Note that $s(17)$ is even. Applying again Lemma 9 we obtain c even, which contradicts $c=1$. Thus $p=17$ does not occur either.

Lemma 14 The prime 59 does not divide $|\operatorname{Aut}(C)|$.
Proof: Suppose that $\sigma \in \operatorname{Aut}(C)$ is of order 59. Thus σ is of type $59-(2 ; 2)$. We determine all possible generator matrices for C with respect to the decomposition given in Lemma 3 and check by computer that the minimum distance is smaller than 24 in each case.

Step 1: Construction of all possible gen (C).
By Lemma [5, the code $\pi\left(F_{\sigma}(C)\right)$ is self-dual and has parameters [4, 2, 2]. Thus

$$
\operatorname{gen}\left(\pi\left(F_{\sigma}(C)\right)\right)=\left(\begin{array}{ll|ll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right) .
$$

Consequently,

$$
\operatorname{gen}\left(F_{\sigma}(C)\right)=\left(\begin{array}{ll|ll}
\mathbf{1} & \mathbf{0} & 1 & 0 \\
\mathbf{0} & \mathbf{1} & 0 & 1
\end{array}\right)
$$

where $\mathbf{1}$ is the all-one vector and $\mathbf{0}$ the zero-vector of length 59.
Next we determine gen $\left(E_{\sigma}(C)\right)$. Note that $s(59)=58$. Thus, by Lemma 5 , the vector space $\varphi\left(E_{\sigma}(C)^{*}\right)$ is a self-dual $[2,1]$ code over the field $P=\mathbb{F}_{2^{58}}$ under the inner product $u \cdot v=u_{1} v_{1}^{29}+u_{2} v_{2}^{29}$. W.l.o.g. it is generated by some vector $(e(x), b(x)) \in P^{2}$ where $e(x)$ denotes the identity in P and

$$
e(x)+b(x)^{2^{29}+1}=0 .
$$

Let $\alpha(x)$ be a generator of the multiplicative group of P. Writing $b(x)=\alpha(x)^{r}$ with $0 \leq r \leq 2^{58}-2$ we obtain

$$
\alpha(x)^{r\left(2^{29}+1\right)}=e(x) .
$$

Thus $r=\left(2^{29}-1\right) k$ for some $k \in \mathbb{N}_{0}$ and therefore

$$
b(x)=\alpha(x)^{r}=\left(\alpha(x)^{2^{29}-1}\right)^{k}=\delta(x)^{k}
$$

where $\delta(x)=\alpha(x)^{2^{29}-1}$ and $0 \leq k \leq 2^{29}$. It follows, by Lemma 3, that C has a generator matrix of the form

$$
\operatorname{gen}(C)=\left(\begin{array}{cc|cc}
\mathbf{1} & \mathbf{0} & 1 & 0 \tag{*}\\
\mathbf{0} & \mathbf{1} & 0 & 1 \\
\hline[e(x)] & {\left[\delta(x)^{k}\right]} & 0 & 0
\end{array}\right)
$$

where $[e(x)]$ and $\left[\delta(x)^{k}\right]$ are circulant 58×59-matrices and $0 \leq k \leq 2^{29}$. We would like to mention here that some of the $2^{29}+1$ generator matrices may define equivalent codes.
Step 2: Reduction of the number of generator matrices gen (C) in step 1.
Observe that $\langle\delta(x)\rangle$ is a subgroup of $P \backslash\{0\}$ of order $2^{29}+1=3 \cdot 59 \cdot 3033169$ which contains the subgroup $\langle x e(x)\rangle$ of order 59. Since the factor group $\langle\delta(x)\rangle /\langle x e(x)\rangle$ is generated by $\langle x e(x)\rangle \delta(x)$ we obtain

$$
\langle\delta(x)\rangle=\cup_{i=1}^{3 \cdot 3033169}\langle x e(x)\rangle \delta(x)^{i} .
$$

If we multiply $\delta(x)^{k}$ in step 1 by x^{t} for some $0 \leq t \leq 58$, the corresponding generator matrix defines an equivalent code by Lemma 6, part (ii). Thus, in $(*)$, we only have to consider the polynomials

$$
\delta(x)^{k} \text { for } k=1, \ldots, 9099507 .
$$

Next we apply the substitution $x \rightarrow x^{2}$ in $\varphi\left(E_{\sigma}(C)^{*}\right)$ which also leads to an equivalent code by Lemma6, part (i). Clearly, this substitution applied to the generator $\left(e(x), \delta(x)^{k}\right)$ yields

$$
\left(e\left(x^{2}\right), \delta\left(x^{2}\right)^{k}\right)=\left(e(x), \delta(x)^{2 k}\right)
$$

Now we divide $\mathbb{Z}_{9099507}$ into a disjoint union of orbits

$$
\operatorname{orb}(i)=\left\{2^{n} i \bmod 9099507 \mid i \in \mathbb{N}_{0}\right\}
$$

Observe that for all $j \in \operatorname{orb}(i)$ the corresponding codes C are equivalent. With Magma one easily checks that there are exactly 156889 orbits. This shows that we only have to consider generator matrices

$$
\operatorname{gen}(C)=\left(\begin{array}{cc|cc}
\mathbf{1} & \mathbf{0} & 1 & 0 \\
\mathbf{0} & \mathbf{1} & 0 & 1 \\
\hline[e(x)] & {\left[\alpha(x)^{t\left(2^{29}-1\right)}\right]} & 0 & 0
\end{array}\right)
$$

where t runs through a set of representatives of the 156889 orbits. In each case we find with Magma a codeword of minimum distance smaller 24 which completes the proof.

So far we have proved part a) of the Theorem.

4 The cycle strucures

In this section we prove part b).
Lemma 15 Let C be a self-dual $[120,60,24]$ code. Then C has no automorphism of type $p-(c ; c)$ for $p=3,5$ and 7 .

Proof: According to the list in (4) we have to show that C does not have an automorphism of type $3-(30 ; 30), 5-(20 ; 20)$ or $7-(15 ; 15)$.
Claim 1: C has no automorphism of type $3-(30 ; 30)$.
Let $\sigma \in \operatorname{Aut}(C)$ of type $3-(30 ; 30)$. Then $\pi\left(F_{\sigma}(C)\right)$ is a self-dual $\left[60,30, d_{\pi}\right]$ code. According to (1) of the introduction we have $d_{\pi} \leq 12$. Now we take a generator matrix for $\pi\left(F_{\sigma}(C)\right)$ in the form of (2) . Since $c=f$, we get $k_{1}=k_{2}$, by the Balance Principle (see Lemma (10). Note that \mathcal{B} is a doubly even $\left[30, k_{2}, d^{\prime}\right]$ code with $d^{\prime}=24$ or $d^{\prime}=28$. If $k_{2} \geq 2$, then obviously $\pi\left(F_{\sigma}(C)\right)$, and therefore C contains a codeword of weight less or equal 12, a contradiction. Thus $k_{1}=k_{2} \leq 1$.

If $k_{2}=0$, then $\operatorname{gen}\left(\pi\left(F_{\sigma}(C)\right)\right)=\left(I_{30} \mid E\right)$. Let $\left(e_{i} \mid v_{i}\right)$ denote the i-th row of $\left(I_{30} \mid E\right)$. Since $\operatorname{wt}\left(\pi^{-1}\left(e_{i} \mid v_{i}\right)\right)=3+\mathrm{wt}\left(v_{i}\right) \geq 24$, we get $\operatorname{wt}\left(v_{i}\right)=21,25$ or 29 . If $\mathrm{wt}\left(v_{i}\right)=29$ and $\mathrm{wt}\left(v_{j}\right)=29$, then

$$
S_{v_{i}, v_{j}}=\left|\operatorname{supp}\left(v_{i}\right) \cap \operatorname{supp}\left(v_{j}\right)\right| \geq 28
$$

and therefore $\mathrm{wt}\left(\pi^{-1}\left(e_{i}+e_{j} \mid v_{i}+v_{j}\right)\right)=6+\mathrm{wt}\left(v_{i}+v_{j}\right) \leq 8$, a contradiction. In all other cases we get similarly a contradiction unless $\operatorname{wt}\left(v_{i}\right)=21$ for all $i=1, \ldots, 30$.

If $x=\left(e_{i} \mid v_{i}\right)$ and $y=\left(e_{j} \mid v_{j}\right)$, then $S_{x, y}=S_{v_{i}, v_{j}} \geq 12$. In case $S_{v_{i}, v_{j}}>12$ we obtain $\operatorname{wt}\left(\pi^{-1}(x+y)\right) \leq 6+17=23$, a contradiction. Consequently $S_{v_{i}, v_{j}}=12$ for all $i \neq j \in\{1, \ldots, 30\}$. Hence two vectors v_{i}, v_{j} do not have a coordinate simultaneously zero. This implies that the dimension of $\operatorname{gen}\left(\pi\left(F_{\sigma}(C)\right)\right)$ is at most 3, a contradiction.

If $k_{2}=1$, then $\pi\left(F_{\sigma}(C)\right)$ has a generator matrix of the form

$$
\left(\begin{array}{cc}
a & 0 \ldots 0 \\
0 \ldots 0 & b \\
D & E
\end{array}\right)
$$

where $\operatorname{wt}(b)=24$ or 28 . Since C is doubly even, $\operatorname{wt}(a) \in\{8,12,16,20,24,28\}$. Suppose that $\operatorname{wt}(a)=28$. Then $\operatorname{wt}\left(\pi^{-1}(a \mid b)\right) \geq 108$ which implies that $(a \mid b)$ is the all-one vector, a contradiction to $\operatorname{wt}(a)=28$. Thus $\operatorname{wt}(a) \leq 24$. Therefore a contains in at least 6 positions 0 . Consequently, there are at least 6 vectors of the form $z_{i}=(0,0, \ldots, 1, \ldots, 0,0) \in \mathbb{F}_{2}^{30}$, which are orthogonal to a. By Lemma 10 c), we obtain $z_{i} \in \mathcal{A}^{\perp}=\mathcal{A}_{D}$. The contradiction now follows as in case $k_{2}=0$.
Claim 2: C has no automorphism of type $5-(20 ; 20)$.
Note that $p=5 \equiv 1 \bmod 4$. Thus, by (9$]$, Lemma 1), the space $\pi\left(F_{\sigma}(C)\right)$ is a doubly even self-dual $\left[40,20, d_{\pi}\right]$ code. Furthermore $c=f=20<d$. According to Lemma 11 we can take a generator matrix of $\pi\left(F_{\sigma}(C)\right)$ of the form $\operatorname{gen}\left(\pi\left(F_{\sigma}(C)\right)\right)=\left(I \mid E^{\prime}\right)$. If $x=\left(1,0,0, \ldots, 0 \mid e_{1}\right)$ and $y=\left(0,1,0, \ldots, 0 \mid e_{2}\right)$ denote the first respectively the second row of $\left(I \mid E^{\prime}\right)$, then

$$
\mathrm{wt}\left(\pi^{-1}(x)\right)=\mathrm{wt}\left(\pi^{-1}\left(\left(1,0,0, \ldots, 0 \mid e_{1}\right)\right)=5+\mathrm{wt}\left(e_{1}\right) \geq 24\right.
$$

Therefore $19 \leq \mathrm{wt}\left(e_{1}\right) \leq 20$. Since C and $\pi\left(F_{\sigma}(C)\right)$ are doubly even we obtain $\mathrm{wt}\left(e_{1}\right)=19$. Similarly $\operatorname{wt}\left(e_{2}\right)=19$. This implies that $\operatorname{wt}\left(e_{1}+e_{2}\right) \leq 2$. Hence

$$
\operatorname{wt}\left(\pi^{-1}(x+y)\right)=\operatorname{wt}\left(\pi^{-1}\left(1,1,0, \ldots, 0 \mid e_{1}+e_{2}\right)\right)=2 \cdot 5+\operatorname{wt}\left(e_{1}+e_{2}\right) \leq 12
$$

a contradiction.
Claim 3: C has no automorphism of type $7-(15 ; 15)$.
Since $c=f=15$ and $p+c=7+15=22<d=24$ we may apply Lemma 12 to see that there is no automorphism of type $7-(15 ; 15)$.

Lemma 16 A self-dual $[120,60,24]$ code does not have an automorphism of type 5 -(22; 10).
Proof: Suppose that $\sigma \in \operatorname{Aut}(C)$ is of type $5-(22 ; 10)$. Then $\pi\left(F_{\sigma}(C)\right)$ is a self-dual $\left[32,16, d_{\pi}\right]$ code. Furthermore, $\pi\left(F_{\sigma}(C)\right)$ is doubly even, by (9 , Lemma 1), since $p \equiv$ $1 \bmod 4$. According to (1), we have $d_{\pi} \leq 8$. If we write $d_{\pi}=x+y$ where x is the number of 1 s in the first $c=22$ coordinates of a minimal weight codeword and y is the number of 1 s in the last $f=10$ coordinates, then $x+y \leq 8$ and $5 x+y \geq 24$. This forces $x \geq 4$ and $d_{\pi}=8$. Hence $\pi\left(F_{\sigma}(C)\right)$ is an extremal self-dual doubly even code of length 32. By ([16], p. 262) there are (up to isometry) exactly five such codes, denoted by C81 (extended quadratic residue code), $C 82$ (Reed-Muller code), $C 83, C 84$ and $C 85$. To see that no one of these codes can occur as $\pi\left(F_{\sigma}(C)\right)$ we proceed as follows.

Let C_{0} denote one of these code. We do not know which coordinates belong to the fixed points of σ. We know only the number, namely 10 . Therefore we choose all possible 10 -subsets of $1, \ldots, 32$ and take them as the coordinates of fixed points. In each case we construct $\pi^{-1}\left(C_{0}\right)$ and compute the minimum distance with MAGMA. In turns out that all distances are strictly less than 24 . Thus none of the five extremal doubly even codes of length 32 can occur as $\pi\left(F_{\sigma}(C)\right)$, a contradiction.

Lemma 17 C has no automorphism of type 7-(16;8).
Proof: Let σ be an automorphism of type $7-(16 ; 8)$. Then $\pi\left(F_{\sigma}(C)\right)$ is a self-dual $\left[24,12, d_{\pi}\right]$ code. According to (1) we have $d_{\pi} \leq 8$. If $d_{\pi}=x+y$ where x is again the number of 1 s in the left 16 coordinates and y is the number of 1 s in the right 8 coordinates of a codeword of minimal weight, then $x+y \leq 8$ and $7 x+y \geq 24$. Therefore $x \geq 3$ and $d_{\pi}=4,6$ or 8 . In total there are 30 self-dual [24, 12, d_{π}] codes (see [14, [5]), one with $d_{\pi}=8$, one with $d_{\pi}=6$ and 28 with $d_{\pi}=4$.
If $d_{\pi}=8$ then $\pi\left(F_{\sigma}(C)\right)$ is the Golay code. The weight enumerator of the Golay code is $1+759 y^{8}+2576 y^{12}+759 y^{16}+y^{24}$. We know that a vector of $F_{\sigma}(C)$ of weight 28 can be formed only by vectors of $\pi\left(F_{\sigma}(C)\right)$ of weight 4 and 10 since $28=4 \cdot 7+0$ and $28=3 \cdot 7+7$. Therefore, $F_{\sigma}(C)$ has no codewords of weight 28 . But this contradicts the fact that the number A_{28} (see (3)) of codewords of C of weight 28 satisfies $A_{28}=6101289120 \equiv 3 \bmod 7$, by Lemma 4 .
If $d_{\pi}=6$ then $\pi\left(F_{\sigma}(C)\right)$ is the code Z_{24} (see [5], TABLE E). In this case we take all
possibilities for the 8 fixed points and construct $\pi^{-1}\left(Z_{24}\right)$. In all situations we find with MAGMA a vector of weight less than 24 or not divisible by 4 .
Thus we are left with the case $d_{\pi}=4$. Now observe the following fact. If a vector of $\pi\left(F_{\sigma}(C)\right)$ has weight 4 , then all non-zero coordinates correspond to cycles, since C has minimum distance 24. So, if $\pi\left(F_{\sigma}(C)\right)$ has components d_{n} or e_{n} (for notation see [14]), then the corresponding coordinates are cycles. With this observation we easily see that σ has less than 8 fixed points unless $\pi\left(F_{\sigma}(C)\right.$ is of type X_{24} or Y_{24}. The case $\pi\left(F_{\sigma}(C)\right)=X_{24}$ can not occur since it yields a vector of weight 30 in C. The final case Y_{24} has been excluded with MAGMA similar to the case Z_{24}.

Acknowledgment The author would like to thank Professor Willems for their contributions and valuable suggestions.

References

[1] E.F. Assmus, Jr. and H.F. Mattson Jr., New 5-designs, J. Combin. Theory 6 (1969), 122-151.
[2] S. Bouyuklieva, On the automorphisms of order 2 with fixed points for the extremal self-dual codes of length 24 m, Des. Codes and Crypt. 25 (2002), 5-13.
[3] S. Bouyuklieva, A. Malevich and W. Willems, Automorphisms of extremal self-dual codes, IEEE Trans. Inform. Theory 56 (2010), 2091-2096.
[4] E.A. O'Brien and W. Willems, On the automorphism group of a binary self-dual doubly-even $[72,36,16]$ code, IEEE Trans. Inform. Theory 57 (2011), 4445-4451.
[5] J.H. Conway, V. Pless, and N. J. A. Sloane, The binary self-dual codes of length up to 32:A revised enumeration, J. Comb. Theory, Ser. A, vol. 60 1992, 183-195.
[6] J. de la Cruz, Über die Automorphismengruppe der extremale Codes der Längen 96 und 120. Ph.D.,Otto-von-Guericke Universität, Magdeburg, Germany, 2012.
[7] R. Dontcheva, On the doubly-even self-dual codes of length 96, IEEE Trans. Inform. Theory 48 (2002), 557-560.
[8] T. Feulner, G. Nebe, The automorphism group of an extremal [72, 36, 16] code does not contain $Z_{7}, Z_{3} \times Z_{3}$, or D_{10}. (preprint, arXiv:1110.6012v1)
[9] W.C. Huffman, Automorphisms of codes with application to extremal doubly-even codes of lenght 48, IEEE Trans. Inform. Theory 28 (1982), 511-521.
[10] W.C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge 2003.
[11] J.S. Leon, V. Pless and N.J.A. Sloane, Duadic codes, IEEE Trans. Inform. Theory 30 (1984), 709-714.
[12] J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes, NorthHolland, Amsterdam 1977.
[13] C.L. Mallows and N.J.A. Sloane, An upper bound for self-dual codes, Inform. and Control 22 (1973), 188-200.
[14] V. Pless and N.J.A. Sloane, On the classification and enumeration of self-dual codes, J. Comb. Theory, Ser. A, 18 (1975), 313-335.
[15] E.M. Rains, Shadow bounds for self-dual-codes, IEEE Trans. Inform. Theory 44 (1998), 134-139.
[16] E.M. Rains and N.J.A. Sloane, Self-dual codes, in Handbook of coding theory, Volume 1, Elsevier 1998, 177-294.
[17] N.J.A. Sloane, Is there a [72, 36], $d=16$ self-dual code? IEEE Trans. Inform. Theory, 19 (1973), 251.
[18] V.Y. Yorgov, Binary self-dual codes with automorphisms of odd order, Probl. Pered. Inform. 19 (1983), 11-24, Russian.
[19] V.Y. Yorgov, A method for constructing inequivalent self-dual codes with applications to length 56, IEEE Trans. Inform. Theory 33 (1987), 77-82.
[20] S. Zhang, On the nonexistence of extremal self-dual codes, Discrete Appl. Math. 91 (1999), 277-286.

[^0]: *Javier de la Cruz is with the Universidad del Norte, Departamento de Matemáticas, Km 5 Vía Puerto Colombia, Barranquilla, Colombia (e-mail: jdelacruz@uninorte.edu.co).

