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Abstract An alternative permutation decoding method is described which
can be used for any binary systematic encoding scheme, regardless whether the
code is linear or not. Thus, the method can be applied to some important codes
such as Z2Z4-linear codes, which are binary and, in general, nonlinear codes
in the usual sense. For this, it is proved that these codes allow a systematic
encoding scheme. As particular examples, this permutation decoding method
is applied to some Hadamard Z2Z4-linear codes.
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1 Introduction

We denote by Fn the set of all binary vectors of length n and by wt(v) the
(Hamming) weight of any vector v ∈ Fn, that is, the number of its nonzero
coordinates. The (Hamming) distance between two vectors u, v ∈ Fn is defined
as d(u, v) = wt(u + v). Given a binary code of length n, C ⊆ Fn, we denote
by dC its minimum distance, that is, the minimum distance between any pair
of different codewords in C. We say that C is a t-error-correcting code, where
t = b(dC − 1)/2c.

For a vector v ∈ Fn and a set I ⊆ {1, . . . , n}, |I| = k, we define vI ∈ Fk
as the vector v restricted to the I coordinates. For example, if I = {1, . . . , k}
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and v = (v1, . . . , vn), then vI = (v1, . . . , vk). If C is a binary code of length n,
then CI = {vI : v ∈ C}.

If C has size |C| = 2k, then C is a systematic code if there is a set I ⊆
{1, . . . , n} of k coordinate positions such that |CI | = 2k. In other words, CI
is Fk. Such a set I is also referred to as a set of systematic coordinates or an
information set. Given a systematic code of size |C| = 2k with information set
I, a systematic encoding for I is a one-to-one map f : Fk → Fn, such that
for any information vector a ∈ Fk, the corresponding codeword f(a) satisfies
that f(a)I = a.

Let us consider the group of permutations on n symbols, Sn, acting on
Fn by permuting the coordinates of each vector. That is, for every v =
(v1, . . . , vn) ∈ Fn and π ∈ Sn, π(v1, . . . , vn) = (vπ−1(1), . . . , vπ−1(n)). Then,
for any binary code C, we denote by PAut(C) its permutation automorphism
group, i.e., PAut(C) = {π ∈ Sn : π(C) = C}. Moreover, a binary code C ′

is said to be permutation equivalent to C if there exists π ∈ Sn such that
π(C) = C ′.

Not every binary code of size 2k is systematic, but every binary linear code
is systematic. Indeed, if C ⊆ Fn is a binary linear code of dimension k, it is
permutation equivalent to a code with generator and parity check matrices:

G =
(
Idk A

)
and H =

(
AT Idn−k

)
, (1)

where Idr denotes the r × r identity matrix, A is a k × (n − k) matrix, and
AT is the transpose of A. In general, for any information set I, we say that
a generator (resp. parity check) matrix is in standard form if the columns in
the positions inside (resp. outside of) I are the columns of Idk. Then the map
f : Fk → Fn given by

f(v) = v G, (2)

for any v ∈ Fk, is clearly a systematic encoding.

Permutation decoding was introduced in [12] and [9]. A description of the
standard method for linear codes can be found in [10, p.513]. Given a t-error-
correcting linear code C ⊆ Fn with fixed information set I, we consider y =
x + e the received vector, where x ∈ C and e is the error vector. We assume
that y has less than t + 1 errors, that is, wt(e) ≤ t. The idea of permutation
decoding is to use the elements of PAut(C) in order to move the nonzero
coordinates of e out of I. So, on the one hand the method is based on the
existence of some special subsets S ⊆ PAut(C), called PD-sets, verifying that
for any vector e ∈ Fn with wt(e) ≤ t, there is an element π ∈ S such that
wt(π(e)I) = 0. On the other hand, the main tool of this decoding algorithm is
the following theorem which gives us a necessary and sufficient condition for
a received vector y ∈ Fn having its systematic coordinates correct.

Theorem 1 ([10]) Let C be a t-error-correcting linear code with information
set I and parity check matrix H in standard form. Let y = x+ e, where x ∈ C
and e verifies that wt(e) ≤ t. Then

wt(HyT ) = wt(HeT ) ≤ t ⇐⇒ wt(eI) = 0. (3)
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Let C ⊆ Fn be a t-error-correcting linear code with information set I and
parity check matrix H in standard form. Assume that we have found a PD-set
for the information set I, S ⊆ PAut(C), and denote by y = x+ e the received
vector, where x ∈ C and e is the error vector. Then, the permutation decoding
algorithm works as follows:

1. If wt(HyT ) ≤ t, then the systematic coordinates of y are correct and we
can recover x from (2).

2. Else, we search π ∈ S such that wt(Hπ(y)T ) ≤ t. If there is no such π, we
conclude that more than t errors have occurred.

3. If we have successfully found π, we take x′ the unique codeword such that
x′I = π(y)I . Then, the decoded vector is π−1(x′).

In this paper, we show that Z2Z4-linear codes are systematic. Moreover, we
give a systematic encoding method for these codes. However, for Z2Z4-linear
codes, Theorem 1 holds just in some obvious cases, not in general. Never-
theless, we give an alternative method for permutation decoding which does
not need (3). Such method does not use the syndrome HyT to check whether
the systematic coordinates are correct or not. Therefore, the method can be
used for Z2Z4-linear codes, of course, assuming that we know an appropriate
PD-set.

The paper is organized as follows. In Section 2, we show that any Z2Z4-
linear code is systematic. Moreover, we give an information set and a system-
atic encoding for that information set. In Section 3, we see under which condi-
tions the standard permutation decoding method works for Z2Z4-linear codes.
We also present the alternative permutation decoding method. Such method
does not use the syndrome of a received vector in order to check whether the
systematic coordinates are correct or not. We show this new method applied
to some examples of Hadamard Z2Z4-linear codes. These codes are, in gen-
eral, nonlinear codes in the binary sense, but they have high error-correcting
capability.

2 Systematic encoding for Z2Z4-linear codes

For every pair n1, n2 of nonnegative integers, define the component-wise Gray
map Φ : Zn1

2 × Zn2
4 −→ Fn1+2n2 as

Φ(x, y) = (x, φ(y1), . . . , φ(yn2
))

∀x ∈ Zn1
2 , ∀y = (y1, . . . , yn2

) ∈ Zn2
4 ;

where φ : Z4 −→ Z2
2 is the usual Gray map, that is,

φ(0) = (0, 0), φ(1) = (0, 1), φ(2) = (1, 1), φ(3) = (1, 0).

The parameters n1, n2 of the Gray map Φ will be treated dependently on the
context.
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The Lee weights over the elements in Z4 are defined as ωtL(0) = 0, ωtL(1) =
ωtL(3) = 1, ωtL(2) = 2. Then, the Lee weight of a vector u = (u1, . . . , un1+n2) ∈
Zn1
2 × Zn2

4 is defined as ωtL(u) = wt(u1, . . . , un1
) +

∑n2

i=1 ωtL(un1+i). Fi-
nally, the Lee distance between two vectors u, v ∈ Zn1

2 × Zn2
4 is defined as

dL(u, v) = ωtL(u − v). Note that the Gray map is an isometry which trans-
forms Lee distances into Hamming distances.

Let C be a Z2Z4-linear code of length n = α + 2β and size |C| = 2k =
2γ+2δ [2]. As usual, denote by C the corresponding Z2Z4-additive code, i.e.
C = Φ−1(C). If C is a Z2Z4-additive code, it is permutation equivalent to a
Z2Z4-additive code with generator matrix of size (κ+ (γ−κ) + δ)× (κ+ (α−
κ) + (β − γ − δ + κ) + (γ − κ) + δ) as follows [2]:

G =

 Idκ Tb 2T2 0 0
0 0 2T1 2Idγ−κ 0
0 Sb Sq R Idδ

 , (4)

where Tb, Sb are matrices over Z2; T1, T2, R are matrices over Z4 with all their
entries in {0, 1} ⊂ Z4; and Sq is a matrix over Z4. We say that (α, β; γ, δ;κ) is
the type of C, and G is a matrix in standard form for the Z2Z4-additive code
C. Note that when α = 0, the Z2Z4-additive codes are linear codes over Z4,
and when β = 0, they are binary linear codes.

Given two vectors u, v ∈ Zα2 × Zβ4 , the inner product is defined as in [2]:

〈u, v〉 = 2(

α∑
i=1

uivi) +

α+β∑
j=α+1

ujvj ∈ Z4,

where the computations are made taking the zeros and ones in the α binary
coordinates as quaternary zeros and ones, respectively. The additive dual code
of C, denoted by C⊥, is then defined in the standard way:

C⊥ = {y ∈ Zα2 × Zβ4 : 〈x, y〉 = 0 for all x ∈ C}.

It is also shown in [2] that if C has a generator matrix in standard form (4),
then C⊥ can be generated by the matrix:

H =

T tb Idα−κ 0 0 2Stb
0 0 0 2Idγ−κ 2Rt

T t2 0 Idβ+κ−γ−δ T t1 −
(
Sq +RT1

)t
 , (5)

which also represents a parity check matrix for C. Moreover, C⊥ is a Z2Z4-
additive code of type (α, β; γ̄, δ̄; κ̄), where

γ̄ = α+ γ − 2κ,
δ̄ = β − γ − δ + κ,
κ̄ = α− κ.

(6)

There are some cases where the systematic encoding of C is clear. The first
case is when C is linear. Then, we can apply simply the standard systematic
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encoding for linear codes by considering the generator matrix G of C as in
(1). It is clear that C is linear, for example, when β = 0 and also when δ = 0.
In general, if G is a generator matrix of C = Φ−1(C) as in (4), where {ui}γi=1

and {vj}δj=1 are the row vectors of order two and order four in G, respectively,
then C is a binary linear code if and only if 2vj ∗ vk ∈ C, for all j, k satisfying
1 ≤ j < k ≤ δ, where ∗ is the component-wise product [5].

The second case is when γ = κ. If we consider a code C with γ = κ, then
it is permutation equivalent to a code with generator and the parity check
matrices

G =

(
Idκ Tb 2T2 0
0 Sb Sq Idδ

)
, H =

(
T tb Idα−κ 0 2Stb
T t2 0 Idβ+κ−γ−δ −Stq

)
. (7)

It is clear that for any information vector (u, v) ∈ Zγ2 × Zδ4, we have that

(u, v)G = (u, z, v) for some z ∈ Zα−γ2 × Zβ−δ4 and, therefore, the set I =
{1, . . . , κ, α + β − δ + 1, . . . , α + β} is a set of systematic coordinates. Hence,
we have the following systematic encoding:

f(a) = Φ(Φ−1(a)G), ∀a ∈ Fk. (8)

Even though in those cases a systematic encoding is clear, we can not use
the same method to Z2Z4-linear codes in general. Therefore, we are going to
define a method that use the Z2Z4-linearity of the code and can be used for
all values of α, β, γ, δ and κ.

Let us consider a Z2Z4-additive code C of type (α, β; γ, δ;κ) with a genera-
tor matrix in standard form (4) and C = Φ(C). For each quaternary coordinate
position α+ i, with i ∈ {1, . . . , β}, we denote by ϕ1(α+ i) and ϕ2(α+ i) the
corresponding pair of binary coordinate positions in {1, . . . , α + 2β}, that is,
ϕ1(α+ i) = α+ 2i− 1 and ϕ2(α+ i) = α+ 2i. We define the following sets of
coordinate positions in {1, . . . , α+ 2β}:
J1 = {1, . . . , κ}, |J1| = κ.
J2 = {j1, . . . , jγ−κ}, where ji = ϕ1(α+ β + κ− γ − δ + i), |J2| = γ − κ.
J3 = {ϕ1(α+β−δ+1), ϕ2(α+β−δ+1), . . . , ϕ1(α+β), ϕ2(α+β)}, |J3| = 2δ.

Note that J1, J2, J3 are related with the column indices of Idκ, Idγ−κ, Idδ
in (4), respectively. We are going to show that J = J1 ∪ J2 ∪ J3 is a set of
systematic coordinates for the Z2Z4-linear code C. We shall refer to J as the
standard information set or standard set of systematic coordinates.

Given an information vector a = (a1, . . . , aγ+2δ) ∈ Fγ+2δ, we consider
the representation a = (b, c, d), where b = (a1, . . . , aκ), c = (c1, . . . , cγ−κ) =
(aκ+1, . . . , aγ) and d = (aγ+1, . . . , aγ+2δ). Note that Φ−1(a) = (b, c, d′) ∈
Zγ2 × Zδ4, where d′ = Φ−1(d).

For a quaternary vector x = (x1, . . . , x`) of arbitrary length `, define
Φ1(x) = (φ1(x1), . . . , φ1(x`)), where φ1 is the first component of the Gray
map, i.e., φ1(0) = φ1(1) = 0 and φ1(2) = φ1(3) = 1. Then, we define the
bijection σ : Zγ2 × Zδ4 −→ Zγ2 × Zδ4 as

σ(Φ−1(a)) = σ(b, c, d′) = (b, c+ Φ1(d′R), d′). (9)
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We remark that σ is not a group automorphism of Zγ2 × Zδ4. For example,
assume that R is a 1 × 1 matrix (hence γ − κ = δ = 1) with its entry
equal to 1. Then, we easily obtain that σ(1, . . . , 1, 1, 1) = (1, . . . , 1, 1, 1), but
σ (−(1, . . . , 1, 1, 1)) = σ(1, . . . , 1, 1, 3) = (1, . . . , 1, 0, 3) which is not the in-
verse element of (1, . . . , 1, 1, 1). Note also that c + Φ1(d′R) = Φ1(2c + d′R) =(
Φ(Φ−1(a)G)

)
J2
.

Now, we have(
Φ(σ(Φ−1(a))G)

)
J

= (b, Φ1(2c+ 2Φ1(d′R) + d′R), d)

= (b, c+ Φ1(d′R) + Φ1(d′R), d) = (b, c, d).

It follows that the codeword σ(Φ−1(a))G verifies that(
Φ(σ(Φ−1(a))G)

)
J

= (b, c, d) = a.

Since |J | = κ+ γ − κ+ 2δ = γ + 2δ, we conclude that J is a set of systematic
coordinates. Therefore, we have proved the following theorem.

Theorem 2 If C is a Z2Z4-linear code of type (α, β; γ, δ;κ), then C is a
systematic code. Moreover, if we assume that the generator matrix of C =
Φ−1(C) is in standard form (4), then J = J1 ∪ J2 ∪ J3 is a set of systematic
coordinates for C.

Note that in the case γ = κ, we have a = (b, d), hence σ is the identity
map. Therefore, as a result, for γ = κ we obtain the same systematic encoding
function given in (8).

Corollary 1 Let C be a Z2Z4-linear code of length n, size |C| = 2k and
such that C = Φ−1(C) has generator matrix in standard form (4). Then, the
function f : Fk −→ Fn defined as

f(a) = Φ
(
σ
(
Φ−1(a)

)
G
)
, ∀a ∈ Fk (10)

is a systematic encoding for C and the information set J .

The following example shows that the set of systematic coordinates is not
unique, in general.

Example 1 Consider the Z2Z4-additive code C generated by

G =

 1 1 2 0 0
0 0 2 2 0
0 1 1 1 1

 .

Let C = Φ(C) be the corresponding Z2Z4-linear code in F8. A set of systematic
coordinates is {2, 4, 6, 8}. However, the standard set of systematic coordinates
would be {1, 5, 7, 8}.

Note that this encoding method requires, in some cases, two products by
the generator matrix. However, this is not a meaningful change of complexity
order.
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3 An alternative permutation decoding algorithm

In this section, we are going to see that the standard permutation decoding
algorithm can be applied to Z2Z4-linear codes just in a few cases. This is
because, even if we find a PD-set, Theorem 1 can not be used in general. We
shall present an alternative permutation decoding algorithm where Theorem 3
replaces Theorem 1.

Let C be a t-error correcting Z2Z4-linear code with information set J . Let
C = Φ−1(C) be the corresponding Z2Z4-additive code of type (α, β; γ, δ;κ).
On the one hand, we have seen that if C is linear, then the usual systematic
encoding can be applied considering the matrices as in (1), so Theorem 1
works. On the other hand, if γ = κ, then we have seen that we can assume
that C has a parity check matrix H containing the identity matrix as in (7).
Then, denote the received vector y = x+ e ∈ Fα+2β , where c ∈ C and e is the
error vector. It is easy to see that we may adapt Theorem 1 to this context,
that is, we have that, under the condition wt(e) ≤ t,

ωtL(HΦ−1(y)T ) = ωtL(HΦ−1(e)T ) ≤ t ⇐⇒ wt(eJ) = 0. (11)

where, recall that ωtL() represents the Lee weight. We say that C satisfies
(11) if for all error vector e such that wt(e) ≤ t we have that e satisfies (11).
The following result shows that in the nonlinear case, (11) holds if and only if
γ = κ.

Proposition 1 Let C be a t-error-correcting Z2Z4-additive code of length n,
type (α, β; γ, δ;κ) and parity check matrix H, such that C = Φ(C) is a binary
nonlinear code. Then, C satisfies (11) if and only if γ = κ.

Proof: The case γ = κ has been discussed above, so assume γ > κ.
Denote by ei the binary vector of length n which has weight one and

its nonzero coordinate is at position i (1 ≤ i ≤ n). Define the three binary
coordinate sets:

L1 = {κ+ 1, · · · , α},
L2 = {ϕ1(α+ 1), ϕ2(α+ 1), . . . , ϕ1(α+β+κ−γ− δ), ϕ2(α+β+κ−γ− δ)},
L3 = {j1, . . . , jγ−κ}, where ji = ϕ2(α+ β + κ− γ − δ + i).

We have that L = L1 ∪ L2 ∪ L3 = {1, . . . , n} \ J , where J is the standard
information set. First, note that, by the definition of H as in (5), it is easy to
check that for k1, . . . , kr ∈ L3 we have that ωtL(HΦ−1(ek1 + · · ·+ekr )T ) ≥ 2r.
Second, ωtL(HΦ−1(e)T ) = ωtL(HΦ−1(ε1)T ) + ωtL(HΦ−1(ε2)T ), where ε1 =
(ε11, . . . , ε

n
1 ) ∈ Fn is given by (ε1)L1

= eL1
, εi1 = 0 if i /∈ L1, and ε2 =

(ε12, . . . , ε
n
2 ) ∈ Fn is given by (ε2)L\L1

= eL\L1
, εi2 = 0 if i ∈ L1. By using

these properties, we will see that there exists an error vector of weight at most
t not satisfying (11).

Consider an error vector e ∈ Fn such that wt(e) = t, wt(eJ) = 0 and
wt(eL3

) 6= 0. If wt(eL2
) = 0, we obtain ωtL(HΦ−1(e)T ) = ωtL(HΦ−1(ε1)) +

ωtL(HΦ−1(ε2)) ≥ wt(ε1) + 2wt(ε2) > wt(e) = t and e does not satisfy (11).
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Now assume wt(eL2) 6= 0. If ωtL(HΦ−1(e)T ) > t, then we have finished. If
ωtL(HΦ−1(e)T ) ≤ t, since wt(eL3) 6= 0 and for all j ∈ L3 ωtL(HΦ−1(ej)

T ) ≥
2, we have that there exists i ∈ L2 such that wt(e+ei) = t−1 and ωtL(HΦ−1(e+
ei)

T ) > t. In both cases, we have that C does not satisfy (11). ut

Theorem 3 Let C be a binary systematic t-error-correcting code of length n.
Let I be a set of systematic coordinates and let f be a systematic encoding for
I. Suppose that y = x + e is a received vector, where x ∈ C and wt(e) ≤ t.
Then, the systematic coordinates of y are correct, i.e. yI = xI , if and only if
wt(y + f(yI)) ≤ t.

Proof: If wt(y+ f(yI)) ≤ t, then f(yI) is the closest codeword to y, that
is, f(yI) = x. Hence the systematic coordinates are the same yI = xI .

If xI = yI , then wt(y + f(yI)) = wt(y + x) = wt(e) ≤ t. ut

Now, let us consider a Z2Z4-linear code C with information set I. Assume
that S ⊆ PAut(C) is a PD-set for I and y is a received vector. As an alternative
method with respect to the algorithm described in Section 1 we can use the
following decoding process:

1. If wt(y + f(yI)) ≤ t, then x = f(yI) is the decoded vector and yI is the
information vector.

2. Else, we search π ∈ S such that wt(π(y) + f(π(y)I)) ≤ t. If there is no
such π, we conclude that more than t errors have occurred.

3. If we have successfully found π, then the decoded vector is

x = π−1(f(π(y)I)).

Note that wt(π(y) + f(π(y)I)) ≤ t implies that f(π(y)I) is the closest
codeword to π(y). Therefore, the closest codeword to y is π−1(f(π(y)I)).

Finally, we show through the next two examples, how to apply a permuta-
tion decoding for Z2Z4-linear codes using the previous methods. Both exam-
ples correspond to Hadamard Z4-linear codes (Z2Z4-linear codes with α = 0).
Note that, using a code in standard form, it is easy to see that the binary α
coordinates are always systematic, so they do not affect to the permutation
decoding methods applied.

A binary Hadamard code is a binary code of length n, 2n codewords and
minimum distance n/2, which can be constructed from a Hadamard matrix
[1,10]. They have a high error correcting capability t = b(n− 2)/4c. However,
linear Hadamard codes are not suitable for a syndrome decoding since the
number of syndromes is also very high. Recently, for these codes, a partial
permutation decoding, that is a permutation decoding up to s < t errors, was
presented in [6]. Hadamard Z2Z4-linear codes have been completely classified
[3,7] and they include the linear case. The examples below are in fact linear,
but we do not use their linearity to apply the permutation decoding algorithms.
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Example 2 Consider the Z2Z4-additive code C with generator and parity check
matrices:

G =

(
3 2 1 0
2 3 0 1

)
, H =

(
1 0 1 2
0 1 2 1

)
.

The corresponding Z2Z4-linear code C = Φ(C) is a 1-error-correcting code
of type (0, 4; 0, 2; 0) (i.e., C is a Z4-linear code). In fact, C is a Hadamard
Z4-linear code [7]. Let ϑ = (1, 3, 5, 7)(2, 4, 6, 8). It is straightforward to check
that ϑ ∈ PAut(C) (note that C is a quaternary cyclic code) [11]. Moreover,
S = {id, ϑ, ϑ2} is a PD-set for the standard information set I = {5, 6, 7, 8}.
Since γ = κ, we can use the systematic encoding f defined in (8).

For example, let a = (0, 1, 0, 1) ∈ F4 be an information vector. Then, the
corresponding codeword is

x = f(a) = Φ
(
Φ−1(a)G

)
= Φ ((1, 1)G) = Φ(1, 1, 1, 1) = (0, 1, 0, 1, 0, 1, 0, 1).

Suppose now that the received vector is y = x+e, where e = (0, 0, 0, 0, 0, 0, 0, 1).
The syndrome of y is

Φ
(
HΦ−1(y)T

)
= Φ

(
H(1, 1, 1, 0)T

)
= Φ((2, 3)T ) = (1, 1, 1, 0)T ,

which has weight 3 > t = 1. However, considering the vector z = ϑ(y) =
(0, 0, 0, 1, 0, 1, 0, 1), we have that the syndrome is

Φ
(
HΦ−1(z)T

)
= Φ((3, 0)T ) = (1, 0, 0, 0)T ,

which has weight 1 ≤ t = 1. Therefore, the systematic coordinates of z have
no errors. Hence, we decode y as

ϑ−1
(
Φ(Φ−1(zI)G)

)
= ϑ−1 (Φ((1, 1)G)) = ϑ−1(Φ(1, 1, 1, 1))

= (0, 1, 0, 1, 0, 1, 0, 1) = x,

and the information vector is xI = (0, 1, 0, 1).

Example 3 Consider the Z2Z4-additive code C with generator matrix:

G =

2 2 2 0 0 2 0 0
3 2 1 2 3 0 1 0
2 3 0 3 2 1 0 1

 .

The corresponding Z2Z4-linear code C = Φ(C) is a 3-error-correcting code
of type (0, 8; 1, 2; 0) (i.e., C is a Z4-linear code). In fact, C is also a Hadamard
Z4-linear code [7]. We know that 〈ϑ1, ϑ2, ϑ3, ϑ4〉 ⊆ PAut(C) [11], where

ϑ1 =(1, 5)(2, 6)(3, 11)(4, 12)(9, 13)(10, 14)(7, 15)(8, 16),

ϑ2 =(1, 3, 5, 11)(2, 4, 6, 12)(9, 7, 13, 15)(10, 8, 14, 16),

ϑ3 =(9, 13)(10, 14)(7, 15)(8, 16),

ϑ4 =(1, 9)(2, 10)(5, 13)(6, 14).

(12)
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Moreover, it is easy to check using the Magma software package [4] that
we can take the elements in the subgroup S = 〈ϑ1, ϑ2, ϑ4〉 as a PD-set for
the information set I = {11, 13, 14, 15, 16}. In this case, we can not use the
standard permutation decoding, since γ 6= κ. However, we can still perform a
permutation decoding using the alternative method presented in this section.

For example, let a = (1, 1, 1, 1, 1) ∈ F5 be an information vector. Using the
systematic encoding given by (10), the corresponding codeword is

x = f(a) = Φ
(
σ(Φ−1(a))G

)
= Φ ((1 + 1, 2, 2)G)

= Φ(2, 2, 2, 2, 2, 2, 2, 2) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1).

Suppose now that the received vector is y = x+ e, where

e = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1).

By considering the standard information set, the information coordinates of y
are yI = (1, 0, 1, 0, 0) and

f(yI) = Φ(σ(Φ−1(yI))G) = (0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0),

so wt(y + f(yI)) = 5 > t = 3. However, considering the vector z = ϑ1(y) =
(1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1), we have that zI = (1, 1, 1, 1, 1) and

f(zI) = Φ(σ(Φ−1(zI))G) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),

so wt(z + f(zI)) = 3 ≤ t = 3. Therefore, the systematic coordinates of z have
no errors. Hence, we decode y as ϑ−11 (f(zI)) = x and the information vector
is xI = (1, 1, 1, 1, 1).
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