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Abstract

In this paper, a family of six-weight cyclic codes over Fp whose duals have three

zeros is presented, where p is an odd prime. And the weight distribution of these cyclic

codes is determined.
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1 INTRODUCTION

Throughout this paper, let m ≥ 3 be an odd integer and k be a positive integer such

that gcd(m, k) = 1. Let p be an odd prime and π be a primitive element of the finite

field Fpm .

An [n, l, d] linear code C over Fp is an l-dimensional subspace of Fn
p with minimum

distance d. Let Ai denote the number of codewords with Hamming weight i in C of

length n. The weight enumerator of C is defined by 1+A1Z+A2Z
2+ · · ·+AnZ

n. The

sequence (1, A1, A2, . . . , An) is called the weight distribution of the code C. And C is

called cyclic if (c0, c1, . . . , cn−1) ∈ C implies (cn−1, c0, . . . , cn−2) ∈ C. By identifying any

vector (c0, c1, . . . , cn−1) ∈ F
n
p with c0+c1x+ · · ·+cn−1x

n−1 ∈ Fp[x]/(x
n−1), any cyclic

code corresponds to an ideal of the polynomial residue class ring Fp[x]/(x
n − 1). Since

Fp[x]/(x
n − 1) is a principal ideal ring, every cyclic code corresponds to a principal

ideal (g(x)) of the multiples of a polynomial g(x) which is the monic polynomial of

lowest degree in the ideal. This polynomial g(x) is called the generator polynomial, and

h(x) = (xn − 1)/g(x) is referred to as the parity-check polynomial of the code C. A

cyclic code is called irreducible if its parity-check polynomial is irreducible over Fp and

reducible, otherwise.

Clearly, the weight distribution gives the minimum distance of the code, and thus the

error capability. In addition, the weight distribution of a code allows the computation
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of the error probability of error detection and correction with respect to some error

detection and error correction algorithms. Thus the study of the weight distribution of

a linear code is important in both theory and applications. For cyclic codes, the error

correcting capability may not be as good as some other linear codes in general. However,

cyclic codes have wide applications in storage and communication systems because they

have efficient encoding and decoding algorithms. So the weight distributions of cyclic

codes have been interesting subjects of study for many years and are very hard problem

in general.

For information on the weight distribution of irreducible cyclic codes, the reader is

referred to [1, 2, 5, 6]. Information on the weight distributions of reducible cyclic codes

could be found in [7–11, 13–18]. For the duals of the known cyclic codes whose weight

distributions were determined, most of them have at most two zeros, only a few of them

have three or more zeros.

The objective of this paper is to determine the weight distribution of a class of

six-weight cyclic codes whose duals have three zeros.

This paper is organized as follows. Section 2 presents some necessary results on

quadratic forms which will be needed. Section 3 defines the family of cyclic codes and

determines their weight distributions.

2 QUADRATIC FORMS OVER FINITE FIELDS

In this section, we give a brief introduction to the theory of quadratic forms over finite

fields which will be needed to calculate the weight distribution of the cyclic codes in

the next section. Quadratic forms have been well studied (see [12] and the references

therein), and have application in design and coding theory.

Definition 2.1 Let x =
∑m

i=1 xiεi where xi ∈ Fp and {ε1, ε1, . . . , εm} is a basis for Fm
p

over Fp. The a function Q(x) from F
m
p to Fp is a quadratic form over Fp if it can be

represented as

Q(x) = Q
(

m
∑

i=1

xiεi
)

=
∑

1≤i≤j≤m

aijxixj ,

where aij ∈ Fp.

The rank of the quadratic form Q(x) is defined as the codimension of the Fp-vector

space V = {x ∈ F
m
p |Q(x+ z)−Q(x)−Q(z) = 0 for all x ∈ F

m
p }.

For a quadratic form F (x), there exists a symmetric matrix A of order m over

Fp such that F (x) = XAX ′, where X = (x1, x2, . . . , xm) ∈ F
m
p and X ′ denotes the

transpose of X . Then there exists a nonsingular matrix H of order m over Fp such that

MAM ′ is a diagonal matrix ( [12]). Under the nonsingular linear substitution X = ZH

with Z = (z1, z2, . . . , zm) ∈ F
m
p , then F (x) = ZMAM ′Z ′ =

∑r
i=1 diz

2
i , where r is the

rank of F (x) and di ∈ F
∗
p. Let △ = d1d2 · · · dr (we assume △ = 0 when r = 0). Then

the Legendre symbol (△p ) is an invariant of A under the action of H ∈ GLm(Fp). The

following results is useful in the next section.
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Lemma 2.2 ( [12]) With the notations as above, we have

∑

x∈Fpm

ζF (x)
p =







(△p )p
m− r

2 , p ≡ 1 (mod 4),

(△p )(
√
−1)rpm− r

2 , p ≡ 3 (mod 4),

for any quadratic form F (x) in m variables of rank r over Fp, where ζp is a primitive

p-th root of unity.

Lemma 2.3 Let F (x) be a quadratic form in m variables of rank r over Fp, then

∑

y∈F∗

p

∑

x∈Fpm

ζyF (x)
p =







±(p− 1)pm− r
2 , r even,

0, otherwise.

The proof is similar to the proof of Lemma 2.2 in [17], so we omit the details.

For any fixed (u, v) ∈ F
2
pm , Qu,v(x) = Tr(ux2 + vxpk+1), where Tr is the trace map

from Fpm to Fp. Moreover, we have the following result.

Lemma 2.4 ( [9]) For any (u, v) ∈ F
2
pm\{(0, 0)}, Qu,v(x) is a quadratic form over Fp

with rank m, m− 1, m− 2.

3 THE CLASS OF SIX-WEIGHT CYCLIC CODES AND THEIR WEIGHT

DISTRIBUTION

We follow the notations fixed in Section 1. In this section, we first introduce the family

of cyclic codes to be studied. Let h0(x), h1(x) and h2(x) be the minimal polynomials

of π−1, (−π)−1 and π−(pk+1)/2 over Fp, respectively. It is easy to check that h0(x),

h1(x) and h2(x) are polynomials of degree m and are pairwise distinct. Define h(x) =

h0(x)h1(x)h2(x). Then h(x) has degree 3m and is a factor of xpm−1 − 1.

Let C(p,m,k) be the cyclic code with parity-check polynomial h(x). Then C(p,m,k) has

length pm − 1 and dimension 3m. Moreover, it can be expressed as

C(p,m,k) = {c(a,b,c) : a, b, c ∈ Fpm},

where

c(a,b,c) =
(

Tr(aπt + b(−π)t + cπ(pk+1)t/2)
)pm−2

t=0
.

Let h′(x) = h1(x)h2(x) and C′
(p,m,k) be the cyclic code with parity-check polynomial

h′(x). Then C′
(p,m,k) is a subcode of C(p,m,k) with dimension 2m. Zhengchun Zhou and

Cunsheng Ding [17] proved that C′
(p,m,k) have three nonzero weights and determined its

weight distribution. In this paper, we will show that C(p,m,k) have six nonzero weights

and determine the weight distribution of this class of cyclic codes C(p,m,k).

From now on, we always assume that λ is a fixed nonsquare in Fp. Since m is odd,

it is also a nonsquare in Fpm . Then if SQ denotes the set of all nonzero square elements

of Fpm , λx runs through all nonsquares of Fpm as x runs through SQ. In addition, we

have the following result.
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Lemma 3.1 ( [17]) λ(1+pk)/2 = λ if k is even, and λ(1+pk)/2 = −λ otherwise.

In terms of exponential sums, the weight of the codeword c(a,b,c) = (c0, c1, . . . , cpm−2)

in C(p,m,k) is given by

W (c(a,b,c)) = #{0 ≤ t ≤ pm − 2 : ct 6= 0}

= pm − 1− 1

p

pm−2
∑

t=0

∑

y∈Fp

ζyc(t)p

= pm − 1− 1

p

pm−2
∑

t=0

∑

y∈Fp

ζyTr(aπt+b(−π)t+cπ(pk+1)t/2

p )

= pm − 1− 1

p

∑

y∈Fp

(pm−3)/2
∑

t=0

(

ζyTr((a+b)π2t+1+cπ(pk+1)t)
p + ζyTr((a−b)π2t+cπ

pk+1
2

(2t+1))
p

)

= pm − 1− 1

p

∑

y∈Fp

∑

x∈SQ

(

ζyTr((a+b)x+cx(pk+1)/2)
p + ζyTr((a−b)πx+c(πx)

pk+1
2 )

p

)

= pm − 1− 1

p

∑

y∈Fp

∑

x∈SQ

(

ζyTr((a+b)x+cx(pk+1)/2)
p + ζyTr((a−b)λx+c(λx)

pk+1
2 )

p

)

= pm − 1− 1

2p

∑

y∈Fp

∑

x∈F
∗

pm

(

ζyTr((a+b)x2+cxpk+1)
p + ζyTr((a−b)λx2+cλ

pk+1
2 xpk+1)

p

)

= pm − pm−1 − 1

2p

∑

y∈F∗

p

∑

x∈Fpm

(

ζyTr((a+b)x2+cxpk+1)
p + ζyTr((a−b)λx2+cλ

pk+1
2 xpk+1)

p

)

.

It then follows from Lemma 3.1 that W (c(a,b,c)) = pm − pm−1 − 1
2pS(a, b, c) when k is

even, where

S(a, b, c) =
∑

y∈F∗

p

∑

x∈Fpm

(

ζyTr((a+b)x2+cxpk+1)
p + ζyTr((a−b)λx2+cλxpk+1

p

)

, (1)

and W (c(a,b,c)) = pm − pm−1 − 1
2pT (a, b, c) when k is odd, where

T (a, b, c) =
∑

y∈F∗

p

∑

x∈Fpm

(

ζyTr((a+b)x2+cxpk+1)
p + ζyTr((a−b)λx2−cλxpk+1

p

)

. (2)

Based on the discussions above, the weight distribution of the code C(p,m,k) is completely

determined by the value distribution of S(a, b, c) and T (a, b, c). Before doing this, we

first give a notation. For any (u, v) ∈ F
2
pm ,

D(u, v) =
∑

y∈F∗

p

∑

x∈Fpm

ζyQu,v(x)
p =

∑

y∈F∗

p

∑

x∈Fpm

ζyTr(ux2+vxpk+1)
p . (3)

The following lemmas are very important to establish the value distribution of S(a, b, c)

and T (a, b, c).
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Lemma 3.2 Let D(u, v) be defined by (3).

D(u, 0) =







(p− 1)pm u = 0

0 u 6= 0.

Proof. By Eq. (3),

D(u, 0) =
∑

y∈F∗

p

∑

x∈Fpm

ζyQu,0(x)
p =

∑

y∈F∗

p

∑

x∈Fpm

ζyTr(ux2)
p .

Then D(0, 0) = (p− 1)pm. If u 6= 0, Qu,0(x) = Tr(ux2) is a quadratic form of rank m

over Fp. So D(u, 0) = 0 by Lemma 2.3.

Lemma 3.3 Let D(u, v) be defined by (3). Then for any fixed v ∈ F
∗
pm , as u runs

through Fpm , the value distribution of D(u, v) is given by Table 1.

Table 1: Value distribution of D(u, v) for fixed v ∈ F
∗
pm

Value Frequency

0 pm − pm−1

(p− 1)p
m+1

2
1
2(p

m−1 + p
m−1

2 )

−(p− 1)p
m+1

2
1
2(p

m−1 − p
m−1

2 )

Proof. As in Eq. (3),

D(u, v) =
∑

y∈F∗

p

∑

x∈Fpm

ζyQu,v(x)
p .

Then for any v ∈ F
∗
pm , by Lemma 2.3,the values of D(u, v) takes on only the values

from the set {0, ±(p− 1)p
m+1

2 }. To determine the distribution of D(u, v) for any fixed

v ∈ F
∗
pm , we define

nǫ = #{u ∈ Fpm : D(u, v) = ǫ(p− 1)p
m+1

2 },

where ǫ = 0,±1. Then we have
∑

u∈Fpm

D(u, v) = (n1 − n−1)(p− 1)p
m+1

2 (4)

and
∑

u∈Fpm

D2(u, v) = (n1 + n−1)(p− 1)2pm+1. (5)

On the other hand, it follows from (3) that

∑

u∈Fpm

D(u, v) =
∑

u∈Fpm

∑

y∈F∗

p

∑

x∈Fpm

ζyTr(ux2+vxpk+1)
p

=
∑

y∈F∗

p

∑

x∈Fpm

ζyTr(vxpk+1)
p

∑

u∈Fpm

ζyTr(ux2)
p

= (p− 1)pm

(6)
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and
∑

u∈Fpm

D2(u, v)

=
∑

u∈Fpm

(

∑

y1∈F∗

p

∑

x1∈Fpm

ζ
y1Tr(ux2

1+vxpk+1
1 )

p

)(

∑

y2∈F∗

p

∑

x2∈Fpm

ζ
y2Tr(ux2

2+vxpk+1
2 )

p

)

=
∑

u∈Fpm

∑

(y1,y2)∈F∗2
p

∑

(x1,x2)∈F
2
pm

ζ
Tr(u(y1x

2
1+y2x

2
2)+v(y1x

pk+1
1 +y2x

pk+1
2 ))

p

= (p− 1)pm +
∑

u∈Fpm

∑

(y1,y2)∈F∗2
p

∑

(x1,x2)∈F
∗2
pm

ζ
Tr(u(y1x

2
1+y2x

2
2)+v(y1x

pk+1
1 +y2x

pk+1
2 ))

p

= (p− 1)pm +
∑

(y1,y2)∈F∗2
p

∑

(x1,x2)∈F
∗2
pm

ζ
Tr(v(y1x

pk+1
1 +y2x

pk+1
2 ))

p

∑

u∈Fpm

ζ
Tr(u(y1x

2
1+y2x

2
2))

p

= (p− 1)pm +
∑

(y1,y2)∈F∗2
p

∑

(x1,x2)∈F
∗2
pm

ζ
Tr(v(y1x

pk+1
1 −y2x

pk+1
2 ))

p

∑

u∈Fpm

ζ
Tr(u(y1x

2
1−y2x

2
2))

p

= (p− 1)pm + pm
∑

t2∈Sq

∑

y2∈F
∗

p

y1=y2t
2

∑

x1∈F
∗

pm

x2
2=x2

1t
2

ζ
Tr(v(y1x

pk+1
1 −y2x

pk+1
2 ))

p

= (p− 1)pm + 2pm
∑

t2∈Sq

∑

y2∈F∗

p

∑

x1∈F
∗

pm

ζ
Tr(v(y2t

2xpk+1
1 −y2t

pk+1xpk+1
2 ))

p

= (p− 1)pm + 2pm
p− 1

2
(p− 1)(pm − 1)

= (p− 1)p2m,

(7)

where in the sixth identity we use Sq to denote the set of square elements in F
∗
p and

in the eighth identity we used the fact that tp
k+1 = t since t ∈ Fp. Combining Eqs.

(4)-(7), we get

n1 =
1

2
(pm−1 + p

m−1
2 ),

n−1 =
1

2
(pm−1 − p

m−1
2 ).

Then we have n0 = pm − n1 − n−1 = pm − pm−1.

The value distribution of S(a, b, c) will be determined in the following.

Lemma 3.4 Let k be even and S(a, b, c) be defined by (1), then for any (a, b, c) ∈ F
3
pm ,

S(a, b, c) takes values from the set {0, (p − 1)pm, 2(p − 1)pm,±(p − 1)p
m+1

2 ,±2(p −
1)p

m+1
2 }.

Proof. Following the notation above, we have S(a, b, c) = D(a + b, c) + D(a − b, c).

Case I. In the case of a = b = c = 0, D(a + b, c) = D(a − b, c) = (p − 1)pm, so

S(a, b, c) = 2(p− 1)pm.
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Case II. In the case of c = 0, a = −b 6= 0 or c = 0, a = b 6= 0, exactly one of Q(a+ b, c)

and Q(a − b, c) has rank m, the other has rank 0. Then by Lemma 2.3, we have

S(a, b, c) = (p− 1)pm.

Case III. In the case of c 6= 0, a+b 6= 0, a−b 6= 0, again by Lemma 2.3, S(a, b, c) 6= 0 only

if Q(a+ b, c) or Q(a− b, c) has even rank. Thus S(a, b, c) = ±(p− 1)p
m+1

2 if Q(a+ b, c)

has rank m or m− 2 and Q(a− b, c) has rank m− 1 or Q(a− b, c) has rank m or m− 2

and Q(a+ b, c) has rank m− 1. S(a, b, c) = ±2(p− 1)p
m+1

2 if Q(a+ b, c) has rank m− 1

and Q(a− b, c) has rank m− 1. And otherwise S(a, b, c) = 0. This completes the proof.

Theorem 3.5 Let k be even and S(a, b, c) be defined by (1). Then as (a, b, c) runs

through F
3
pm , the value distribution of S(a, b, c) is given by Table 2.

Table 2: Value Distribution of S(a, b, c)

Value Frequency

2(p − 1)pm 1

(p− 1)pm 2(pm − 1)

(p− 1)p
m+1

2 (pm − 1)(pm − pm−1)(pm−1 + p
m−1

2 )

−(p− 1)p
m+1

2 (pm − 1)pm − pm−1)(pm−1 − p
m−1

2 )

2(p − 1)p
m+1

2
1
4(p

m − 1)(pm−1 + p
m−1

2 )2

−2(p− 1)p
m+1

2
1
4(p

m − 1)(pm−1 − p
m−1

2 )2

0 (pm − 1)(p2m + 3
2p

2(m−1) − 2p2m−1 + pm − 1
2p

m−1 − 1)

Proof. The distribution of S(a, b, c) = (p− 1)pm or 2(p− 1)pm can be easily obtained

by Lemma 3.4. To determine the distribution of the other values, we define

Nǫ = #{(a, b, c) ∈ F
3
pm : S(a, b, c) = ǫ(p− 1)p

m+1
2 }

where ǫ = 0,±1,±2. Then we have

N1 = #{(a, b, c) ∈ F
3
pm : S(a, b, c) = D(a+ b, c) +D(a− b, c) = (p− 1)p

m+1
2 }

= #{(u1, u2, c) ∈ F
3
pm : D(u1, c) +D(u2, c) = (p− 1)p

m+1
2 }

= #{(u1, u2 ∈ F
2
pm , , c ∈ F

∗
pm : D(u1, c) +D(u2, c) = (p− 1)p

m+1
2 }+

#{(u1, u2 ∈ F
2
pm : D(u1, 0) +D(u2, 0) = (p− 1)p

m+1
2 }

= #{(u1, u2 ∈ F
2
pm , , c ∈ F

∗
pm : D(u1, c) +D(u2, c) = (p− 1)p

m+1
2 }

= #{(u1, u2 ∈ F
2
pm , , c ∈ F

∗
pm : D(u1, c) = 0, D(u2, c) = (p− 1)p

m+1
2 }+

#{(u1, u2 ∈ F
2
pm , , c ∈ F

∗
pm : D(u1, c) = (p− 1)p

m+1
2 , D(u2, c) = 0}

= 2n0n1(p
m − 1)

= (pm − 1)(pm − pm−1)(pm−1 + p
m−1

2 ),

7



where the second part of the third identity is 0 by Lemma 3.2 and the sixth identity is

obtained by Lemma 3.3.

Similarly, we get

N−1 = 2n0n−1(p
m − 1) = (pm − 1)(pm − pm−1)(pm−1 − p

m−1
2 ),

N2 = n2
1(p

m − 1) =
1

4
(pm − 1)(pm−1 + p

m−1
2 )2,

N−2 = n2
1(p

m − 1) =
1

4
(pm − 1)(pm−1 − p

m−1
2 )2

and

N0 = p3m − 1− 2(pm − 1)−N1 −N−1 −N2 −N−2

= (pm − 1)(p2m +
3

2
p2(m−1) − 2p2m−1 + pm − 1

2
pm−1 − 1)

Remark. Following the notations above, we have T (a, b, c) = D(a+b, c)+D(a−b,−c).

It can be shown that the value distribution of T (a, b, c) in the case of k is odd is the

same as the value distribution of S(a, b, c) in the case of k is even.

The following is the main result of this paper.

Theorem 3.6 C(p,m,k) is a cyclic code over Fp with parameters [pm−1, 3m, p−1
2 pm−1].

Furthermore, the weight distribution of C(p,m,k) is given by Table 3.

Table 3: Weight Distribution of C(p,m,k)

Weight Frequency

0 1
p−1
2 pm−1 2(pm − 1)

p−1
2 (2pm−1 − p

m−1

2 ) (pm − 1)(pm − pm−1)(pm−1 + p
m−1

2 )
p−1
2 (2pm−1 + p

m−1

2 ) (pm − 1)pm − pm−1)(pm−1 − p
m−1

2 )

(p− 1)(pm−1 − p
m−1

2 ) 1
4(p

m − 1)(pm−1 + p
m−1

2 )2

(p− 1)(pm−1 + p
m−1

2 ) 1
4(p

m − 1)(pm−1 − p
m−1

2 )2

(p− 1)pm−1 (pm − 1)(p2m + 3
2p

2(m−1) − 2p2m−1 + pm − 1
2p

m−1 − 1)

Proof. The length and dimension of C(p,m,k) follow directly from its definition. The

minimal weight and weight distribution of C(p,m,k) follow from Eqs. (1) and (2), Theo-

rem 3.5 and the Remark above.

Example 3.7 Let p = 3, m = 3 and k = 1. The the code C(3,3,1) is a [26, 9, 9] cyclic

code over F3 with weight enumerator

1 + 52z9 + 936z12 + 5616z15 + 10036z18 + 2808z21 + 234z24,

which confirms the weight distribution in Table 3.
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Example 3.8 Let p = 3, m = 5 and k = 2. The the code C(3,5,1) is a [242, 15, 81] cyclic

code over F3 with weight enumerator

1 + 484z81 + 490050z144 + 3828360z153 + 7193692z162 + 2822688z171 + 313632z180,

which confirms the weight distribution in Table 3.

Example 3.9 Let p = 3, m = 7 and k = 2. The the code C(3,7,2) is a [2186, 21, 729]

cyclic code over F3 with weight enumerator

1 + 4372z729 + 312344424z1404 + 2409514128z1431 + 5231766916z1458+ 2237405976z1485

+ 269317386z1512,

which confirms the weight distribution in Table 3.
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