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Abstract. Zero-correlation linear attack is a new method for cryptanalysis of block ciphers
developed by Bogdanov et al. in 2012. In this paper we adapt the matrix method to find zero-
correlation linear approximations. Then we present several zero-correlation linear approximations
for 14 rounds of LBlock and describe a cryptanalysis for 22 rounds of the reduced LBlock. Af-
ter biclique attacks on LBlock revealed weaknesses in its key schedule, its designers presented
a new version of the cipher with a revised key schedule. The attack presented in this paper is
applicable to LBlock structure independently of the key scheduling. The attack needs distinct
known plaintexts which is a more realistic attack model in comparison with impossible differen-
tial cryptanalysis which uses chosen plaintext pairs. Moreover, we performed simulations on a
small variant LBlock and present the first experimental results on the theoretical model of the
multidimensional zero-correlation linear cryptanalysis method.
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1 Introduction

Linear cryptanalysis is one of the most prominent cryptanalysis methods against block ciphers. Several
extensions of linear cryptanalysis have been introduced which usually exploit several linear approxima-
tions with high correlation simultaneously. Kaliski and Robshaw used multiple linear approximations
with the same key mask [7]. The concept of linear hull presented by Nyberg which uses several linear
approximation with the same input and output masks [13]. Multiple linear approximations cryptanaly-
sis and multidimensional linear cryptanalysis are proposed in [2] and [6] respectively. Recently, a novel
extension of linear cryptanalysis was proposed which uses zero-correlation linear approximations [4].
It can be seen as the counterpart of impossible differential cryptanalysis. The original proposal had
the disadvantage to require almost the full codebook of data. Bogdanov et.al. proposed a framework
which uses several independent zero-correlation linear approximations to reduce data complexity [5].
Based on the multidimensional linear attack, a new distinguisher was recently proposed to eliminate
the independence assumption [3]. The distinguisher is supposed to use distinct known plaintexts.

In this paper the multidimensional zero-correlation linear method is applied to attack 22 rounds
of LBlock [16]. LBlock is a lightweight block cipher with semi-Feistel structure. The security of the
cipher has been evaluated in [8, 11, 16]. The designers proposed integral and impossible differential
cryptanalysis up to 20 rounds of LBlock. Using low diffusion of key schedule, an improved impossible
differential cryptanalysis has been applied up to 22 rounds of LBlock [8]. The attack uses 258 chosen
plaintexts and the time complexity is 279.28 which is almost equivalent to the exhaustive search.
Since LBlock had been designed before biclique cryptanalysis introduction, the designers re-evaluate
the security of LBlock and showed that the cipher is vulnerable against biclique cryptanalysis. They
proposed a modified key schedule algorithm to improve the security of LBlock [15] such that the
previous attacks are not applicable. In this paper, we show how to use the matrix method [9, 10] to find
8× 8 different classes of zero-correlation linear approximations for 14 rounds which each one includes
28 − 1 different zero-correlation approximations. Based on 28 − 1 zero-correlation approximations we
present an attack on 22 rounds of the reduced LBlock. This attack does not depend on the key schedule
and it is applicable to both versions of LBlock. It exploits weaknesses in the permutation layer of LBlock
to decrease the time complexity. The attack uses distinct known plaintexts. As depicted in Table 1,
there is a trade-off between the time complexity and the data complexity of the attack.

The paper is structured as follows: In Section 2, we briefly describe LBlock. In Section 3 we review
the previous work on zero-correlation linear cryptanalysis. In Section 4 we show how to use the matrix
method as an automatic tool to find zero-correlation approximations and obtain several zero-correlation
linear distinguisher for 14 rounds of the LBlock. Section 5 describes an attack on 22 rounds of LBlock.
We conclude the paper in Section 6.



Table 1. Summary of the Attacks on LBlock

Attack Rounds Data Time Memory (Bytes) Source

Integral Attack (CP) 20 263.7 263.7 Not Specified [16]
Impossible Differential (CP) 20 263 272.7 260 [16]

Impossible Differential† (CP) 21 262.5 273.7 264 [11]

Impossible Differential† (CP) 21 263 269.5 268 [8]

Impossible Differential† (CP) 22 258 279.28 268 [8]
Zero Correlation (DKP) 22 264 270.54 264 This paper
Zero Correlation (DKP) 22 262.1 271.27 264 This paper
Zero Correlation (DKP) 22 260 279 264 This paper

Biclique (KP)† Full 252 278.4 Negligible [15]

† – this attack is applicable just on old version of the cipher, CP – Chosen Plaintexts, DKP – Distinct Known
Plaintexts, KP – Known Plaintext

2 A Brief Description of LBlock

2.1 Notation

Throughout this paper we use the following notations:

– Ski : 32-bit round key
– ≪ i : i-bit left cyclic shift
– X(i) : i-th nibble of X where the right most one is 0
– X(i− j) : concatenation of i, i− 1, · · · , j-th nibble of X where i ≥ j
– | : concatenation of two binary strings
– Li|Ri : the output of the i-round of LBlock

2.2 LBlock Description

LBlock is a variant Feistel block cipher with 32 rounds. It supports 80 secret key bits and the block
size is b = 64 bits. Each round includes 8 different 4× 4 S-boxes and simple nibble-wise permutation.
One round of LBlock and the round function are depicted in Figure 1.
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Fig. 1. One round of LBlock

Encryption Algorithm Let P = L0|R0 be a 64-bit plaintext. Then encryption process is as
follows:

– For i = 1, 2, · · · , 31, do
• Ri = Li−1

• Li = F (Li−1, SKi)⊕ (Ri−1 ≪ 8)
– L32 = L31, R32 = F (L31, SK32)⊕ (R31 ≪ 8)
– C = L32|R32.

In our attacks on reduced-round LBlock we also consider the last round to be without swapping the
halves as in the original LBlock.

Key schedule The 80-bit master key K is stored in a key register. In the i-th step, the leftmost
32 bits of current content of register K are extracted as the round key SKi. Then the key register
is updated in each round. We do not exploit any property of the key scheduling. For the updating
procedure in the original LBlock and the new version we refer to [16] and [15], respectively.
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3 Zero-Correlation Linear Approximation

Consider a function f : Fn2 7→ Fm2 and let the input of the function be x ∈ Fn2 . A linear approximation
with an input mask u and an output mask v is the following function:

x 7→ u · x⊕ v · f(x).

The linear approximation has probability

p(u; v) = Pr(u · x⊕ v · f(x) = 0)

and its correlation is defined as follows:

cf (u; v) = 2p(u; v)− 1.

In linear cryptanalysis we are interested in the linear approximation with correlation far from
zero. The number of known plaintexts needed in the linear cryptanalysis is inversely proportional to
the squared correlation. Zero-correlation linear cryptanalysis uses linear approximations such that the
correlation is equal to zero for all keys. If the number of zero-correlation approximations is 2m, then
by [3] the number of required distinct plaintexts is about 2n+2−m/2. The key recovery can be done
with the same method utilized by Matsui’s Algorithm 2 [12].

To describe this process in more detail, let us describe a cipher E as a cascade E = Ef ◦ Ez ◦ Eb.
Assume there exists m independent linear approximations for Ez such that all ` = 2m − 1 nonzero
linear combinations of them have correlation zero. For each key candidate, the adversary encrypts the
plaintexts for the beginning rounds Eb and decrypts the corresponding ciphertexts for the final rounds
Ef .

For each of i ∈ Fm2 he allocates a counter Ti and computes the number of times which the corre-
sponding data value is equal to i. Then the adversary computes the statistic T value

T =

2m−1∑
i=0

(Ti −N2−m)2

N2−m(1− 2−m)
. (1)

The value T for right key guess follows a χ2−distribution with mean µ0 = ` 2
n−N
2n−1 and variance

σ2
0 = 2`( 2n−N

2n−1 )2 while for the wrong key the distribution is a χ2−distribution with mean µ1 = ` and

variance σ2
1 = 2`.

Let show error probability type I as α and error probability type II as β. If we consider the decision
threshold t = µ0 + σ0z1−α = µ1 + σ1z1−β then the amount of distinct known plaintexts is as follows:

N =
2n(z1−α + z1−β)√

`/2− z1−β
(2)

where zp = Φ−1(p) for 0 < p < 1 where Φ is the cumulative function of the standard normal distribu-
tion. For more details we refer to [3].

4 The Matrix Method

Several tools have been proposed for finding statistical distinguisher. Such tools help us to analyze
algorithms systematically. A cryptanalytic tool for finding impossible differential characteristics in
block ciphers with bijective function was introduced in [9, 10]. It is called the matrix method and uses
the “miss-in-the-middle” approach to find impossible differential characteristic. The miss-in-the-middle
technique proposes to construct the impossible differential characteristic by two (truncated) differential
paths with probability one and which lead to a contradiction in the middle. The matrix method is a tool
for finding these paths. In this section we show this technique is also useful for finding zero-correlation
linear approximation. We can follow the linear approximation patterns of input and output masks in
the intermediate rounds and inquire whether no linear characteristics with non-zero-correlation exists.
So the matrix method is also useful to automate the process of finding the longest zero-correlation
linear approximations.
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4.1 Matrix Method for Finding Linear Approximation with Correlation Zero

The state is partitioned into n words (usually of the same length). In the linear approximation, the
linear masks applied to the words can be of the following five types:

1. zero mask, denoted by 0,
2. an arbitrary non-zero mask, denoted by 0,
3. non-zero mask with a fixed value a, denoted by a,
4. the exclusive-or of a fixed non-zero mask a and an arbitrary non-zero mask, denoted by a,
5. any mask, denoted by ∗.

After that we describe the encryption round as a matrix Mn×n. The matrix shows how a linear mask
of each output word is affected by the linear mask of an input word. Let show the input and the output
of the round by two bit strings A and B respectively. If B(j) is not affected by a linear mask of A(i)
the value (i, j) set to 0. If a linear mask of A(i) affects B(j) directly the value (i, j) set to 1. Finally
if B(j) is affected by a linear mask of A(i) after the round function the value (i, j) set to 1F . For
decryption of the round, another matrix is defined similarly. To define the matrices we can use lemmas
in Appendix A which are introduced in [4] (see also [1]).

We can apply the exclusive-or operation to the five types of masks defined above resulting in
arithmetic rules. These rules are given in the table on the left of Table 2. On the right hand side
of Table 2 we show how certain operations will modify the five types of masks. The operations are:
multiplication by 0, multiplication by 1 and multiplication by 1F . The last operation means that, given
a bijection F and a type τ of masks, τ · 1F is the type of masks v for which there is u of type τ such
that the linear approximation u · x+ v · F (x) = 0 holds with non-zero correlation.

Table 2. Arithmetic rules. The table of the left gives the addition rules between two mask types. The table
on the right shows the operation rules of multiplication by 0, 1 and 1F .

+ 0 0̄ a ā ∗

0 0 0̄ a ā ∗
0̄ 0̄ ∗ ā ∗ ∗
b b b̄ a+ b ∗ ∗
b̄ b̄ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

0 1 1F

0 0 0 0
0̄ 0 0̄ 0̄
a 0 a 0̄
ā 0 ā ∗
∗ 0 ∗ ∗

For a given state, we use the matrix iteratively to obtain the new state over multiple rounds. To
find the longest zero-correlation linear approximation we compute the new states in both forward and
backward directions just before the values of all words become only ∗. Finally, we scan intermediate
values and check the incoherence of events.

For example the encryption matrix of Feistel structure is
(
0 1
1 1F

)
. If we assume the initial mask

type as (a, 0) the mask type of the third round can be obtained as follows:

(
a, 0

)
·
(

0 1
1 1F

)
=
(
a · 0 + 0 · 1, a · 1 + 0 · 1F

)
=
(
0 + 0, a+ 0

)
=
(
0, a

)
(
0, a

)
·
(

0 1
1 1F

)
=
(
0 · 0 + a · 1, 0 · 1 + a · 1F

)
=
(
0 + a, 0 + 0

)
=
(
a, 0

)
(
a, 1

)
·
(

0 1
1 1F

)
=
(
a · 0 + 0 · 1, a · 1 + 0 · 1F

)
=
(
0 + 0 , a+ 0

)
=
(
0 , a

)
4.2 Zero-Correlation Linear Approximation for 14-rounds of LBlock

We applied the matrix method for LBlock. The round matrices for encryption and decryption can be
found in Appendix B. The longest zero-correlation linear approximation was obtained for 14 rounds of
LBlock. If the input mask would be exactly one non-zero nibble in Lr and the output mask after 14
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rounds would be one non-zero nibble in Rr+14, then the linear approximation has correlation zero. For
example (000a0000|00000000) → (00000000|0b000000) has correlation exactly zero which the values
a and b are non zero. The development of the states of mask types as encryption proceeds from
round to round is depicted in Table 3. The contradiction occurs in R7(5). We note there exists 8 × 8
different classes of zero-correlation linear approximations for 14 rounds each of which includes 28 − 1
different zero-correlation approximations. We will use this observation to build a multidimensional
linear approximation to minimize the data complexity as described in Section 3.

Table 3. Zero-correlation linear approximation for 14-round LBlock

Round ΓLr ΓRr

0 000a0000 00000000
1 00000000 000a0000
2 0a000000 0000̄0000
3 00̄000000 0a00̄0000
4 00̄00000a 00̄00̄000̄0
5 00̄000̄000̄ 00̄00̄00̄0̄a
6 00̄00̄0̄a00̄ 00̄0̄0̄0̄0̄0̄∗
7 0̄0̄0̄0̄0̄∗00̄ 0̄∗0̄∗0̄ā0̄∗
7 0̄0̄∗∗0̄0̄∗b̄ 0̄∗00̄0̄0̄0̄0̄
8 00̄0̄0̄0̄0̄0̄∗ 00̄0̄0̄000̄b
9 0̄0̄000̄b00̄ 000̄00̄000̄
10 0̄00̄000̄00 00000̄b00
11 000̄b0000 000000̄00
12 0000̄0000 000b0000
13 0b000000 00000000
14 00000000 0b000000

5 Zero-Correlation Linear Cryptanalysis of 22 Reduced-Round LBlock

In this section, we propose a zero-correlation linear attack on 22-round LBlock. The attack utilizes
the 14-round zero-correlation linear approximations described in Table 3 from round 5 to 18. After
collecting sufficient plaintext-ciphertext pairs, we guess corresponding subkeys for the first four rounds
and the last four rounds and estimate the correlation of approximations as described in Algorithm 1
in Appendix C.

Based on the error probabilities α and β, the number of pairs N in Algorithm 1 and the decision
threshold t are determined. The time complexity of the Algorithm 1 is N · 228 · 228 where N is the
number of plaintexts used in the cryptanalysis. So the time complexity is much more than exhaustive
search. To overcome this restriction we note L4(4) and R18(6) are not affected by all bits in rounds
1− 4 and 19− 22. So Algorithm 1 is not optimal and it repeats the same procedure for different pairs.
We show that it is possible to remove repetitions and reduce time complexity significantly.

The nibble L4(4) is affected by 32 bits of plaintext L0|R0, 20 bits of L1|R1, 12 bits of L2|R2 and
8 bits of L3|R3. Also L18(6) is affected by 32 bits of ciphertext L22|R22, 20 bits of L21|R21, 12 bits
of L20|R20 and 8 bits of L19|R19. We call these bits “active” and other ones “neutral”. The idea is to
ignore neutral bits and instead of encrypting and decrypting all plaintex-ciphertext pairs, do it only
once and count the number of pairs, which have the same value in active bits. In each step, for each
subkey candidate, we encrypt (decrypt) active bits in round r over one round and count the number
of pairs which give the same value in active bits in round r + 1 (r − 1).

The attack procedure is as follows:

1. Collect N plaintexts with corresponding ciphertexs.
2. Allocate a 8-bit counter N0[x0, x22] for each of 264 possible values of (x0|x22) where x0 =
L0(5, 4, 2, 1, 0)|R0(6, 4, 1) and x22 = L22(7, 6, 4, 2, 0)|R22(7, 5, 2) and set them zero. Calculate the
number of pairs of plaintext-ciphertext with given values x0 and x22 and save it in N0[x0, x22]. In
this step, around 264 plaintext-ciphertext pairs are divided into 264 different state. The expected
pairs for each state is around one. So the assumption N0 as a 8-bit counter is sufficient.
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3. Guess the 3 nibbles SK1(4, 2, 1). Allocate a counter N1[x1, x22] for each of 252 possible values of
(x1|x22) where x1 = L1(6, 3, 0)|R1(5, 0) and set them zero. For all 232 possible values of x0, encrypt
x0 one round to obtain x1 and update the value N1[x1, x22] = N1[x1, x22] +N0[x0, x22] for all 232

values of x22
4. Guess 2 nibbles SK2(6, 0). Allocate a counter N2[x2, x22] for each of 244 possible values of (x2|x22)

where x2 = L2(7, 2)|R2(3) and set them zero. For all 220 possible values of x1, encrypt x1 one
round to obtain x2 and update the value N2[x2, x22] = N2[x2, x22] + N1[x1, x22] for all 232 values
of x22.

5. Guess the nibble SK3(7). Allocate a counter N3[x3, x22] for each of 240 possible values of (x3|x22)
where x3 = L3(5)|R3(2) and set them zero. For all 212 possible values of x2, encrypt x2 one round
to obtain x3 and update the value N3[x3, x22] = N3[x3, x22] +N2[x2, x22] for all 232 values of x22.

6. Guess the nibble SK4(5). Allocate a counter N4[x4, x22] for each of 236 possible values of (x4|x22)
where x4 = L4(4) and set them zero. For all 28 possible values of x3, encrypt x3 one round to
obtain x4 and update the value N4[x4, x22] = N3[x4, x22] +N3[x3, x22] for all 232 values of x22.

7. Guess the 3 nibbles SK22(7, 6, 0). Allocate a counter N5[x4, x21] for each of 224 possible values of
(x4|x21) where x21 = L21(4, 2)|R21(5, 3, 0) and set them zero. For all 232 possible values of x22,
decrypt x22 one round to obtain x21 and update the value N5[x4, x21] = N5[x4, x21] +N4[x4, x22]
for all 24 values of x4.

8. Guess 2 nibbles SK21(5, 0). Allocate a counter N6[x4, x20] for each of 216 possible values of (x4|x20)
where x20 = L20(3)|R20(2, 0) and set them zero. For all 220 possible values of x21, decrypt x21 one
round to obtain x20 and update the value N6[x4, x20] = N6[x4, x20] + N5[x4, x21] for all 24 values
of x4.

9. Guess the nibble SK20(2). Allocate a counter N7[x4, x19] for each of 212 possible values of (x4|x19)
where x19 = L19(0)|R19(1) and set them zero. For all 212 possible values of x20 decrypt x20 one
round to obtain x19 and update the value N7[x4, x19] = N7[x4, x19] + N6[x4, x20] for all 24 values
of x4.

10. Guess the nibble SK19(1). Allocate a counter N8[x4, x18] for each of 28 possible values of (x4|x18)
where x18 = R18(6) and set them zero. For all 28 possible values of x19, decrypt x19 one round to
obtain x18 and update the value N8[x4, x18] = N8[x4, x18] +N7[x4, x19] for all 24 values of x4.

11. Compute the statistic value T = N · 28
∑24−1
x4=0

∑24−1
x18=0(N8[x4,x18]

N − 1
28 ). If T < t, then the guess

key is a possible candidate.
12. Do exhaustive search for all keys which corresponds to the guess subkey bits.

Attack complexity
The memory complexity of the attack is dominated by step 2 which needs 264 bytes. Time complex-

ity of step 1 and 2 is equal to the number of needed plaintext-ciphertext pairs N . The time complexity
in each step between 3 and 11 depends on the number of accesses to the memory. The time complexity
for each round is listed seperately in Appendix D. Also step 12 requires 280 · β full encryption because
we expect a wrong subkey survives with probability β.

The time complexity is dominated by step 3 and step 12. The time complexity of round 3 is 276

memory accesses. If we consider one memory accesses as a half round, the time complexity of step 3 is
276× 1

2 ×
1
22 = 270.54 of 22-round LBlock. Based on the error probability type I α and error probability

type II β, the number of plaintexts-ciphetexts pairs needed, time complexity of step 12 and success
probability are determined.

There is a trade-off between the time complexity and the data complexity of the attack, as depicted
in Table 1. To reduce the time complexity as much as possible, we assume to have access the full
codebook. In this case, the error probabilities and time complexity of step 12 is negligible compared
to the complexity of step 3. To have a lowest data complexity, we can set α = 2−2.7 and β = 2−1.
In this case data complexity decreases to N = 260 in cost of increasing time complexity. The time
complexity is dominated by step 12 which needs 280 ·2−1 = 279 22-round LBlock encryption. The more
realistic assumption is the state between these cases. For example, if we set α = 2−2.7 and β = 2−10

then z1−α = 1 and z1−β = 3.09. Equation (2) determines the data complexity N = 262.1. The time
complexity is dominated by step 3 and 12 270.5 + 270 = 271.27. The success probability is 1−α = 0.84.

6 Experimental Results

As noted in [16] LBlock can be described as a 16-branch generalized Feistel cipher (GFC) with improved
permutation. The nibble-wise permutation has been chosen such that it achieves the best diffusion as
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proposed in [14]. To verify the theoretical model of zero-correlation attacks [3] we implement the
described attack on a small variant of LBlock with block length 32-bit. Two optimal word-wise permu-
tations for improved Type II GFC with 8 branches were suggested in [14]. To make the small variant
cipher similar as much as possible to the original one, we choose the permutation which is not based
on the Bruijn graph. We consider the key schedule like original LBlock and choose the leftmost 16
bits of the register K as the round key. Matrix method produces a similar multidimensional linear
approximation with correlation zero for 10 rounds of the small variant of LBlock cipher. This linear
approximation has exactly one non-zero nibble in the input mask and one non-zero nibble in the output
mask.

To evaluate a 10-round distinguisher from round 2 to 12, we consider 14 rounds of the small LBlock.
The distinguisher depends on 2-nibbles of subkeys in the first two rounds and 2-nibbles of subkeys in
the last two rounds. We consider 30 different sets of distinct known plaintexts with different secret
keys. In each experiment the behavior of the statistic T in Equation 1 is studied for the right key and
also for (just) one wrong key. The results of the implementation is shown in Figure 2. As predicted
by the theoretical model, when more than 230.2 distinct known plaintexts are used, the correct key is
very likely to pass the test, while the wrong keys would fail. Access to the full codebook leads to the
key recovery with negligible error probability. When using 228 distinct known plaintexts, the right key
survives with high probability but several wrong keys remain too.

Fig. 2. Experimental results for small variant of LBlock

7 Conclusion

In this paper we showed how to use the matrix method to establish zero-correlation linear approxi-
mations automatically. We used this method to obtain several zero-correlation linear approximations
over 14 rounds of LBlock. We believe that the described method will be useful for analysis of other
block ciphers, too. Based on the 14-round distinguisher we present an attack on 22 rounds of LBlock.
While the previous attack, which can break the same number of rounds, uses chosen plaintext pairs,
our attack assumes only that the plaintexts are distinct. Unlike biclique techniques, the proposed
cryptanalysis does not exploit the structure of the key schedule and therefore applies also to the new
version of LBlock. Finally, we implement the attack for a small variant of LBlock and run simulations
to experimentally validate the statistical model of zero-correlation linear cryptanalysis presented in [3].
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A Lemmas

To describe the encryption or decryption round, we can use the following lemmas:

Lemma 1. XOR operation: Let f(x1, x2) = x1 ⊕ x2 then the correlation of linear approximation
u1 · x1 + u2 · x2 = v · f(x1, x2) is non-zero if and only if u1 = u2 = v.

Lemma 2. Branching operation: Let f(x) = (x, x) then the correlation of linear approximation
u1 · x+ u2 · x = v · f(x) is non-zero if and only if u = v1 + v2.

Lemma 3. Bijective function: Let f(x) be a bijective function then the correlation of linear ap-
proximation u · x = v · f(x) is non-zero if and only if u = v = 0 or u 6= 0 and v 6= 0.
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B LBlock Matrices

MEncryption =



0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 1F 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1F 0
1 0 0 0 0 0 0 0 0 1F 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1F 0 0 0 0
0 0 1 0 0 0 0 0 1F 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1F 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1F 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1F



MDecryption =



0 1F 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1F 0 0 0 0 0 0 0 1 0 0 0 0

1F 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1F 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1F 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1F 0 0 0 0 0 0 0 1
0 0 0 0 1F 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1F 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0



C Basic Key Recovery Attack on 22 Reduced-Round LBlock

Algorithm 1 Attack procedure

for all 228 subkey nibbles SK1(4, 2, 1), SK2(6, 0), SK3(7), SK4(5) in rounds 1− 4 do
for all 228 subkey nibbles SK19(1), SK20(2), SK21(5, 0), SK22(7, 6, 0) in rounds 19− 22 do

for all 28 possible values i = 0, · · · , 28 − 1 do
allocate the counter Ti and set them zero

end for
for all N plaintext-ciphertext pairs do

encrypt plaintext to obtain the nibble L4(4);
decrypt ciphertext to obtain the nibble R18(6);
for correponding i = (L4(4)|R18(6)) increase the counter Ti by one.

end for
compute the statistic value T = N · 28 ∑28−1

i=0 (Ti
N
− 1

28
)

If T < t, then the guess key is a possible candidate.
end for

end for
Do exhaustive search for all keys which corresponds to the guess subkey bits

D Attack Complexity

The time complexity of steps 3-11 in the described attack in Section 5 is as follows:
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Step 3 requires 212 × 232 × 232 = 276 memory accesses, because we should guess 12 bits for SK1, and for
232 values encrypt x0 one round and then update N1 for 232 times.

Step 4 requires 212 × 28 × 220 × 232 = 272 memory accesses, because for all of guessed 212 keys in previous
step, we should guess 8 bits for SK2, and for 220 values encrypt x1 one round and then update N2 for 232

times.
Step 5 requires 220 × 24 × 212 × 232 = 268 memory accesses, because for all of guessed 220 keys in previous

steps, we should guess 4 bits for SK3 and for 212 values encrypt x2 one round and then update N3 for 232

times.
Step 6 requires 224 × 24 × 28 × 232 = 268 memory accesses, because for all of guessed 224 keys in previous

steps, we should guess 4 bits for SK4 and for 28 values encrypt x3 one round and then update N4 for 232 times.
Step 7 requires 228 × 212 × 232 × 24 = 272 memory accesses, because for all of guessed 228 keys in previous

steps, we should guess 12 bits for SK22 and for 232 values decrypt x22 one round and then update N5 for 24

times.
Step 8 requires 240 × 28 × 220 × 24 = 272 memory accesses, because for all of guessed 240 keys in previous

steps, we should guess 8 bits for SK21 and for 220 values decrypt x21 one round and then update N6 for 24

times.
Step 9 requires 248 × 24 × 212 × 24 = 268 memory accesses, because for all of guessed 248 keys in previous

steps, we should guess 4 bits for SK20 and for 212 values decrypt x20 one round and then update N7 for 24

times.
Step 10 requires 252 × 24 × 28 × 24 = 268 memory accesses, because for all of guessed 252 keys in previous

steps, we should guess 24 for SK19 and for 28 values decrypt x19 one round and then update N8 for 24 times.
Step 11 requires 256 × 28 = 264 memory accesses, because for all of guessed 256 keys in previous steps, we

should read 28 values of N8[x4, x18].
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