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Abstract

By the Assmus and Mattson theorem, the codewords of each non-
trivial weight in an extremal doubly even self-dual code of length 24m
form a self-orthogonal 5-design. In this paper, we study the codes
constructed from self-orthogonal 5-designs with the same parameters
as the above 5-designs. We give some parameters of a self-orthogonal
5-design whose existence is equivalent to that of an extremal doubly
even self-dual code of length 24m for m = 3,4,5,6. If m € {1,...,6},
ke {m+1,...,5m — 1} and (m, k) # (6,18), then it is shown that
an extremal doubly even self-dual code of length 24m is generated by
codewords of weight 4k.
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1 Introduction

A doubly even self-dual code of length n exists if and only if n is divisible
by 8. The minimum weight d(C') of a doubly even self-dual code C' of length
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n is bounded above by d(C) < 4[n/24] + 4 [10]. A doubly even self-dual
code meeting the bound is called extremal. In case that n = 0 (mod 24),
the only known extremal doubly even self-dual codes are the extended Golay
code and the extended quadratic residue code of length 48. The existence of
an extremal doubly even self-dual code of length 72 is a long-standing open
question [13].

A t-(v, k, \) design is called self-orthogonal if the block intersection num-
bers have the same parity as the block size k (see [14]). If D is a self-
orthogonal t-(v, k, \) design with k even, then the code C(D), which is gen-
erated by the rows of an incidence matrix of D, is a self-orthogonal code.
By the Assmus and Mattson theorem [2], the supports of the codewords of
weight 4k (# 0,24m) in an extremal doubly even self-dual code of length
24m form a self-orthogonal 5-design. We denote the parameters of the de-
sign by 5-(24m, 4k, Aogm.ax). Then, throughout this paper, we denote any
self-orthogonal 5-(24m, 4k, Aogm ax) design by Doy ar. That is, Dogpar is
a self-orthogonal 5-design with the same parameters as the self-orthogonal
5-design formed from the supports of the codewords of weight 4k in an ex-
tremal doubly even self-dual code of length 24m. This gives rise to a natural
question, namely, is the code C(Daypm ar) always an extremal doubly even
self-dual code?

It is well known that C(Days) is the extended Golay code (see [1, The-
orem 8.6.2]). It was shown that C(Dagmam+a) (m = 2,3,4) is an extremal
doubly even self-dual code [9, [7, 6], respectively. This means that the exis-
tence of an extremal doubly even self-dual code of length 24m (m = 1,2, 3,4)
is equivalent to that of a self-orthogonal 5-(24m, 4k, Aoym ax) design, where
(4k, Aoamar) = (8,1), (12,8), (16, 78) and (20, 816), respectively. The power-
ful tool which is used in |7}, [9] is the use of fundamental equations, sometimes
called the Mendelsohn equations [12] (see also e.g., [14]), obtained by count-
ing the number of blocks that meet S in ¢ points for some subset S of the
point set. The approach in [6] is also similar to that in [7, O] except that
Gleason’s theorem (see [10]) is employed to obtain stronger consequences.

In this paper, we study self-orthogonal 5-designs C(Dagpm ax) for k € {m+
2,...,5m — 1}, which are related to codewords of weight other than the
minimum weight. More precisely, we consider a problem whether C'(Dag, ax)
is an extremal doubly even self-dual code or not for m € {1,...,6} and
ke {m+2,...,5m—1}. In addition to the above approach done in [6] [7, O],
it is useful in this paper to observe weight enumerators of C'(Dagpm ax) and its
dual codes, and singly even self-dual codes containing C(Dayy, 4x) and their

2



shadows. As a summary, in Table [Iﬂ, we list some partial answers to the
above problem for m € {1,...,6} and k € {m +1,...,3m}. For the cases
(24m, 4k) that C(Dagm.ax) is self-dual, we list “Yes” in the second column
of Table Ml When C(Dagmax) is self-dual, we list “Yes” in the third column
in case that C(Dagmax) is extremal. We also list the possible minimum
weights, when C(Dagmar) is self-dual but not extremal. It is shown that
C(D24m74k) = C(D24m,24m—4k) form € {1, ceey 6} and k € {m+1, ey 3m—1}
(Proposition [3)).
The main results of this paper are the following theorems.

Theorem 1. Suppose that (24m, k, \) is each of the following:

(72, 24, 1406405), (72, 32, 238957796),
(96, 36, 28080500448), (96, 44, 1167789832440),
(120, 56, 5156299310025435), (144, 68, 21788133027489299328).

Then the existence of a self-orthogonal 5-(24m, k, \) design is equivalent to
that of an extremal doubly even self-dual code of length 24m.

Theorem 2. Suppose that m € {1,...,6} and k€ {m+1,...,5m —1}. If
(m, k) # (6,18), then an extremal doubly even self-dual code of length 24m
is generated by codewords of weight 4k.

Remark 3. For some cases (m, k), the above theorem is already known (see
Table [Ml). It is still unknown whether C(Diasr2) is self-dual or not (see
Remark []).

2 Preliminaries

2.1 Self-dual codes and shadows

In this paper, codes mean binary codes. A code is called doubly even if every
codeword has weight a multiple of 4. A code C' is called self-orthogonal if
C C C*+, and C'is called self-dual if C = C*, where C* is the dual code of C
under the standard inner product. A self-dual code which is not doubly even
is called singly even, namely, a singly even self-dual code contains a codeword
of weight = 2 (mod 4). It is known that a self-dual code of length n exists

1See Sections 3] and [ for the marks * in Table 1



Table 1: Codes C(Dagmax) (m=1,...,6, k=m+1,...,3m)
Parameters of Doy, ai; Self-dual Extremal Ref.

(24,8,1) Yes Yes (see [I)

(24,12,48) Yes Yes [14]

(48,12, 8) Yes Yes [9]

(48,16,1365) Yes Yes [5]

(48 20,36176) Yes Yes 5]

(48,24, 190680) Yes 8, 12

(72,16,78) Yes Yes [7]

(72,20, 20064) Yes 12, 16 5]

(72,24,1406405) Yes Yes*

(72,28, 30888000) Yes* 12,16

(72,32,238957796) Yes Yes*

(72,36, 693996160) Yes 12, 16 5]

(96,20, 816) Yes Yes [6]

(96,24, 257180) Yes 16, 20 Bl

(96,28, 20975400) Yes 12, 20

(96, 32, 1390528685) Yes 12, 16, 20 5]

(96, 36, 28080500448) Yes Yes*

(96,40, 261513764460) Yes 12, 16, 20 5]

(96,44,1167789832440) Yes Yes*

(96,48,2561776811880) Yes* 12, 16, 20

(120, 24, 8855) Yes 16, 24 @

(120, 28, 3146400) Yes 16, 20, 24

(120, 32, 502593700) Yes 12, 16, 24*

(120, 36, 37237713920) Yes* 12-24

(120, 40, 1372275835848) Yes* 12, 24*

(120, 44, 26386953577600) Yes* 12-24

(120, 48, 274320081834480) Yes* 12, 24*

(120, 52, 1582247888524800) Yes* 12-24

(120, 56,5156299310025435) Yes Yes*

(120, 60,9606041207517888) Yes* 12-24

(144, 28, 98280) Yes 16, 20, 28 B

(144,32,37756202) Yes 16-28

(144,36,7479335776) Yes 16, 20, 28*

(144, 40, 765322879032) Yes 1228

(144, 44, 42785304274536) Yes | 12, 16, 20, 28*

(144, 48,1359454757387265) Yes 12-28

(144, 52, 25319185698144240) Yes 12, 16, 28*

(144,56, 283096123959568608) Yes* 12-28

(144,60, 1935608752827917264) Yes 12, 28*

(144, 64, 8205989047403924124) Yes 12-28

(144, 68,21788133027489299328) Yes Yes*

(

144,72, 36470135955078919440)

?




if and only if n is even, and a doubly even self-dual code of length n exists
if and only if n is divisible by eight. The minimum weight d(C') of a doubly
even self-dual code C' of length n is bounded by d(C) < 4|n/24| +4 [10]. A
doubly even self-dual code meeting the bound is called extremal. In case that
n = 0 (mod 24), the only known extremal doubly even self-dual codes are
the extended Golay code and the extended quadratic residue code of length
48. The existence of an extremal doubly even self-dual code of length 72 is
a long-standing open question [13].

Let C be a singly even self-dual code and let Cy denote the subcode of
codewords having weight = 0 (mod 4). Then Cj is a subcode of codimension
1. The shadow S of C is defined to be C3- \ C. Shadows were introduced
by Conway and Sloane [3], in order to provide restrictions on the weight
enumerators of singly even self-dual codes (see [3] for fundamental results on
shadows). Let D be a doubly even code of length n = 0 (mod 8). Suppose
that D has dimension n/2 — 1 and D contains the all-one vector 1. Then
there are three self-dual codes lying between D+ and D, one of which is
singly even and the others are doubly even (see [11]).

2.2 Self-orthogonal designs and Mendelsohn equations

A t-(v,k, \) design D is a set X of v points together with a collection of
k-subsets of X (called blocks) such that every t-subset of X is contained in
exactly A blocks. A t-design with no repeated block is called simple. In this
paper, designs mean simple designs. It follows that every i-subset of points
(i < t) is contained in exactly A\ = A(V~7)/ (’;:Z) blocks. The number )\
is traditionally denoted by r, and the total number of blocks is b = A\g. A
t-design can be represented by its (block-point) incidence matrix A = (a;;),
where a,; = 1 if the jth point is contained in the ith block and a;; = 0
otherwise.

The block intersection numbers of a t-(v, k, \) design are the cardinalities
of the intersections of any two distinct blocks. A t-(v, k, \) design is called
self-orthogonal if the block intersection numbers have the same parity as
the block size k (see [14]). The term self-orthogonal is due to a natural
connection between such designs and self-orthogonal codes. Throughout this
paper, we denote the code generated by the rows of an incidence matrix of D
by C(D). If D is a self-orthogonal t-(v, k, \) design with k even, then C(D)
is a self-orthogonal code.

Let D be a t-(v, k, \) design. Let v € C(D)* be a vector of weight w > 0.
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Denote by n; the number of rows of an incidence matrix of D intersecting
exactly 7 positions of the support of v in ones. Then we have the system of
equations:

min{k,w}

(1) 3 C)n:A]C}) (j=0,1,...,1).

=0

These fundamental equations, which are sometimes called Mendelsohn equa-
tions [12] (see also [14]), are the powerful tool in the study of this paper. We
note that n; = 0if 7 is odd, i > k or ¢ > w.

The following lemma follows immediately.

Lemma 4. Let D be a self-orthogonal t-(v, k, \) design with k =0 (mod 4).

(i) If the system of equations (Il) has no solution (ng,ns,...) consisting
of nonnegative integers for some w, then C(D)* contains no vector of
weight w.

(i) If the system of equations (dl) has no solution (ng,ns,...) consisting of
nonnegative integers for each w with 0 < w < v, w Z 0 (mod 4), then
C(D) is doubly even self-dual.

The complementary design D of a design D is obtained by replacing each
block of D by its complement. The following lemma is used in Section [
to show that C(Dagmar) = C(Daam2am—ax) for m € {1,...,6} and k €
{m+1,...,3m —1}.

Lemma 5. Let D be a self-orthogonal t-(v, k, \) design with k even. Suppose
that C(D) is self-dual. Then C(D) = C(D) if 1 € C(D), and C(D) C C(D)
with |C(D) : C(D)| = 2 otherwise.

Proof. Since C(D) is self-dual, 1 € C(D). It turns out that C(D) C C(D)
and (C'(D),1) = C(D). The result follows. O

3 On the self-duality

In this section, we describe how to determine the self-duality given in the
second column of Table [I] for the cases denoted by * in Table [Il For the
other cases, the self-duality is determined by Lemma [ (ii) only.
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PI‘OpOSitiOH 6. The codes C(Dn,gg), C(D96748), C(Dlgoﬁo) and C(Dlgog,g)
are self-dual.

Proof. All cases are similar, and we only give the details for C(Drg5).
Note that Drs 95 has the following parameters:

Ao = 4397342400, A\ = 1710077600, Ay = 650311200,
Ag = 241544160, Ay = 87516000, A5 = 30888000.

Let v € C(Dya28)* be a vector of weight w > 0. For each w of the cases with
w =1 (mod 2) and w < 8, the system of equations (I]) has no solution. In
addition, for w = 10, (1) has the following unique solution:

ng = 41076475, ny = 1096595775, ny = 2375199750,
ng = 834337350, ng = 50284575, n1p = —151525.

Hence, there is no vector of weights 2,4, 6,8,10 in C(Drg28)". The number
Ao of blocks satisfies that 232 < Ay < 233, Therefore, C(Drg5)" is an even
code such that the minimum weight is at least 12 and the dimension is at
most 39.

Let D75 be a doubly even code of length 72 satisfying the conditions that
D7y has dimension ¢ € {33,34,35,36}, both Dz and Ds; have minimum
weights at least 12 and 1 € Dr,. We denote the weight enumerators of Do
and Dz, by Wp., and Wy , respectively. In this case, Wp,, can be written
as:

2 4 az®y'? 4+ bry1 4y 4+ deSy? 4 exy? 4 10y
+ (2 =2 —2a— 20— 2¢ — 2d — 2e — 2 )0y ... 4y,

using nonnegative integers a, b, ¢, d, e, f. Set Wy, = S 2, Bix™ iy By the
MacWilliams identity, we have:

2By =2%(xa.0 + 36a 4 25b + 16¢ + 9d + 4e + f),

2By =25(x4.¢0 + 5640a + 24500 + 800c¢ + 114d — 56e — 30f),

2'Bs =25(x6.0 + 313060a + 77385b + 8976¢ — 1223d + 196¢ + 433 f),

2By =25(s.¢ + 7582080a + 811360b — 43520¢ — 5280d + 1408e — 4000 ),
(

2By =2%(x10.¢ + 868929600 + 887656b — 372096¢ + 100584d — 17248e
+ 26536 f),



where (X233, X2i.34, X2i,35) are as follows:

84557200770, 169114369410, 338228706690),

958309695231, —1916624273151, —3833253428991),
7906469297760, 15812564565600, 31624755101280),
—50582253079512, —101181262793688, —202379282222040),

—4831838127, —9663676335, —19327352751),

(
(
(
(
(

for i =1,2,3,4,5, respectively.
The assumptions By; = 0 (i = 1,2,3,4,5) yield the following:

b=ay—12a,c = Py + 66a,d = v, — 220a, e = §; + 495a, f = ¢, — 792a,
where

(cue, Be, e, 00, £¢) =(30105, 2273040, 57830955, 549766080, 2075173947),
(61497, 4534992, 115706955, 1099419840, 4150537083),
(124281, 9058896, 231458955, 2198727360, 8301263355),

for £ = 33, 34, 35, respectively. For ¢ = 33,34, 35, it follows from b > 0 that

165
e =0, +495a < oy + Tozg < 4397342400 = .

Since C(Dre98) contains at least 4397342400 codewords of weight 28, we
obtain a contradiction. Therefore, C'(D7225) must be self-dual. O

PI‘OpOSitiOH 7. The codes C(D120736), C(D120740), C(D120744), C(D120748) and
C(Dhaase) are self-dual.

Proof. All cases are similar, and we only give the details for C(Djg0.40)-
Note that Digg 49 has the following parameters:

Ao = 397450513031544, A\ = 132483504343848, Ay = 43418963608488,
As = 13982378111208, Ay = 4421777693288, A5 = 1372275835848.

Let v € C(Diao.40)" be a vector of weight w > 0. For each w of the cases

with w =1 (mod 2) and w < 8, the system of equations (IJ) has no solution.
The number Ay of blocks satisfies that 28 < Ay < 21, Hence, C(D12040)" is
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an even code such that the minimum weight is at least 10 and the dimension
is at most 71.

Let Diop be a doubly even code of length 120 satisfying the conditions
that Djgg has dimension ¢ € {49,...,60}, D1y has minimum weight at least
12, Dll20 has minimum weight at least 10 and 1 € D99. We show that
¢ # 49,50, ...,59 in the following two steps.

The first step shows that ¢ # 49, ...,58. The approach is similar to that
given in Proposition Suppose that ¢ € {49,...,58}. Then, by consid-
ering the possible weight enumerators of Djgy and Dis,, one can obtain a
contradiction for each /. Since the situation is more complicated than that
for C'(Dra,98) considered in Proposition [6, we omit the details to save space.
We remark that this argument does not work to show that ¢ # 59.

The second step shows that ¢ # 59. The approach is to consider singly
even self-dual codes containing Di9y. Suppose that ¢ = 59. Since Digy con-
tains 1, there are three self-dual codes lying between Di, and Diq, one of
which is singly even and the others are doubly even (see [11]). We denote the
singly even code by Ci99, noting that Disg is the subcode (Ca)o consisting
of codewords of weight =0 (mod 4) of C9. Let Siz9 be the shadow of Cg.
Since the weight of a vector in Sjqq is divisible by four [3] and Di5, has mini-
mum weight at least 10, Ci99 and Si99 have minimum weights at least 10 and
12, respectively. Using [3| (10) and (11)], from the condition on the minimum
weights, one can determine the possible weight enumerators 3120 A;z120~7y
and Zzli% B; 2120~y of Clag and Siag, respectively. In this case, the possible
weight enumerators can be written using integers a, b, ¢, d, e, f, g, h.

We investigate the number of codewords of weight 40. In this case, we
have that

Ay = 198725556937080 + 32980992a — 28160b — 15504c
+ 4896d + 161525e — 599494 f — 4385880¢ + 91345008h.

Using the mathematical software MATHEMATICA, we have verified that Ay; >
0(i=5,...,16) and By; >0 (i = 3,...,9) yield

Ay < 397450513031544 = Ao,

where Ay; (i =5,...,16) and By; (i = 3,...,9) are listed in Tables 2 and 3],
respectively. Since C'(Dig40) contains at least 397450513031544 codewords
of weight 40, we obtain a contradiction. Therefore, C'(D12,40) must be self-
dual. This completes the proof. O



Table 2: Weight enumerator of Co

7 A
10 | A
12 | g+ 30h

14 | f+ 24g + 425h
16 | e+ 18f + 2649 + 3760h

18 | d+ 12e + 139f + 17369 + 23100h

20 | ¢+ 6d + 50e + 564f -+ 7380g + 103256h

22 | 64b — 3d + 28e + 1009 + 19800g + 339180k + 26391755

24 | 4096a — 384b — 20c — 88d — 441e — 1218 + 25080g + 789840h

26 | 265912320 — 49152a — 64b — 102d — 1288e — 10717f — 35640g + 1096410h

28 | 2968094880 + 221184a + 4864b + 190c 4 564d 4 364e — 20424 f — 238590g — 118980k

30 | 29559455744 — 3112964 — 6720b + 1210d + 7800e + 7631 f — 473880g — 4961862h

32 | 238259763105 — 946176a — 25984b — 1140c — 1944d + 9971e + 103766 f — 182952 — 13088880h

Table 3: Weight enumerator of Siag

7 B;

12 | a

16 17250 — 24a — b

20 | —315744 4+ 276a + 22b+ ¢

24 | 42581630 — 2024a — 231b — 20c — 64d

28 | 6084129120 + 10626a + 1540b + 190c + 1152d + 4096e

32 | 475718702550 — 42504a — 7315b — 1140c — 9792d — 65536¢ — 262144 f

36 | 18824260734240 + 134596a + 26334b + 4845¢ + 52224d + 491520e + 3670016 f + 167772169

Remark 8. If C(Di44.72)* has minimum weight at least 10, then one can show
that C(D144.72) is self-dual by an argument similar to that described in above.

For m € {1,...,6} and k € {m + 1,...,3m — 1}, the self-duality of
C(Daam.ax) has been verified above. As a consequence, we have the following:

Proposition 9. If m € {1,...,6} and k € {m + 1,...,3m — 1}, then
C(Daamar) = C(Doam2am—ak)-

PT’OOf. It is trivial that D24m,24m—4k = D24m,4k~ For m € {]., c. ,6} and
ke{m+1,...,3m — 1}, the codes C(Daym x) are self-dual (see Table [I).
For (24m, 4k) € {(72,16), (72,32), (120, 32), (144, 32), (144, 64)}, since the
5-design Doy 4 has odd 7, 1 € C(Dagy,ar). Consider the remaining cases.
The system of equations ([II) has no solution (ng,ns,...) consisting of non-
negative integers for each odd w. By Lemma @ (i), 1 € C(Dasmar). The
result follows from Lemma [l a
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By the above proposition, form € {1,...,6}and k € {m+1,...,3m—1},
C(Daam,ax) and C(Dagm 24m—ax) are self-dual. In addition, C'(Daam, 12m) are
self-dual for m € {1,...,5}. This completes the proof of Theorem

4 On the minimum weights

In this section, we describe how to determine the minimum weights given in
the third column of Table [I] for the cases denoted by * in Table Il For the
other cases, the minimum weights are determined by Lemma (i) only. The
result in this section completes the proof of Theorem [Il

4.1 (24m,4k) = (72,24), (72, 32)

Suppose that 4k € {24,32}. Let v € C(Dra ;)™ be a vector of weight w > 0.
For each w € {4,8}, the system of equations (Il) has no solution. From
the result in the previous section, C(Drq4x) is a doubly even self-dual code.
By Lemma [l (i), C(Dra.4x) is a doubly even self-dual code of length 72 and
minimum weight at least 12.

By Gleason’s theorem (see [10]), the weight enumerator of a doubly even
self-dual code of length n can be written as:

[n/24]

Z ai(:c8 + 14x4y4 + yS)n/8—3i(x4y4(x4 _ y4)4)z‘7

i=0
using integers a;. Hence, the weight enumerator of C'(Dzg4x) can be written
as:

27 + ax®y'? + (249849 — 12a)z°%y'® + (18106704 + 660z y*
+ (462962955 — 220 )x**y** + (4397342400 + 49502y
+ (16602715899 — 7920) 2™y + (25756721120 + 9240)x*0y* + ... |

using a nonnegative integer . If @ > 0, then the number of codewords of
weight 4k = 24 (resp. 32) is less than 462962955 (resp. 16602715899), which
is the number of blocks of D704 (resp. Dros2). Hence, @ = 0. This means
that C(Drg,4) must be extremal.
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4.2 (24m,4k) = (96,28), (96, 36), (96, 44)
The numbers of blocks of Dyg a5, Dy 36 and Dyg 44 are
18642839520, 4552866656416 and 65727011639520,

respectively. If 4k € {28,36,44}, then it follows from (II) that the doubly
even self-dual code C(Dyg 4) has minimum weight at least 12. The weight
enumerator 3 o0, A;z% 7y’ of C(Dggax) can be written using integers a, j3,
where A; are listed in Table[dl If there is an integer ¢ € {12, 16} with A; > 0,

then
Asg = 4552866656416 — 4368 A15 — 192412A:5 < 4552866656416,

which is the number of the blocks of Dyg 36. This gives a contradiction. Hence,
Ay = Ajg = 0, then o = f = 0. This means that C(Dyg 36) is extremal.
Similarly, one can easily show that C(Dgg 44) is extremal, and that C(Dyg 2s)
is extremal if d(C'(Dgg28)) > 16.

Table 4: Weight enumerator of C'(Dyg 4x)

i A,

123

16 | o+ 308

20 | 3217056 — 16a + 15383

24 | 369844880 + 1200 — 17128

28 | 18642839520 — 560 — 30843

32 | 422069980215 + 1820c + 695763

36 | 4552866656416 — 4368 — 32345283

40 | 24292689565680 + 8008« + 8425443
44 | 65727011639520 — 11440a — 14430903
48 | 91447669224080 + 12870 + 17180683

4.3 (24m,4k) = (120, 32), (120, 40), (120, 48), (120, 56)

The numbers of blocks of D120732, ’D120’40, D120748 and ,D120,56 are

475644139425, 397450513031544,
30531599026535880 and 257257766776517715,
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respectively. If 4k € {32, 40, 48,56}, then it follows from (]) that the doubly
even self-dual code C(Dig45) has minimum weight at least 12. The weight
enumerator Wigg12 = Eﬁ% Az~ iyt of C(Digoar) can be written using
integers «, (3,7, where A; are listed in Table If there is an integer i €

{12,16,20} with 4; > 0, then

Ase =257257766776517715 — 1130786592415 — 16300570 A6
— 167960 A5 < 257257766776517715,

which gives a contradiction. Hence, Ay = Ajg = Ay =0, thena ==~ =
0. This means that C(Digs6) is extremal. Similarly, one can easily show
that C(Dig04x) is extremal for 4k = 40,48, and that C(Dig32) is extremal
if d(C(Dlgo’gg)) > 20.

Table 5: Weight enumerator of C(D1a0,4x)

i A;

12 | ~

16 | B+ T2y

20 | a+ 2608 + 2004y

24 | 39703755 — 20c + 395 + 25272y

28 | 6101289120 + 190 — 21485 + 100866~y

32 | 475644139425 — 1140« + 45633 — 621288y

36 | 18824510698240 + 4845 + 710585 — 3973756y

40 | 397450513031544 — 15504 — 6132595 + 18650088~y

44 | 4630512364732800 + 38760c + 25644323 + 37650159~

48 | 30531599026535880 — 77520« — 70353663 — 434682288y

52 | 116023977311397120 4 125970 + 139090765 + 1412322984~
56 | 257257766776517715 — 167960 — 206675305 — 2641019472
60 | 335200280030755776 + 184756 + 235382165 + 3223090716y

4.4 (24m,4k) = (144, 36), (144, 52), (144, 60), (144, 63)

The numbers of blocks of D144736, D144752, ,D144,60 and D144,68 are

9542972508784, 4686006803807297232,
170473729066542803616 and 1005386522059285093728,
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respectively. If 4k € {36, 52,60, 68}, then it follows from (I]) that the doubly
even self-dual code C(Di44,45) has minimum weight at least 12. The weight
enumerator Wigg12 = Eﬁ% A=yt of C(Diggar) can be written using
integers «, 3,7,9, where A; are listed in Table [6l If there is an integer i €

{12,16,20,24} with 4; > 0, then

Ags =1005386522059285093728 — 1215686694585A 15
— 16397532256 A1 — 246582076 Agp — 2496144 A4
<1005386522059285093728,

which gives a contradiction. Hence, A3 = Ajg = Ay = Aoy = 0, then
a = =v=279 = 0. This means that C(Djss6s) is extremal. Similarly,
one can easily show that C(Diyse0) is extremal, that C'(Dyass2) is extremal
if d(C(,D144’52>) Z 20, and that C(D144736) is extremal if d(C(D144736)) Z 24.

Table 6: Weight enumerator of C'(Dy4q4x)

i A;
12 | 6§
16 | v+ 1146

20 | B+ 68y + 56198

24 | o+ 228 + 17227 + 1548205

28 | 481008528 — 24 — 598 + 17684 + 25508615

32 | 90184804281 + 276c — 21528 + 115157 + 242607425

36 | 9542972508784 — 20240 + 132863 — 8810647 + 1022005595

40 | 559456467836112 4 10626a 4 397888 — 982492y — 2151598325

44 | 18950225255363376 — 42504a — 8614828 + 30439192y — 322386317158

48 | 381888573368657355 + 134596 + 542341653 — 582067117 + 5681248665

52 | 4686006803807297232 — 346104a — 212523178 — 4581086607 -+ 557748766955

56 | 35648745873701148864 + 735471a + 599612263 + 3208378982 — 828913537325

60 | 170473729066542803616 — 1307504cc — 12938701783 — 11030355684~ — 4792677801196
64 | 517692242136399518331 + 1961256 + 22036868883 + 24037485819 + 23106384059585
68 | 1005386522059285093728 — 2406144a — 3014972448 — 37463473392y — 48570030708935
72 | 1253789175212713133280 + 2704156 + 3343876883 + 43291346040~ + 61109812950245
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