Skip to main content
Log in

Weight distribution of cyclic codes with arbitrary number of generalized Niho type zeroes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Cyclic codes are an important class of linear codes, whose weight distribution have been extensively studied. Most previous results obtained so far were for cyclic codes with no more than three zeroes. Inspired by the works of Li et al. (Sci China Math 53:3279–3286, 2010; IEEE Trans Inf Theory 60:3903–3912, 2014), we study two families of cyclic codes over \({\mathbb F}_p\) with arbitrary number of zeroes of generalized Niho type, more precisely \({\mathcal {C}_{(d_0,d_1,\ldots ,d_t)}^{(1)}}\) (for \(p=2\)) of \(t+1\) zeroes, and \({\mathcal {C}_{(\widetilde{d}_1,\ldots ,\widetilde{d}_t)}^{(2)}}\) (for any prime \(p\)) of \(t\) zeroes for any \(t\). We find that the first family has at most \((2t+1)\) non-zero weights, and the second has at most \(2t\) non-zero weights. Their weight distribution are also determined in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubry Y., Langevin P.: On the weights of binary irreducible cyclic codes. In: Proceedings of the 2005 International Conference on Coding and Cryptography. Lecture Notes in Computer Science, vol. 3969, pp. 46–54. Springer, Berlin (2006).

  2. Baumert L.D., McEliece R.J.: Weights of irreducible cyclic codes. Inf. Control 20, 158–175 (1972).

  3. Baumert L.D., Mykkeltveit J.: Weight distributions of some irreducible cyclic codes. DSN Prog. Rep. 16, 128–131 (1973).

  4. Calderbankand R., Kantor W.M.: The geometry of two-weight codes. Bull. Lond. Math. Soc. 18, 97–122 (1986).

  5. Charpin P.: Cyclic codes with few weights and Niho exponents. J. Comb. Theory Ser. A 108, 247–259 (2004).

  6. Ding C., Yang J.: Hamming weights in irreducible cyclic codes. Discret. Math. 313, 434–446 (2013).

  7. Ding C., Yang Y., Tang X.: Optimal sets of frequency hopping sequences from linear cyclic codes. IEEE Trans. Inf. Theory 56, 3605–3612 (2010).

  8. Ding C., Liu Y., Ma C., Zeng L.: The weight distributions of the duals of cyclic codes with two zeroes. IEEE Trans. Inf. Theory 57, 8000–8006 (2011).

  9. Feng T.: On cyclic codes of length \(2^{2^r}-1\) with two zeroes whose dual codes have three weights. Des. Codes Cryptogr. 62, 253–258 (2012).

  10. Feng K., Luo J.: Weight distribution of some reducible cyclic codes. Finite Fields Appl. 14, 390–409 (2008).

  11. Feng T., Momihara K.: Evaluation of the weight distribution of a class of cyclic codes based on index 2 Gauss sums. IEEE Trans. Inf. Theory 59, 5980–5984 (2013).

  12. Fitzgerald R., Yucas J.: Sums of Gauss sums and weights of irreducible codes. Finite Fields Appl. 11, 89–110 (2005).

  13. Hollmann H.D.L., Xiang Q.: On binary cyclic codes with few weights. In: Proceedings of the Finite Fields and Applications (Augsburg), Berlin, pp. 251–275 (1999).

  14. Kløve T.: Codes for Error Detection. World Scientific, Singapore (2007).

  15. Li C., Zeng X., Hu L.: A class of binary cyclic codes with five weights. Sci. China Math. 53, 3279–3286 (2010).

  16. Li N., Helleseth T., Kholosha A., Tang X.: On the Walsh transform of a class of functions from Niho exponents. IEEE Trans. Inf. Theory 59, 4662–4667 (2013).

  17. Li S., Hu S., Feng T., Ge G.: The weight distribution of a class of cyclic codes related to Hermitian forms graphs. IEEE Trans. Inf. Theory 59, 3064–3067 (2013).

  18. Li S., Feng T., Ge G.: On the weight distribution of cyclic codes with Niho exponents. IEEE Trans. Inf. Theory 60, 3903–3912 (2014).

  19. Luo J., Feng K.: On the weight distribution of two classes of cyclic codes. IEEE Trans. Inf. Theory 54, 5332–5344 (2008).

  20. Luo J., Feng K.: Cyclic codes and sequences from generalized Coulter–Matthews function. IEEE Trans. Inf. Theory 54, 5345–5353 (2008).

  21. Luo J., Tang Y., Wang H.: Cyclic codes and sequences: the generalized Kasami case. IEEE Trans. Inf. Theory 56, 2130–2142 (2010).

  22. Ma C., Zeng L., Liu Y., Feng D., Ding C.: The weight enumerator of a class of cyclic codes. IEEE Trans. Inf. Theory 57, 397–402 (2011).

  23. McEliece R.J.: Irreducible cyclic codes and Gauss sums. In: Combinatorics: Proceedings of the NATO Advanced Study Institute, Breukelen. Part 1: Theory of Designs, Finite Geometry and Coding Theory. Math. Centre Tracts, Math. Centrum, Amsterdam, vol. 55 pp. 179–196 (1974).

  24. McEliece R.J., Rumsey J.H.: Euler products, cyclotomy, and coding. J. Number Theory 4, 302–311 (1972).

  25. Moisio M.: Explicit evaluation of some exponential sums. Finite Fields Appl. 15, 644–651 (2009).

  26. Moisio M., Ranto K., Rintaaho M., Väänänen K.: On the weight distribution of the duals of irreducible cyclic codes, cyclic codes with two zeroes and hyper-Kloosterman codes. Adv. Appl. Discret. Math. 3, 155–164 (2009).

  27. Niho Y.: Multivalued cross-correlation functions between two maximal linear recursive sequence, Ph.D. Dissertation. University Southern California, Los Angeles (1970).

  28. Rao A., Pinnawala N.: A family of two-weight irreducible cyclic codes. IEEE Trans. Inf. Theory 56, 2568–2570 (2010).

  29. Schmidt B., White C.: All two-weight irreducible cyclic codes? Finite Fields Appl. 8, 1–17 (2002).

  30. Schroof R.: Families of curves and weight distribution of codes. Bull. Am. Math. Soc. 32, 171–183 (1995).

  31. Thangaraj A., McLaughlin S.: Quantum codes from cyclic codes over GF(\(4^m\)). IEEE Trans. Inf. Theory 47, 1176–1178 (2001).

  32. van der Vlugt M.: Hasse–Davenport curves, Gauss sums, and weight distributions of irreducible cyclic codes. J. Number Theory 55, 145–159 (1995).

  33. Vega G.: Determining the number of one-weight cyclic codes when length and dimension are given. In Arithmetic of Finite Fields. Lecture Notes in Computer Science, vol. 4547, pp. 284–293. Springer, Berlin (2007).

  34. Vega G.: The weight distribution of an extended class of reducible cyclic codes. IEEE Trans. Inf. Theory 58, 4862–4869 (2012).

  35. Vega G., Wolfmann J.: New classes of 2-weight cyclic codes. Des. Codes Cryptogr. 42, 327–334 (2007).

  36. Wang B., Tang C., Qi Y., Yang Y., Xu M.: The weight distributions of cyclic codes and elliptic curves. IEEE Trans. Inf. Theory 58, 7253–7259 (2012).

  37. Wolfmann J.: Weight distributions of some binary primitive cyclic codes. IEEE Trans. Inf. Theory 40, 2068–2071 (1994).

  38. Xiong M.: The weight distributions of a class of cyclic codes. Finite Fields Appl. 18, 933–945 (2012).

  39. Xiong M.: The weight distributions of a class of cyclic codes III. Finite Fields Appl. 21, 84–96 (2013).

  40. Xiong M.: The weight distributions of a class of cyclic codes II. Des. Codes Cryptogr. 72, 511–528 (2014).

  41. Yang J., Xiong M., Ding C., Luo J.: Weight distribution of a class of cyclic codes with arbitrary number of zeroes. IEEE Trans. Inf. Theory 59, 5985–5993 (2013).

  42. Yang J., Xia L., Xiong M.: Weight distributions of a class of cyclic codes with arbitrary number of zeroes II. CoRR. arXiv:1405.6256 (2014).

  43. Zeng X., Hu L., Jiang W., Yue Q., Cao X.: Weight distribution of a \(p\)-ary cyclic code. Finite Fields Appl. 16, 56–73 (2010).

Download references

Acknowledgments

M. Xiong’s research was supported by the Hong Kong Research Grants Council under Grant Nos. 609513 and 606211. Z. Zhou’s research was supported by the Natural Science Foundation of China under Grant No. 61201243, and also the Application Fundamental Research Plan Project of Sichuan Province under Grant No. 2013JY0167. C. Ding’s research was supported by The Hong Kong Research Grants Council under Grant No. 600812.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maosheng Xiong.

Additional information

Communicated by P. Charpin.

Appendices

Appendix 1: Calculation of \(N_r\) for \(p=2\)

Let us consider \(N_r\) for \(r \ge 2\). We remark that \(N_2,N_3\) were obtained in [18], however the computation was somewhat complicated. Here we use a different idea which enables us to compute \(N_r\) in general.

1.1 Case \({\mathcal {C}_{(d_0,d_1,\ldots ,d_t)}^{(1)}}\)

For this case, \(N_r\) equals the number of solutions \((x_1,\ldots ,x_r) \in \left( {\mathbb F}_{q^2}^*\right) ^r\) to the equations given by (13). We write each \(x_i \in {\mathbb F}_{q^2}^*\) as

$$\begin{aligned} x_i=y_i^{\bar{\triangle }}z_i, \quad y_i \in {\mathbb F}_q^*, z_i \in U, \end{aligned}$$

where \(U=\{z \in {\mathbb F}_{q^2}:z \bar{z}=z^{q+1}=1\}\) is a cyclic group of order \(q+1\) and \(\bar{\triangle } \triangle \equiv 1 \pmod {q-1}\). Note that this representation of \(x_i\) for \(y_i \in {\mathbb F}_q^*, z_i \in U\) is unique. We obtain

$$\begin{aligned} x_i^{d_j}=y_i^{\bar{\triangle }d_j}z_i^{d_j}=y_iz_i^{-2jh}, \, 0 \le j \le t. \end{aligned}$$

Now denote \(u_i=z_i^{-2h} \). Then \(u_i \in W:=U^e\), where \(e=\gcd (2h,q+1)\). It is clear that \(W\) is a cyclic group of order \(\frac{q+1}{e}\) and for each \(u_i \in W\), there are exactly \(e\) many \(z_i \in U\) that satisfy the relation \(u_i=z_i^{-2h} \). Using these \(y_i,u_i\)’s, we can write (13) as as a matrix equation

$$\begin{aligned} \left[ \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} 1&{}1&{} \cdots &{}1 \\ u_1 &{} u_2 &{} \cdots &{}u_r\\ u_1^2 &{} u_2^2 &{} \cdots &{}u_r^2\\ \vdots &{} \vdots &{} \ddots &{}\vdots \\ u_1^t &{}u_2^t &{} \cdots &{}u_r^t \end{array} \right] \cdot \left[ \begin{array}{c} y_1\\ y_2\\ \vdots \\ y_r\end{array}\right] =\underline{0},\end{aligned}$$
(18)

where we solve for variables \(u_i,y_i\) such that \(u_i \in W\) and \(y_i \in {\mathbb F}_q^*, 1 \le i \le r\).

Next we take the \(q\)-th power on both sides of each equation in (18) (except the first one). Noting that \(y_i^q=y_i\) and \(u_i^{q}=u_i^{-1}\), thus we obtain

$$\begin{aligned} \left[ \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} u_1^{-1} &{} u_2^{-1} &{} \cdots &{}u_r^{-1}\\ u_1^{-2} &{} u_2^{-2} &{} \cdots &{}u_r^{-2}\\ \vdots &{} \vdots &{} \ddots &{}\vdots \\ u_1^{-t} &{}u_2^{-t} &{} \cdots &{}u_r^{-t} \end{array} \right] \cdot \left[ \begin{array}{c} y_1\\ y_2\\ \vdots \\ y_r\end{array}\right] =\underline{0}. \end{aligned}$$
(19)

We combine the matrices in (18) and (19) together, observing that the exponent of \(u_i\) in each column goes consecutively from \(-t\) to \(t\), this matrix behaves like a Vandermonde matrix whose rank is easy to understand. In particular if \(r \le 2t+1\), then the rank of the matrix equals the number of distinct elements in the set \(\{u_1,u_2, \ldots ,u_r\}\).

1.2 Partition and type

To compute the number of solutions \(u_i \in W,y_i \in {\mathbb F}_q^*, 1 \le i \le r\) that satisfy both (18) and (19), we divide the solution set \(u_i \in W, y_i \in {\mathbb F}_q^*\) according to how the elements \(u_1,\ldots , u_r\) may match with each other. This matching will be indicated by a partition of the set \(\{1,\ldots ,r \}\) into a disjoint union of subsets

$$\begin{aligned} \{1,\ldots ,r\}=\bigcup _{\mu =1}^f I_{\mu }, \end{aligned}$$

which corresponds to valid solutions \(u_i,y_i\) such that \(u_i=u_j\) if and only if \(i,j\) belong to the same set \(I_{\mu }\) for some \(\mu \).

We will compute the number of solutions \(y_i,u_i\) for each such partition. To illustrate the point, let us take an example.

Example 7

The partition \(\{1,2, \ldots ,7\}=\{1,2\} \cup \{3,4\} \cup \{5,6,7\}\) corresponds to the subset of solutions \(u_i,y_i\) of (18) and (19) such that \(u_1=u_2=\tau _1,u_3=u_4=\tau _2,u_5=u_6=u_7=\tau _3\), where \(\tau _1,\tau _2,\tau _3 \in W\) are distinct, and \(y_1,y_2,,\ldots ,y_7 \in {\mathbb F}_q^*\). Combining this and (18), (19) we have

$$\begin{aligned} \left[ \begin{array}{c@{\quad }c@{\quad }c} 1&{} \cdots &{}1 \\ \tau _1 &{} \tau _2 &{}\tau _3\\ \tau _1^2 &{} \tau _2^2 &{} \tau _3^2 \\ \ddots &{}\vdots &{}\vdots \\ \tau _1^t &{} \tau _2^t &{} \tau _3^t \\ \tau _1^{-1} &{} \tau _2^{-1} &{}\tau _3^{-1}\\ \tau _1^{-2} &{} \tau _2^{-2} &{}\tau _3^{-2}\\ \vdots &{} \ddots &{}\vdots \\ \tau _1^{-t} &{} \tau _2^{-t} &{}\tau _3^{-t} \end{array} \right] \cdot \left[ \begin{array}{l} y_1+y_2\\ y_3+y_4\\ y_5+y_6+y_7 \end{array}\right] =\underline{0}.\end{aligned}$$
(20)

The matrix on the left has rank 3, hence we have

$$\begin{aligned} y_1+y_2=0, \quad y_3+y_4=0, \quad y_5+y_6+y_7=0. \end{aligned}$$

The number of solutions for \(y_i \in {\mathbb F}_q^*, 1 \le i \le 7\) that satisfy the above equations is given by \((q-1)^2 (q-1)(q-2)\). The number of ways to choose \(u_i \in W, 1 \le i \le 7\) is given by \(3! \left( {\begin{array}{c}(q+1)/e\\ 3\end{array}}\right) \). Finally for each \(u_i\), \(1 \le i \le 7\) there are \(e\) ways to choose \(z_i \in U\) such that \(z_i^{-2h}=u_i\). So the total number of solutions \(y_i,z_i\) corresponding to this partition is given by

$$\begin{aligned} 3!(q-1)^2 (q-1)(q-2) \left( {\begin{array}{c}(q+1)/e\\ 3\end{array}}\right) e^{7}. \end{aligned}$$

\(\square \)

Now we resume our computation. For a given partition \(\bigcup _{\mu =1}^f I_{\mu }\) of \(\{1,\ldots ,r \}\), its “flag” is defined to be a vector of non-negative integers \(\underline{\uplambda }=(\uplambda _1,\uplambda _2,\ldots ,)\) where \(\uplambda _j=\#\{\mu : \#I_{\mu }=j\} \). The previous example has flag \((0,2,1)\), that is \(\uplambda _1=0,\uplambda _2=2,\uplambda _3=1\). We make the following observations:

  1. (1)

    \(\sum _{j} j \uplambda _{j}=r\);

  2. (2)

    The number of solutions \(u_i,y_i\) corresponding to a partition only depends on the flag of the partition;

  3. (3)

    The total number of different partitions of \(\{1,\ldots ,r\}\) for a given flag \(\underline{\uplambda }\) is (by convention \(0!=1\))

    $$\begin{aligned} \frac{r!}{\prod _{j}(\uplambda _{j})! (j !)^{\uplambda _{j}}}. \end{aligned}$$

1.3 Counting solutions for a partition

Let \(\bigcup _{\mu =1}^f I_{\mu }=\{1,\ldots ,r\}\) be a valid partition with flag \(\underline{\uplambda }\). Similar to the argument in the previous example, since \(r \le 2t+1\), the matrix has full rank, we obtain the identity

$$\begin{aligned} \sum _{j \in I_{\mu }} y_{j}=0, \quad \forall \, \mu . \end{aligned}$$
(21)

Note that if some \(I_{\mu }\) contains only one element \(j\), this would force \(y_j=0\), which is impossible since we require \(y_j \ne 0\). So we assume that \(\#I_{\mu } \ge 2\) for each \(\mu \), or in other words \(\uplambda _1=0\).

Denote by \(B_{\tau }\) the number of solutions \(y_1,\ldots ,y_{\tau } \in {\mathbb F}_q^*\) such that

$$\begin{aligned} y_1+\cdots +y_{\tau }=0. \end{aligned}$$

By the inclusion-exclusion principle, it is easy to obtain the formula

$$\begin{aligned} B_{\tau }=q^{-1}(q-1)^{\tau }+(-1)^{\tau }(1-q^{-1}), \quad \forall \tau \ge 2. \end{aligned}$$

The number of \(y_i\)’s that satisfies (21) is obviously \(\prod _{j \ge 2}(B_j)^{\uplambda _j}\). Now we treat \(u_i\).

The number of distinct elements in \(\{u_1,\ldots ,u_r\}\) is \(D:=\sum _{j} \uplambda _j\), and the number of ways to choose such \(u_i\)’s for this partition is given by \(D! \left( {\begin{array}{c}(q+1)/e\\ D\end{array}}\right) \). On the other hand, each such \(u_i\) (there are \(r\) of them) gives rise to \(e\) many \(z_i\)’s. In summary, we find that for flag \(\underline{\uplambda }\), the number of solutions \(y_i,z_i\) is given by

$$\begin{aligned} \frac{r!}{\prod _{j}(\uplambda _j)!(j!)^{\uplambda _j}} \left( {\begin{array}{c}\frac{q+1}{e}\\ D\end{array}}\right) D! e^{r} \prod _{j} (B_j)^{\uplambda _j}. \end{aligned}$$

Summing over all \(\uplambda _j\) such that \(\sum _{j \ge 2} j \uplambda _j=r\) gives the value \(N_r\). This completes the proof of the formula \(N_r\) for \({\mathcal {C}_{(d_0,d_1,\ldots ,d_t)}^{(1)}}\). \(\square \)

1.4 Case \({\mathcal {C}_{(\widetilde{d}_1,\ldots ,\widetilde{d}_t)}^{(2)}}\)

Here \(N_r\) is the number of solutions \((x_1,\ldots ,x_r) \in \left( {\mathbb F}_{q^2}^*\right) ^r\) to the equations given by (17). Using the same notation as before, we write each \(x_i\) uniquely as

$$\begin{aligned}x_i=y_i^{\bar{\triangle }}z_i, \quad y_i \in {\mathbb F}_q^*, z_i \in U, \end{aligned}$$

and we obtain

$$\begin{aligned}x_i^{\widetilde{d}_j}=y_i^{\bar{\triangle }\widetilde{d}_j}z_i^{\widetilde{d}_j}=y_iz_i^{-(2j-1)h}=y_iu_i^{2j-1}, \quad 1 \le j \le t, \end{aligned}$$

where \(u_i=z_i^{-h} \). Then \(u_i \in W:=U^e\), where \(e=\gcd (h,q+1)\). \(W\) is a cyclic group of order \(\frac{q+1}{e}\) and for each \(u_i \in W\), there are exactly \(e\) many \(z_i \in U\) that satisfy the relation \(u_i=z_i^{-h} \). Using \(y_i,u_i\)’s, we can write (17) as a matrix equation

$$\begin{aligned} \left[ \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} u_1 &{} u_2 &{} \cdots &{}u_r\\ u_1^3 &{} u_2^3 &{} \cdots &{}u_r^3\\ \vdots &{} \vdots &{} \ddots &{}\vdots \\ u_1^{2t-1} &{}u_2^{2t-1} &{} \cdots &{}u_r^{2t-1} \end{array} \right] \cdot \left[ \begin{array}{c} y_1\\ y_2\\ \vdots \\ y_r\end{array}\right] =\underline{0}. \end{aligned}$$
(22)

Again taking the \(q\)-th power on both sides of each equation we obtain

$$\begin{aligned} \left[ \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} u_1^{-1} &{} u_2^{-1} &{} \cdots &{}u_r^{-1}\\ u_1^{-3} &{} u_2^{-3} &{} \cdots &{}u_r^{-3}\\ \vdots &{} \vdots &{} \ddots &{}\vdots \\ u_1^{-2t+1} &{}u_2^{-2t+1} &{} \cdots &{}u_r^{-2t+1} \end{array} \right] \cdot \left[ \begin{array}{c} y_1\\ y_2\\ \vdots \\ y_r\end{array}\right] =\underline{0}. \end{aligned}$$
(23)

Combining the matrices in (22) and (23) together and noting that the exponent of \(u_i\) in each column goes consecutively from \(-2t+1\) to \(2t-1\) with gap 2, we see that this matrix also behaves like a Vandermonde matrix whose rank is easy to understand. In particular if \(r \le 2t\), then the rank of the matrix equals the number of distinct elements in the set \(\{u_1,u_2, \ldots ,u_r\}\). This is the only property which was used in the argument for the previous case \({\mathcal {C}_{(d_0,d_1,\ldots ,d_t)}^{(1)}}\). Hence we conclude that \(N_r\) could be computed in exactly the same way as before, and it is given by the formula (6) for \(r \le 2t\). This completes the proof for the case \({\mathcal {C}_{(\widetilde{d}_1,\ldots ,\widetilde{d}_t)}^{(2)}}\). \(\square \)

Appendix 2: Calculation of \(N_r\) for \(p\) odd

Now \(p\) is an odd prime, \(q=p^m\) and \(N_r\) is the number of solutions \((x_1,\ldots ,x_r) \in \left( {\mathbb F}_{q^2}^*\right) ^r\) to the equations given by (17). Let \(\gamma \) be a generator of \({\mathbb F}_{q^2}^*\). Using the same notation as before, we may write each \(x_i \in {\mathbb F}_{q^2}^*\) as

$$\begin{aligned} x_i=y_i^{\bar{\triangle }}z_i \epsilon _i, \quad y_i \in {\mathbb F}_q^*, z_i \in U, \epsilon _i \in \{\gamma ,1\}. \end{aligned}$$
(24)

Since

$$\begin{aligned} {\mathbb F}_q^* \bigcap U=\{1,-1\}, \end{aligned}$$

as \(y_i,z_i,\epsilon _i\) run over the sets \({\mathbb F}_q^*,U\) and \(\{\gamma ,1\}\) once respectively, the \(x_i\) will run over \({\mathbb F}_{q^2}^*\) exactly twice. So \(N_r=2^{-r}M_r\) where \(M_r\) is the number of \(y_i \in {\mathbb F}_q^*,z_i \in U,\epsilon _i \in \{\gamma ,1\}, 1 \le i \le r\) such that the \(x_i\)’s from (24) satisfy the equations (17) simultaneously. We obtain

$$\begin{aligned} x_i^{\widetilde{d}_j}=y_i^{\bar{\triangle }\widetilde{d}_j}z_i^{\widetilde{d}_j}\epsilon _i^{\widetilde{d}_j}=y_iz_i^{-(2j-1)h}\epsilon _i^{\widetilde{d}_j}=y_i\left( z_i\epsilon _i^{-(q-1)/2}\right) ^{-(2j-1)h}\epsilon _i^{\triangle (q+1)/2}, \quad 1 \le j \le t. \end{aligned}$$

Moreover, since \(\epsilon _i^{\widetilde{s}_j(q-1)} \in U\),

$$\begin{aligned} x_i^{q\widetilde{d}_j}=y_iz_i^{(2j-1)h}\epsilon _i^{q\widetilde{d}_j}=y_i\left( z_i\epsilon _i^{-(q-1)/2}\right) ^{(2j-1)h}\epsilon _i^{\triangle (q+1)/2}, \quad 1 \le j \le t. \end{aligned}$$

Define \(u_i=\left( z_i\epsilon _i^{-(q-1)/2}\right) ^{-h} , \xi _i=\epsilon _i^{\triangle (q+1)/2}\). Then \(u_i\epsilon _i^{(q-1)h/2} \in W:=U^e\), where \(e=\gcd (h,q+1)\). \(W\) is a cyclic group of order \(\frac{q+1}{e}\) and for each \(u_i\epsilon _i^{(q-1)h/2} \in W\), there are exactly \(e\) many \(z_i \in U\) that satisfy the relation \(u_i=\left( z_i\epsilon _i^{-(q-1)/2}\right) ^{-h}\). Using \(y_i,u_i,\xi _i\)’s, we can write (17) as a matrix equation

$$\begin{aligned} \left[ \begin{array}{r@{\quad }r@{\quad }r@{\quad }r} u_1\xi _1 &{} u_2 \xi _2 &{} \cdots &{}u_r \xi _r\\ u_1^3 \xi _1 &{} u_2^3 \xi _2&{} \cdots &{}u_r^3 \xi _r\\ \vdots &{} \vdots &{} \ddots &{}\vdots \\ u_1^{2t-1} \xi _1 &{}u_2^{2t-1} \xi _2 &{} \cdots &{}u_r^{2t-1} \xi _r \end{array} \right] \cdot \left[ \begin{array}{c} y_1\\ y_2\\ \vdots \\ y_r\end{array}\right] =\underline{0}. \end{aligned}$$
(25)

From the \(q\)-th power of each equation we obtain

$$\begin{aligned} \left[ \begin{array}{r@{\quad }r@{\quad }r@{\quad }r} u_1^{-1} \xi _1&{} u_2^{-1} \xi _2&{} \cdots &{}u_r^{-1} \xi _r\\ u_1^{-3} \xi _1&{} u_2^{-3} \xi _2&{} \cdots &{}u_r^{-3} \xi _r\\ \vdots &{} \vdots &{} \ddots &{}\vdots \\ u_1^{-2t+1} \xi _1 &{}u_2^{-2t+1} \xi _2&{} \cdots &{}u_r^{-2t+1} \xi _r \end{array} \right] \cdot \left[ \begin{array}{c} y_1\\ y_2\\ \vdots \\ y_r\end{array}\right] =\underline{0}.\end{aligned}$$
(26)

Combining the matrices in (25) and (26) together and noting that each column is a multiple of \(\xi _i\) and the exponent of \(u_i\) goes consecutively from \(-2t+1\) to \(2t-1\) with gap 2, hence this matrix also behaves like a Vandermonde matrix whose rank is easy to understand. In particular if \(r \le 2t\), then the rank of the matrix equals the number of distinct elements in the set \(\{u_1,u_2, \ldots ,u_r\}\). Using this property, we find that for each fixed \(\underline{\xi }=(\xi _1, \ldots ,\xi _r)\), the number of solutions \(u_i,y_i\) that satisfy (25) and (26) is also given by the formula (6). On the other hand, each \(\xi \in \{\gamma ^{\triangle (q+1)/2},1\}\) can take two distinct values, hence \(\underline{\xi }\) takes \(2^r\) distinct values. Taking into account that \(N_r=2^{-r}M_r\), we find that this \(N_r\) is exactly the same as given by the formula (6). This completes the proof for the case \({\mathcal {C}_{(\widetilde{d}_1,\ldots ,\widetilde{d}_t)}^{(2)}}\) when \(p\) is odd. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, M., Li, N., Zhou, Z. et al. Weight distribution of cyclic codes with arbitrary number of generalized Niho type zeroes. Des. Codes Cryptogr. 78, 713–730 (2016). https://doi.org/10.1007/s10623-014-0027-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-014-0027-5

Keywords

Mathematics Subject Classification

Navigation