On a 5-design related to a putative extremal doubly even self-dual code of length a multiple of 24

Masaaki Harada*

September 30, 2018

Abstract

By the Assmus and Mattson theorem, the codewords of each nontrivial weight in an extremal doubly even self-dual code of length 24 m form a self-orthogonal 5 -design. In this paper, we study the codes constructed from self-orthogonal 5 -designs with the same parameters as the above 5 -designs. We give some parameters of a self-orthogonal 5 -design whose existence is equivalent to that of an extremal doubly even self-dual code of length $24 m$ for $m=3,4,5,6$. If $m \in\{1, \ldots, 6\}$, $k \in\{m+1, \ldots, 5 m-1\}$ and $(m, k) \neq(6,18)$, then it is shown that an extremal doubly even self-dual code of length $24 m$ is generated by codewords of weight $4 k$.

Keywords self-orthogonal t-design, extremal doubly even self-dual code, weight enumerator
Mathematics Subject Classification 94B05, 05B30

1 Introduction

A doubly even self-dual code of length n exists if and only if n is divisible by 8 . The minimum weight $d(C)$ of a doubly even self-dual code C of length

[^0]n is bounded above by $d(C) \leq 4\lfloor n / 24\rfloor+4$ [10]. A doubly even self-dual code meeting the bound is called extremal. In case that $n \equiv 0(\bmod 24)$, the only known extremal doubly even self-dual codes are the extended Golay code and the extended quadratic residue code of length 48. The existence of an extremal doubly even self-dual code of length 72 is a long-standing open question (13].

A t - (v, k, λ) design is called self-orthogonal if the block intersection numbers have the same parity as the block size k (see [14]). If \mathcal{D} is a selforthogonal $t-(v, k, \lambda)$ design with k even, then the code $C(\mathcal{D})$, which is generated by the rows of an incidence matrix of \mathcal{D}, is a self-orthogonal code. By the Assmus and Mattson theorem [2], the supports of the codewords of weight $4 k(\neq 0,24 m)$ in an extremal doubly even self-dual code of length $24 m$ form a self-orthogonal 5 -design. We denote the parameters of the design by $5-\left(24 m, 4 k, \lambda_{24 m, 4 k}\right)$. Then, throughout this paper, we denote any self-orthogonal $5-\left(24 m, 4 k, \lambda_{24 m, 4 k}\right)$ design by $\mathcal{D}_{24 m, 4 k}$. That is, $\mathcal{D}_{24 m, 4 k}$ is a self-orthogonal 5 -design with the same parameters as the self-orthogonal 5 -design formed from the supports of the codewords of weight $4 k$ in an extremal doubly even self-dual code of length $24 m$. This gives rise to a natural question, namely, is the code $C\left(\mathcal{D}_{24 m, 4 k}\right)$ always an extremal doubly even self-dual code?

It is well known that $C\left(\mathcal{D}_{24,8}\right)$ is the extended Golay code (see [1, Theorem 8.6.2]). It was shown that $C\left(\mathcal{D}_{24 m, 4 m+4}\right)(m=2,3,4)$ is an extremal doubly even self-dual code [9, 7, 6], respectively. This means that the existence of an extremal doubly even self-dual code of length $24 m(m=1,2,3,4)$ is equivalent to that of a self-orthogonal $5-\left(24 m, 4 k, \lambda_{24 m, 4 k}\right)$ design, where $\left(4 k, \lambda_{24 m, 4 k}\right)=(8,1),(12,8),(16,78)$ and $(20,816)$, respectively. The powerful tool which is used in [7, 9] is the use of fundamental equations, sometimes called the Mendelsohn equations [12] (see also e.g., [14]), obtained by counting the number of blocks that meet S in i points for some subset S of the point set. The approach in [6] is also similar to that in [7, 9] except that Gleason's theorem (see [10]) is employed to obtain stronger consequences.

In this paper, we study self-orthogonal 5-designs $C\left(\mathcal{D}_{24 m, 4 k}\right)$ for $k \in\{m+$ $2, \ldots, 5 m-1\}$, which are related to codewords of weight other than the minimum weight. More precisely, we consider a problem whether $C\left(\mathcal{D}_{24 m, 4 k}\right)$ is an extremal doubly even self-dual code or not for $m \in\{1, \ldots, 6\}$ and $k \in\{m+2, \ldots, 5 m-1\}$. In addition to the above approach done in [6, 7, 7], it is useful in this paper to observe weight enumerators of $C\left(\mathcal{D}_{24 m, 4 k}\right)$ and its dual codes, and singly even self-dual codes containing $C\left(\mathcal{D}_{24 m, 4 k}\right)$ and their
shadows. As a summary, in Table 四, we list some partial answers to the above problem for $m \in\{1, \ldots, 6\}$ and $k \in\{m+1, \ldots, 3 m\}$. For the cases $(24 m, 4 k)$ that $C\left(\mathcal{D}_{24 m, 4 k}\right)$ is self-dual, we list "Yes" in the second column of Table 1. When $C\left(\mathcal{D}_{24 m, 4 k}\right)$ is self-dual, we list "Yes" in the third column in case that $C\left(\mathcal{D}_{24 m, 4 k}\right)$ is extremal. We also list the possible minimum weights, when $C\left(\mathcal{D}_{24 m, 4 k}\right)$ is self-dual but not extremal. It is shown that $C\left(\mathcal{D}_{24 m, 4 k}\right)=C\left(\mathcal{D}_{24 m, 24 m-4 k}\right)$ for $m \in\{1, \ldots, 6\}$ and $k \in\{m+1, \ldots, 3 m-1\}$ (Proposition 9).

The main results of this paper are the following theorems.
Theorem 1. Suppose that $(24 m, k, \lambda)$ is each of the following:
(72, 24, 1406405), (72, 32, 238957796),
(96, 36, 28080500448), (96, 44, 1167789832440), (120, 56, 5156299310025435), (144, 68, 21788133027489299328).

Then the existence of a self-orthogonal 5-(24m, k, λ) design is equivalent to that of an extremal doubly even self-dual code of length $24 m$.

Theorem 2. Suppose that $m \in\{1, \ldots, 6\}$ and $k \in\{m+1, \ldots, 5 m-1\}$. If $(m, k) \neq(6,18)$, then an extremal doubly even self-dual code of length $24 m$ is generated by codewords of weight $4 k$.

Remark 3. For some cases (m, k), the above theorem is already known (see Table [1). It is still unknown whether $C\left(\mathcal{D}_{144,72}\right)$ is self-dual or not (see Remark (8).

2 Preliminaries

2.1 Self-dual codes and shadows

In this paper, codes mean binary codes. A code is called doubly even if every codeword has weight a multiple of 4. A code C is called self-orthogonal if $C \subset C^{\perp}$, and C is called self-dual if $C=C^{\perp}$, where C^{\perp} is the dual code of C under the standard inner product. A self-dual code which is not doubly even is called singly even, namely, a singly even self-dual code contains a codeword of weight $\equiv 2(\bmod 4)$. It is known that a self-dual code of length n exists

[^1]Table 1: Codes $C\left(\mathcal{D}_{24 m, 4 k}\right)(m=1, \ldots, 6, k=m+1, \ldots, 3 m)$

Parameters of $\mathcal{D}_{24 m, 4 k}$	Self-dual	Extremal	Ref.
($24,8,1$)	Yes	Yes	(see [1])
$(24,12,48)$	Yes	Yes	(14]
$(48,12,8)$	Yes	Yes	9]
$(48,16,1365)$	Yes	Yes	5
(48, 20, 36176)	Yes	Yes	5
(48, 24, 190680)	Yes	8, 12	
(72, 16, 78)	Yes	Yes	[7]
(72, 20, 20064)	Yes	12, 16	5
(72, 24, 1406405)	Yes	Yes*	
($72,28,30888000$)	Yes*	12, 16	
(72, 32, 238957796)	Yes	Yes*	
(72, 36, 693996160)	Yes	12, 16	5
(96, 20, 816)	Yes	Yes	6]
(96, 24, 257180)	Yes	16, 20	[5]
($96,28,29975400$)	Yes	12, 20 *	
(96, 32, 1390528685)	Yes	12, 16, 20	5
($96,36,28080500448$)	Yes	Yes*	
(96, 40, 261513764460)	Yes	12, 16, 20	[5]
(96, 44, 1167789832440)	Yes	Yes*	
(96, 48, 2561776811880)	Yes*	12, 16, 20	
(120, 24, 8855)	Yes	16, 24	[4]
(120, 28, 3146400)	Yes	16, 20, 24	
(120, 32, 502593700)	Yes	12, 16, 24^{*}	
(120, 36, 37237713920)	Yes*	12-24	
($120,40,1372275835848$)	Yes*	12, 24^{*}	
(120, 44, 26386953577600)	Yes*	12-24	
(120, 48, 274320081834480)	Yes*	12, 24^{*}	
(120, 52, 1582247888524800)	Yes*	12-24	
(120, 56, 5156299310025435)	Yes	Yes*	
(120,60, 9606041207517888)	Yes*	12-24	
(144, 28, 98280)	Yes	16, 20, 28	[8]
(144, 32, 37756202)	Yes	16-28	
(144, 36, 7479335776)	Yes	16, 20, $28{ }^{*}$	
(144, 40, 765322879032)	Yes	12-28	
($144,44,42785304274536$)	Yes	12, 16, 20, 28 *	
(144, 48, 1359454757387265)	Yes	12-28	
(144, 52, 25319185698144240)	Yes	12, 16, $28{ }^{*}$	
($144,56,283096123959568608)$	Yes*	12-28	
(144, 60, 1935608752827917264)	Yes	12, 288^{*}	
(144, 64, 8205989047403924124)	Yes	12-28	
(144, 68, 21788133027489299328)	Yes	Yes*	
$(144,72,36470135955078919440)$?	-	

if and only if n is even, and a doubly even self-dual code of length n exists if and only if n is divisible by eight. The minimum weight $d(C)$ of a doubly even self-dual code C of length n is bounded by $d(C) \leq 4\lfloor n / 24\rfloor+4$ [10]. A doubly even self-dual code meeting the bound is called extremal. In case that $n \equiv 0(\bmod 24)$, the only known extremal doubly even self-dual codes are the extended Golay code and the extended quadratic residue code of length 48. The existence of an extremal doubly even self-dual code of length 72 is a long-standing open question [13].

Let C be a singly even self-dual code and let C_{0} denote the subcode of codewords having weight $\equiv 0(\bmod 4)$. Then C_{0} is a subcode of codimension 1. The shadow S of C is defined to be $C_{0}^{\perp} \backslash C$. Shadows were introduced by Conway and Sloane [3], in order to provide restrictions on the weight enumerators of singly even self-dual codes (see [3 for fundamental results on shadows). Let D be a doubly even code of length $n \equiv 0(\bmod 8)$. Suppose that D has dimension $n / 2-1$ and D contains the all-one vector 1 . Then there are three self-dual codes lying between D^{\perp} and D, one of which is singly even and the others are doubly even (see [11]).

2.2 Self-orthogonal designs and Mendelsohn equations

A $t-(v, k, \lambda)$ design \mathcal{D} is a set X of v points together with a collection of k-subsets of X (called blocks) such that every t-subset of X is contained in exactly λ blocks. A t-design with no repeated block is called simple. In this paper, designs mean simple designs. It follows that every i-subset of points $(i \leq t)$ is contained in exactly $\lambda_{i}=\lambda\binom{v-i}{t-i} /\binom{k-i}{t-i}$ blocks. The number λ_{1} is traditionally denoted by r, and the total number of blocks is $b=\lambda_{0}$. A t-design can be represented by its (block-point) incidence matrix $A=\left(a_{i j}\right)$, where $a_{i j}=1$ if the j th point is contained in the i th block and $a_{i j}=0$ otherwise.

The block intersection numbers of a $t-(v, k, \lambda)$ design are the cardinalities of the intersections of any two distinct blocks. A $t-(v, k, \lambda)$ design is called self-orthogonal if the block intersection numbers have the same parity as the block size k (see [14]). The term self-orthogonal is due to a natural connection between such designs and self-orthogonal codes. Throughout this paper, we denote the code generated by the rows of an incidence matrix of \mathcal{D} by $C(\mathcal{D})$. If \mathcal{D} is a self-orthogonal $t-(v, k, \lambda)$ design with k even, then $C(\mathcal{D})$ is a self-orthogonal code.

Let \mathcal{D} be a $t-(v, k, \lambda)$ design. Let $v \in C(\mathcal{D})^{\perp}$ be a vector of weight $w>0$.

Denote by n_{i} the number of rows of an incidence matrix of \mathcal{D} intersecting exactly i positions of the support of v in ones. Then we have the system of equations:

$$
\begin{equation*}
\sum_{i=0}^{\min \{k, w\}}\binom{i}{j} n_{i}=\lambda_{j}\binom{w}{j} \quad(j=0,1, \ldots, t) \tag{1}
\end{equation*}
$$

These fundamental equations, which are sometimes called Mendelsohn equations [12] (see also [14]), are the powerful tool in the study of this paper. We note that $n_{i}=0$ if i is odd, $i>k$ or $i>w$.

The following lemma follows immediately.
Lemma 4. Let \mathcal{D} be a self-orthogonal $t-(v, k, \lambda)$ design with $k \equiv 0(\bmod 4)$.
(i) If the system of equations (1) has no solution $\left(n_{0}, n_{2}, \ldots\right)$ consisting of nonnegative integers for some w, then $C(\mathcal{D})^{\perp}$ contains no vector of weight w.
(ii) If the system of equations (11) has no solution $\left(n_{0}, n_{2}, \ldots\right)$ consisting of nonnegative integers for each w with $0<w<v, w \not \equiv 0(\bmod 4)$, then $C(\mathcal{D})$ is doubly even self-dual.

The complementary design $\overline{\mathcal{D}}$ of a design \mathcal{D} is obtained by replacing each block of \mathcal{D} by its complement. The following lemma is used in Section 4 to show that $C\left(\mathcal{D}_{24 m, 4 k}\right)=C\left(\mathcal{D}_{24 m, 24 m-4 k}\right)$ for $m \in\{1, \ldots, 6\}$ and $k \in$ $\{m+1, \ldots, 3 m-1\}$.

Lemma 5. Let \mathcal{D} be a self-orthogonal $t-(v, k, \lambda)$ design with k even. Suppose that $C(\mathcal{D})$ is self-dual. Then $C(\mathcal{D})=C(\overline{\mathcal{D}})$ if $\mathbf{1} \in C(\overline{\mathcal{D}})$, and $C(\overline{\mathcal{D}}) \subset C(\mathcal{D})$ with $|C(\mathcal{D}): C(\overline{\mathcal{D}})|=2$ otherwise.

Proof. Since $C(\mathcal{D})$ is self-dual, $\mathbf{1} \in C(\mathcal{D})$. It turns out that $C(\overline{\mathcal{D}}) \subseteq C(\mathcal{D})$ and $\langle C(\overline{\mathcal{D}}), \mathbf{1}\rangle=C(\mathcal{D})$. The result follows.

3 On the self-duality

In this section, we describe how to determine the self-duality given in the second column of Table 1 for the cases denoted by $*$ in Table 1 . For the other cases, the self-duality is determined by Lemma 4 (ii) only.

Proposition 6. The codes $C\left(\mathcal{D}_{72,28}\right), C\left(\mathcal{D}_{96,48}\right), C\left(\mathcal{D}_{120,60}\right)$ and $C\left(\mathcal{D}_{120,52}\right)$ are self-dual.

Proof. All cases are similar, and we only give the details for $C\left(\mathcal{D}_{72,28}\right)$.
Note that $\mathcal{D}_{72,28}$ has the following parameters:

$$
\begin{aligned}
& \lambda_{0}=4397342400, \lambda_{1}=1710077600, \lambda_{2}=650311200, \\
& \quad \lambda_{3}=241544160, \lambda_{4}=87516000, \lambda_{5}=30888000
\end{aligned}
$$

Let $v \in C\left(\mathcal{D}_{72,28}\right)^{\perp}$ be a vector of weight $w>0$. For each w of the cases with $w \equiv 1(\bmod 2)$ and $w \leq 8$, the system of equations (1) has no solution. In addition, for $w=10$, (1) has the following unique solution:

$$
\begin{aligned}
& n_{0}=41076475, n_{2}=1096595775, n_{4}=2375199750, \\
& \quad n_{6}=834337350, n_{8}=50284575, n_{10}=-151525 .
\end{aligned}
$$

Hence, there is no vector of weights $2,4,6,8,10$ in $C\left(\mathcal{D}_{72,28}\right)^{\perp}$. The number λ_{0} of blocks satisfies that $2^{32}<\lambda_{0}<2^{33}$. Therefore, $C\left(\mathcal{D}_{72,28}\right)^{\perp}$ is an even code such that the minimum weight is at least 12 and the dimension is at most 39.

Let D_{72} be a doubly even code of length 72 satisfying the conditions that D_{72} has dimension $\ell \in\{33,34,35,36\}$, both D_{72} and D_{72}^{\perp} have minimum weights at least 12 and $\mathbf{1} \in D_{72}$. We denote the weight enumerators of D_{72} and D_{72}^{\perp} by $W_{D_{72}}$ and $W_{D_{72}}$, respectively. In this case, $W_{D_{72}}$ can be written as:

$$
\begin{aligned}
& x^{72}+a x^{60} y^{12}+b x^{56} y^{16}+c x^{52} y^{20}+d x^{48} y^{24}+e x^{44} y^{28}+f x^{40} y^{32} \\
& +\left(2^{\ell}-2-2 a-2 b-2 c-2 d-2 e-2 f\right) x^{36} y^{36}+\cdots+y^{72}
\end{aligned}
$$

using nonnegative integers a, b, c, d, e, f. Set $W_{D_{72}}=\sum_{i=0}^{72} B_{i} x^{72-i} y^{i}$. By the MacWilliams identity, we have:

$$
\begin{aligned}
2^{\ell} B_{2}= & 2^{6}\left(\chi_{2, \ell}+36 a+25 b+16 c+9 d+4 e+f\right) \\
2^{\ell} B_{4}= & 2^{6}\left(\chi_{4, \ell}+5640 a+2450 b+800 c+114 d-56 e-30 f\right) \\
2^{\ell} B_{6}= & 2^{6}\left(\chi_{6, \ell}+313060 a+77385 b+8976 c-1223 d+196 e+433 f\right), \\
2^{\ell} B_{8}= & 2^{6}\left(\chi_{8, \ell}+7582080 a+811360 b-43520 c-5280 d+1408 e-4000 f\right), \\
2^{\ell} B_{10}= & 2^{6}\left(\chi_{10, \ell}+86892960 a+887656 b-372096 c+100584 d-17248 e\right. \\
& +26536 f),
\end{aligned}
$$

where $\left(\chi_{2 i, 33}, \chi_{2 i, 34}, \chi_{2 i, 35}\right)$ are as follows:

$$
\begin{aligned}
& (-4831838127,-9663676335,-19327352751), \\
& (84557200770,169114369410,338228706690), \\
& (-958309695231,-1916624273151,-3833253428991), \\
& (7906469297760,15812564565600,31624755101280), \\
& (-50582253079512,-101181262793688,-20237928222040),
\end{aligned}
$$

for $i=1,2,3,4,5$, respectively.
The assumptions $B_{2 i}=0(i=1,2,3,4,5)$ yield the following:

$$
b=\alpha_{\ell}-12 a, c=\beta_{\ell}+66 a, d=\gamma_{\ell}-220 a, e=\delta_{\ell}+495 a, f=\varepsilon_{\ell}-792 a,
$$

where

$$
\begin{aligned}
\left(\alpha_{\ell}, \beta_{\ell}, \gamma_{\ell}, \delta_{\ell}, \varepsilon_{\ell}\right)= & (30105,2273040,57830955,549766080,2075173947) \\
& (61497,4534992,115706955,1099419840,4150537083) \\
& (124281,9058896,231458955,2198727360,8301263355),
\end{aligned}
$$

for $\ell=33,34,35$, respectively. For $\ell=33,34,35$, it follows from $b \geq 0$ that

$$
e=\delta_{\ell}+495 a \leq \delta_{\ell}+\frac{165}{4} \alpha_{\ell}<4397342400=\lambda_{0}
$$

Since $C\left(\mathcal{D}_{72,28}\right)$ contains at least 4397342400 codewords of weight 28 , we obtain a contradiction. Therefore, $C\left(\mathcal{D}_{72,28}\right)$ must be self-dual.

Proposition 7. The codes $C\left(\mathcal{D}_{120,36}\right), C\left(\mathcal{D}_{120,40}\right), C\left(\mathcal{D}_{120,44}\right), C\left(\mathcal{D}_{120,48}\right)$ and $C\left(\mathcal{D}_{144,56}\right)$ are self-dual.

Proof. All cases are similar, and we only give the details for $C\left(\mathcal{D}_{120,40}\right)$.
Note that $\mathcal{D}_{120,40}$ has the following parameters:

$$
\begin{aligned}
& \lambda_{0}=397450513031544, \lambda_{1}=132483504343848, \lambda_{2}=43418963608488 \\
& \quad \lambda_{3}=13982378111208, \lambda_{4}=4421777693288, \lambda_{5}=1372275835848
\end{aligned}
$$

Let $v \in C\left(\mathcal{D}_{120,40}\right)^{\perp}$ be a vector of weight $w>0$. For each w of the cases with $w \equiv 1(\bmod 2)$ and $w \leq 8$, the system of equations (1) has no solution. The number λ_{0} of blocks satisfies that $2^{48}<\lambda_{0}<2^{49}$. Hence, $C\left(\mathcal{D}_{120,40}\right)^{\perp}$ is
an even code such that the minimum weight is at least 10 and the dimension is at most 71 .

Let D_{120} be a doubly even code of length 120 satisfying the conditions that D_{120} has dimension $\ell \in\{49, \ldots, 60\}, D_{120}$ has minimum weight at least $12, D_{120}^{\perp}$ has minimum weight at least 10 and $\mathbf{1} \in D_{120}$. We show that $\ell \neq 49,50, \ldots, 59$ in the following two steps.

The first step shows that $\ell \neq 49, \ldots, 58$. The approach is similar to that given in Proposition 6. Suppose that $\ell \in\{49, \ldots, 58\}$. Then, by considering the possible weight enumerators of D_{120} and D_{120}^{\perp}, one can obtain a contradiction for each ℓ. Since the situation is more complicated than that for $C\left(\mathcal{D}_{72,28}\right)$ considered in Proposition 6, we omit the details to save space. We remark that this argument does not work to show that $\ell \neq 59$.

The second step shows that $\ell \neq 59$. The approach is to consider singly even self-dual codes containing D_{120}. Suppose that $\ell=59$. Since D_{120} contains $\mathbf{1}$, there are three self-dual codes lying between D_{120}^{\perp} and D_{120}, one of which is singly even and the others are doubly even (see [11]). We denote the singly even code by C_{120}, noting that D_{120} is the subcode $\left(C_{120}\right)_{0}$ consisting of codewords of weight $\equiv 0(\bmod 4)$ of C_{120}. Let S_{120} be the shadow of C_{120}. Since the weight of a vector in S_{120} is divisible by four [3] and D_{120}^{\perp} has minimum weight at least $10, C_{120}$ and S_{120} have minimum weights at least 10 and 12 , respectively. Using [3, (10) and (11)], from the condition on the minimum weights, one can determine the possible weight enumerators $\sum_{i=0}^{120} A_{i} x^{120-i} y^{i}$ and $\sum_{i=0}^{120} B_{i} x^{120-i} y^{i}$ of C_{120} and S_{120}, respectively. In this case, the possible weight enumerators can be written using integers a, b, c, d, e, f, g, h.

We investigate the number of codewords of weight 40. In this case, we have that

$$
\begin{aligned}
A_{40}=198725556937080 & +32980992 a-28160 b-15504 c \\
& +4896 d+161525 e-599494 f-4385880 g+91345008 h .
\end{aligned}
$$

Using the mathematical software Mathematica, we have verified that $A_{2 i} \geq$ $0(i=5, \ldots, 16)$ and $B_{4 i} \geq 0(i=3, \ldots, 9)$ yield

$$
A_{40}<397450513031544=\lambda_{0}
$$

where $A_{2 i}(i=5, \ldots, 16)$ and $B_{4 i}(i=3, \ldots, 9)$ are listed in Tables 2 and 3, respectively. Since $C\left(\mathcal{D}_{120,40}\right)$ contains at least 397450513031544 codewords of weight 40 , we obtain a contradiction. Therefore, $C\left(\mathcal{D}_{120,40}\right)$ must be selfdual. This completes the proof.

Table 2: Weight enumerator of C_{120}

i	A_{i}
10	h
12	$g+30 h$
14	$f+24 g+425 h$
16	$e+18 f+264 g+3760 h$
18	$d+12 e+139 f+1736 g+23100 h$
20	$c+6 d+50 e+564 f+7380 g+103256 h$
22	$64 b-3 d+28 e+1009 f+19800 g+339180 h+26391755$
24	$4096 a-384 b-20 c-88 d-441 e-1218 f+25080 g+789840 h$
26	$265912320-49152 a-64 b-102 d-1288 e-10717 f-35640 g+1096410 h$
28	$296894880+221184 a+4864 b+190 c+564 d+364 e-20424 f-235590 g-118980 h$
30	$29559455744-311296 a-6720 b+1210 d+7800 e+7631 f-473880 g-4961862 h$
32	$238259763105-946176 a-25984 b-1140 c-1944 d+9971 e+103766 f-182952 g-13088880 h$

Table 3: Weight enumerator of S_{120}

i	B_{i}
12	a
16	$17250-24 a-b$
20	$-315744+276 a+22 b+c$
24	$42581630-2024 a-231 b-20 c-64 d$
28	$6084129120+10626 a+1540 b+190 c+1152 d+4096 e$
32	$47571870250-42504 a-7315 b-1140 c-9792 d-65536 e-262144 f$
36	$18824260734240+134596 a+26334 b+4845 c+52224 d+491520 e+3670016 f+16777216 g$

Remark 8. If $C\left(\mathcal{D}_{144,72}\right)^{\perp}$ has minimum weight at least 10 , then one can show that $C\left(\mathcal{D}_{144,72}\right)$ is self-dual by an argument similar to that described in above.

For $m \in\{1, \ldots, 6\}$ and $k \in\{m+1, \ldots, 3 m-1\}$, the self-duality of $C\left(\mathcal{D}_{24 m, 4 k}\right)$ has been verified above. As a consequence, we have the following:

Proposition 9. If $m \in\{1, \ldots, 6\}$ and $k \in\{m+1, \ldots, 3 m-1\}$, then $C\left(\mathcal{D}_{24 m, 4 k}\right)=C\left(\mathcal{D}_{24 m, 24 m-4 k}\right)$.

Proof. It is trivial that $\mathcal{D}_{24 m, 24 m-4 k}=\overline{\mathcal{D}_{24 m, 4 k}}$. For $m \in\{1, \ldots, 6\}$ and $k \in\{m+1, \ldots, 3 m-1\}$, the codes $C\left(\mathcal{D}_{24 m, 4 k}\right)$ are self-dual (see Table (1).

For $(24 m, 4 k) \in\{(72,16),(72,32),(120,32),(144,32),(144,64)\}$, since the 5 -design $\overline{\mathcal{D}_{24 m, 4 k}}$ has odd $r, \mathbf{1} \in C\left(\overline{\mathcal{D}_{24 m, 4 k}}\right)$. Consider the remaining cases. The system of equations (11) has no solution $\left(n_{0}, n_{2}, \ldots\right)$ consisting of nonnegative integers for each odd w. By Lemma 4 (i), $\mathbf{1} \in C\left(\overline{\mathcal{D}_{24 m, 4 k}}\right)$. The result follows from Lemma 5 .

By the above proposition, for $m \in\{1, \ldots, 6\}$ and $k \in\{m+1, \ldots, 3 m-1\}$, $C\left(\mathcal{D}_{24 m, 4 k}\right)$ and $C\left(\mathcal{D}_{24 m, 24 m-4 k}\right)$ are self-dual. In addition, $C\left(\mathcal{D}_{24 m, 12 m}\right)$ are self-dual for $m \in\{1, \ldots, 5\}$. This completes the proof of Theorem 2,

4 On the minimum weights

In this section, we describe how to determine the minimum weights given in the third column of Table 1 for the cases denoted by $*$ in Table 1 . For the other cases, the minimum weights are determined by Lemma 4 (i) only. The result in this section completes the proof of Theorem 1 .

$4.1 \quad(24 m, 4 k)=(72,24),(72,32)$

Suppose that $4 k \in\{24,32\}$. Let $v \in C\left(\mathcal{D}_{72,4 k}\right)^{\perp}$ be a vector of weight $w>0$. For each $w \in\{4,8\}$, the system of equations (1) has no solution. From the result in the previous section, $C\left(\mathcal{D}_{72,4 k}\right)$ is a doubly even self-dual code. By Lemma 4 (i), $C\left(\mathcal{D}_{72,4 k}\right)$ is a doubly even self-dual code of length 72 and minimum weight at least 12 .

By Gleason's theorem (see [10]), the weight enumerator of a doubly even self-dual code of length n can be written as:

$$
\sum_{i=0}^{\lfloor n / 24\rfloor} a_{i}\left(x^{8}+14 x^{4} y^{4}+y^{8}\right)^{n / 8-3 i}\left(x^{4} y^{4}\left(x^{4}-y^{4}\right)^{4}\right)^{i}
$$

using integers a_{i}. Hence, the weight enumerator of $C\left(\mathcal{D}_{72,4 k}\right)$ can be written as:

$$
\begin{aligned}
& x^{72}+\alpha x^{60} y^{12}+(249849-12 \alpha) x^{56} y^{16}+(18106704+66 \alpha) x^{52} y^{20} \\
& +(462962955-220 \alpha) x^{48} y^{24}+(4397342400+495 \alpha) x^{44} y^{28} \\
& +(16602715899-792 \alpha) x^{40} y^{32}+(25756721120+924 \alpha) x^{36} y^{36}+\cdots,
\end{aligned}
$$

using a nonnegative integer α. If $\alpha>0$, then the number of codewords of weight $4 k=24$ (resp. 32) is less than 462962955 (resp. 16602715899), which is the number of blocks of $\mathcal{D}_{72,24}$ (resp. $\mathcal{D}_{72,32}$). Hence, $\alpha=0$. This means that $C\left(\mathcal{D}_{72,4 k}\right)$ must be extremal.

$4.2(24 m, 4 k)=(96,28),(96,36),(96,44)$

The numbers of blocks of $\mathcal{D}_{96,28}, \mathcal{D}_{96,36}$ and $\mathcal{D}_{96,44}$ are

$$
18642839520,4552866656416 \text { and } 65727011639520,
$$

respectively. If $4 k \in\{28,36,44\}$, then it follows from (1) that the doubly even self-dual code $C\left(\mathcal{D}_{96,4 k}\right)$ has minimum weight at least 12 . The weight enumerator $\sum_{i=0}^{96} A_{i} x^{96-i} y^{i}$ of $C\left(\mathcal{D}_{96,4 k}\right)$ can be written using integers α, β, where A_{i} are listed in Table 4. If there is an integer $i \in\{12,16\}$ with $A_{i}>0$, then

$$
A_{36}=4552866656416-4368 A_{12}-192412 A_{16}<4552866656416
$$

which is the number of the blocks of $\mathcal{D}_{96,36}$. This gives a contradiction. Hence, $A_{12}=A_{16}=0$, then $\alpha=\beta=0$. This means that $C\left(\mathcal{D}_{96,36}\right)$ is extremal. Similarly, one can easily show that $C\left(\mathcal{D}_{96,44}\right)$ is extremal, and that $C\left(\mathcal{D}_{96,28}\right)$ is extremal if $d\left(C\left(\mathcal{D}_{96,28}\right)\right) \geq 16$.

Table 4: Weight enumerator of $C\left(\mathcal{D}_{96,4 k}\right)$

i	A_{i}
12	β
16	$\alpha+30 \beta$
20	$3217056-16 \alpha+153 \beta$
24	$369844880+120 \alpha-1712 \beta$
28	$18642839520-560 \alpha-3084 \beta$
32	$422069980215+1820 \alpha+69576 \beta$
36	$4552866656416-4368 \alpha-323452 \beta$
40	$24292689565680+8008 \alpha+842544 \beta$
44	$65727011639520-11440 \alpha-1443090 \beta$
48	$91447669224080+12870 \alpha+1718068 \beta$

$4.3(24 m, 4 k)=(120,32),(120,40),(120,48),(120,56)$

The numbers of blocks of $\mathcal{D}_{120,32}, \mathcal{D}_{120,40}, \mathcal{D}_{120,48}$ and $\mathcal{D}_{120,56}$ are
475644139425, 397450513031544,
respectively. If $4 k \in\{32,40,48,56\}$, then it follows from (1) that the doubly even self-dual code $C\left(\mathcal{D}_{120,4 k}\right)$ has minimum weight at least 12 . The weight enumerator $W_{120,12}=\sum_{i=0}^{120} A_{i} x^{120-i} y^{i}$ of $C\left(\mathcal{D}_{120,4 k}\right)$ can be written using integers α, β, γ, where A_{i} are listed in Table 5. If there is an integer $i \in$ $\{12,16,20\}$ with $A_{i}>0$, then

$$
\begin{aligned}
A_{56}= & 257257766776517715-1130786592 A_{12}-16300570 A_{16} \\
& -167960 A_{20}<257257766776517715,
\end{aligned}
$$

which gives a contradiction. Hence, $A_{12}=A_{16}=A_{20}=0$, then $\alpha=\beta=\gamma=$ 0 . This means that $C\left(\mathcal{D}_{120,56}\right)$ is extremal. Similarly, one can easily show that $C\left(\mathcal{D}_{120,4 k}\right)$ is extremal for $4 k=40,48$, and that $C\left(\mathcal{D}_{120,32}\right)$ is extremal if $d\left(C\left(\mathcal{D}_{120,32}\right)\right) \geq 20$.

Table 5: Weight enumerator of $C\left(\mathcal{D}_{120,4 k}\right)$

\quad	A_{i}
12	γ
16	$\beta+72 \gamma$
20	$\alpha+26 \beta+2004 \gamma$
24	$39703755-20 \alpha+39 \beta+25272 \gamma$
28	$6101289120+190 \alpha-2148 \beta+100866 \gamma$
32	$475644139425-1140 \alpha+4563 \beta-621288 \gamma$
36	$18824510698240+4845 \alpha+71058 \beta-3973756 \gamma$
40	$397450513031544-15504 \alpha-613259 \beta+18650088 \gamma$
44	$4630512364732800+38760 \alpha+2564432 \beta+37650159 \gamma$
48	$30531599026535880-77520 \alpha-7035366 \beta-434682288 \gamma$
52	$116023977311397120+125970 \alpha+13909076 \beta+1412322984 \gamma$
56	$257257766776517715-167960 \alpha-20667530 \beta-2641019472 \gamma$
60	$335200280030755776+184756 \alpha+23538216 \beta+3223090716 \gamma$

$4.4(24 m, 4 k)=(144,36),(144,52),(144,60),(144,68)$
The numbers of blocks of $\mathcal{D}_{144,36}, \mathcal{D}_{144,52}, \mathcal{D}_{144,60}$ and $\mathcal{D}_{144,68}$ are 9542972508784, 4686006803807297232,

170473729066542803616 and 1005386522059285093728,
respectively. If $4 k \in\{36,52,60,68\}$, then it follows from (1) that the doubly even self-dual code $C\left(\mathcal{D}_{144,4 k}\right)$ has minimum weight at least 12 . The weight enumerator $W_{144,12}=\sum_{i=0}^{144} A_{i} x^{144-i} y^{i}$ of $C\left(\mathcal{D}_{144,4 k}\right)$ can be written using integers $\alpha, \beta, \gamma, \delta$, where A_{i} are listed in Table 6, If there is an integer $i \in$ $\{12,16,20,24\}$ with $A_{i}>0$, then

$$
\begin{aligned}
A_{68}= & 1005386522059285093728-1215686694585 A_{12} \\
& -16397532256 A_{16}-246582076 A_{20}-2496144 A_{24} \\
< & 1005386522059285093728,
\end{aligned}
$$

which gives a contradiction. Hence, $A_{12}=A_{16}=A_{20}=A_{24}=0$, then $\alpha=\beta=\gamma=\delta=0$. This means that $C\left(\mathcal{D}_{144,68}\right)$ is extremal. Similarly, one can easily show that $C\left(\mathcal{D}_{144,60}\right)$ is extremal, that $C\left(\mathcal{D}_{144,52}\right)$ is extremal if $d\left(C\left(\mathcal{D}_{144,52}\right)\right) \geq 20$, and that $C\left(\mathcal{D}_{144,36}\right)$ is extremal if $d\left(C\left(\mathcal{D}_{144,36}\right)\right) \geq 24$.

Table 6: Weight enumerator of $C\left(\mathcal{D}_{144,4 k}\right)$

i	A_{i}
12	δ
16	$\gamma+114 \delta$
20	$\beta+68 \gamma+5619 \delta$
24	$\alpha+22 \beta+1722 \gamma+154820 \delta$
28	$481008528-24 \alpha-59 \beta+17684 \gamma+2550861 \delta$
32	$90184804281+276 \alpha-2152 \beta+11515 \gamma+24260742 \delta$
36	$9542972508784-2024 \alpha+13286 \beta-881064 \gamma+102200559 \delta$
40	$559456467836112+10626 \alpha+39788 \beta-982492 \gamma-215159832 \delta$
44	$18950225255363376-42504 \alpha-861482 \beta+30439192 \gamma-3223863171 \delta$
48	$381888573368657355+134596 \alpha+5423416 \beta-58206711 \gamma+568124866 \delta$
52	$4686006803807297232-346104 \alpha-21252317 \beta-458108660 \gamma+55774876695 \delta$
56	$35648745873701148864+735471 \alpha+59961226 \beta+3298378982 \gamma-82891353732 \delta$
60	$170473729066542803616-1307504 \alpha-129387017 \beta-11030355684 \gamma-479267780119 \delta$
64	$517692242136399518331+1961256 \alpha+220368688 \beta+24037485819 \gamma+2310638405958 \delta$
68	$1005386522059285093728-2496144 \alpha-301497244 \beta-37463473392 \gamma-4857003070893 \delta$
72	$1253789175212713133280+2704156 \alpha+334387688 \beta+43291346040 \gamma+6110981295024 \delta$

Acknowledgments. The author would like to thank Tsuyoshi Miezaki for verifying the calculations in the proofs of Propositions 6and7, independently. This work is supported by JSPS KAKENHI Grant Number 23340021.

References

[1] E.F. Assmus, Jr. and J.D. Key, Designs and Their Codes, Cambridge Tracts in Mathematics, 103. Cambridge University Press, Cambridge, 1992.
[2] E.F. Assmus, Jr. and H.F. Mattson, Jr., New 5-designs, J. Combin. Theory 6 (1969), 122-151.
[3] J.H. Conway and N.J.A. Sloane, A new upper bound on the minimal distance of self-dual codes, IEEE Trans. Inform. Theory 36 (1990), 13191333.
[4] J. Cruz and W. Willems, 5-designs related to binary extremal self-dual codes of length $24 m$, Theory and applications of finite fields, 75-80, Contemp. Math., 579, Amer. Math. Soc., Providence, RI, 2012.
[5] S.T. Dougherty, private communication, July 2005.
[6] M. Harada, Remark on a 5-design related to a putative extremal doublyeven self-dual [96, 48, 20] code, Des. Codes Cryptogr. 37 (2005), 355-358.
[7] M. Harada, M. Kitazume and A. Munemasa, On a 5-design related to an extremal doubly even self-dual code of length 72, J. Combin. Theory Ser. A 107 (2004), 143-146.
[8] M. Harada, T. Miezaki and A. Munemasa, On t-designs supported by self-orthogonal codes, (in preparation).
[9] M. Harada, A. Munemasa and V.D. Tonchev, A characterization of designs related to an extremal doubly-even self-dual code of length 48, Ann. Comb. 5 (2005), 189-198.
[10] C.L. Mallows and N.J.A. Sloane, An upper bound for self-dual codes, Inform. Control 22 (1973), 188-200.
[11] F.J. MacWilliams, N.J.A. Sloane and J.G. Thompson, Good self dual codes exist, Discrete Math. 3 (1972), 153-162.
[12] N.S. Mendelsohn, Intersection numbers of t-designs, In: Studies in Pure Mathematics (presented to Richard Rado), Academic Press, London, 1971, 145-150.
[13] N.J.A. Sloane, Is there a $(72,36) d=16$ self-dual code? IEEE Trans. Inform. Theory 19 (1973), 251.
[14] V.D. Tonchev, A characterization of designs related to the Witt system $S(5,8,24)$, Math. Z. 191 (1986), 225-230.

[^0]: *Research Center for Pure and Applied Mathematics, Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan. email: mharada@m.tohoku.ac.jp. This work was partially carried out at Yamagata University.

[^1]: ${ }^{1}$ See Sections 3 and 4 for the marks $*$ in Table 1

