Skip to main content
Log in

MJH: a faster alternative to MDC-2

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this paper, we introduce a new class of double-block-length hash functions. Using the ideal cipher model, we prove that these hash functions, dubbed MJH, are asymptotically collision resistant up to \(O(2^{n(1-\epsilon )})\) query complexity for any \(\epsilon >0\) in the iteration, where \(n\) is the block size of the underlying blockcipher. When based on \(n\)-bit key blockciphers, our construction, being of rate 1/2, provides better provable security than MDC-2, the only known construction of a rate-1/2 double-length hash function based on an \(n\)-bit key blockcipher with non-trivial provable security. Moreover, since key scheduling is performed only once per message block for MJH, our proposal significantly outperforms MDC-2 in efficiency. When based on a \(2n\)-bit key blockcipher, we can use the extra \(n\) bits of key to increase the amount of payload accordingly. Thus we get a rate-1 hash function that is much faster than existing proposals, such as Tandem-DM with comparable provable security. This is the full version of Lee and Stam (A faster alternative to MDC-2, 2011).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. We allow a path that consists of a single node.

References

  1. Black J., Rogaway P., Shrimpton T.: Black-box analysis of the block-cipher-based hash-function construction from PGV. In: Yung M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 320–325. Springer, Heidelberg (2002).

  2. Black J., Cochran M., Shrimpton T.: On the impossibility of highly-efficient blockcipher-based hash functions. In: Cramer R (ed.) Eurocrypt 2005. LNCS, vol. 3494, pp. 526–541. Springer, Heidelberg (2005).

  3. Bogdanov A., Leander G., Paar C., Poschmann A., Robshaw M.J.B., Seurin Y.: Hash functions and RFID tags: mind the gap. In: Oswald E., Rohatgi P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 283–299. Springer, Heidelberg (2008).

  4. Bos J.W., Özen O., Stam M.: Efficient hashing using the AES instruction set. In: Preneel B., Takagi T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 507–522. Springer, Heidelberg (2011).

  5. Biryukov A., Khovratovich D.: Related-key cryptanalysis of the full AES-192 and AES-256. In: Matsui M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18. Springer, Heidelberg (2009).

  6. Brachtl B., Coppersmith D., Heyden M., Matyas S., Meyer C., Oseas J., Pilpel S., Schilling M.: Data authentication using modification detection codes based on a public one-way encryption function. US Patent #4,908,861, 13 Mar 1990.

  7. Damgård I.: A design principle for hash functions. In: Brassard G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990).

  8. Fleischmann E., Gorski M., Lucks S.: On the security of Tandem-DM. In: Dunkelman O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 85–105. Springer, Heidelberg (2009).

  9. Fleischmann E., Gorski M., Lucks S.: Security of cyclic double block length hash functions. In: Parker M.G. (ed.) Cryptography and Coding 2009. LNCS, vol. 5921, pp. 153–175, Springer, Heidelberg (2009).

  10. Hattori M., Hirose S., Yoshida S.: Analysis of double block length hash functions. In: Paterson K.G. (ed.) IMA 2003. LNCS, vol. 2898, pp. 290–302. Springer, Heidelberg (2003).

  11. Hirose S.: Provably secure double-block-length hash functions in a black-box model. In: Park C., Chee S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 330–342. Springer, Heidelberg (2005).

  12. Hirose S.: A security analysis of double-block-length hash functions with the rate 1. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E89-A(10), 2575–2582 (2006).

  13. Hirose S.: Some plausible construction of double-block-length hash functions. In: Robshaw M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 210–225. Springer, Heidelberg (2006).

  14. Knudsen L.R., Massey J.L., Preneel B.: Attacks on fast double block length hash functions. J. Cryptol. 11(1), 59–72 (1998).

    Google Scholar 

  15. Knudsen L.R., Mendel F., Rechberger C., Thomsen S.S.: Cryptanalysis of MDC-2. In: Joux A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 106–120. Springer, Heidelberg (2009).

  16. Lai X., Massey J.L.: Hash function based on block ciphers. In: Rueppel R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 55–70. Springer, Heidelberg (1993).

  17. Lee J., Hong D.: Collision resistance of the JH hash function. IEEE Trans. Inf. Theory 58(3), 1992–1995 (2012).

    Google Scholar 

  18. Lee J., Kwon D.: The security of Abreast-DM in the ideal cipher model. IEICE Trans. 94-A(1), pp. 104–109 (2011).

  19. Lee J., Stam M.: A faster alternative to MDC-2. In: Kiayias A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 213–236. Springer, Heidelberg (2011).

  20. Lee J., Steinberger J.: Multi-property-preserving domain extension using polynomial-based modes of operation. In: Gilbert H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 573–596. Springer, Heidelberg (2010).

  21. Lee J., Stam M., Steinberger J.: The collision security of Tandem-DM in the ideal cipher model. In: Rogaway P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 561–577. Springer, Heidelberg (2011).

  22. Lucks S.: A collision-resistant rate-1 double-block-length hash function. In: Symmetric Cryptography, Dagstuhl Seminar Proceedings 07021 (2007).

  23. Merkle R.: One way hash functions and DES. In: Brassard G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990).

  24. Meyer C., Schilling M.: Chargement securise d’un programma avec code de detection de manipulation (1987)

  25. Özen O., Stam M.: Another glance at double-length hashing. In: Parker M.G. (ed.) Cryptography and Coding 2009. LNCS, vol. 5921, pp. 176–201. Springer, Heidelberg (2009).

  26. Preneel B., Govaerts R., Vandewalle J.: Hash functions based on block ciphers: a synthetic approach. In: Stinson D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 368–378. Springer, Heidelberg (1994).

  27. Ristenpart T., Shrimpton T.: How to build a hash function from any collision-resistant function. In: Kurosawa K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 147–163. Springer, Heidelberg (2007).

  28. Rogaway P., Steinberger J.: Constructing cryptographic hash functions from fixed-key blockciphers. In: Wagner D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 433–450. Springer, Heidelberg (2008).

  29. Rogaway P., Steinberger J.: Security/efficiency tradeoffs for permuation-based hashing. In: Smart N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 220–236. Springer, Heidelberg (2008).

  30. Shrimpton T., Stam M.: Building a collision-resistant function from non-compressing primitives. In: Aceto L., Damgård I., Goldberg L.A., Halldórssón M.M., Ingolfsdottir A., Walukiewic I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 643–654. Springer, Heidelberg (2008).

  31. Stam M.: Beyond uniformity: security/efficiency tradeoffs for compression functions. In: Wagner D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 397–412. Springer, Heidelberg (2008).

  32. Stam M.: Blockcipher based hashing revisited. In: Dunkelman O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 67–83. Springer, Heidelberg (2009).

  33. Steinberger J.: The collision intractability of MDC-2 in the ideal-cipher model. In: Naor M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 34–51. Springer, Heidelberg (2008).

  34. Wu H.: The hash function JH. Submission to NIST. http://www3.ntu.edu.sg/home/wuhj/research/jh/index.html (2008).

Download references

Acknowledgments

The work of J. Lee was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2013R1A1A2007488).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jooyoung Lee.

Additional information

Communicated by L. R. Knudsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Stam, M. MJH: a faster alternative to MDC-2. Des. Codes Cryptogr. 76, 179–205 (2015). https://doi.org/10.1007/s10623-014-9936-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-014-9936-6

Keywords

Mathematics Subject Classification

Navigation