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TACTICAL DECOMPOSITIONS OF DESIGNS OVER

FINITE FIELDS

ANAMARI NAKIĆ AND MARIO OSVIN PAVČEVIĆ

Abstract. An automorphism group of an incidence structure I
induces a tactical decomposition on I. It is well known that tacti-
cal decompositions of t-designs satisfy certain necessary conditions
which can be expressed as equations in terms of the coefficients
of tactical decomposition matrices. In this article we present re-
sults obtained for tactical decompositions of q-analogs of t-designs,
more precisely, of 2-(v, k, λ2; q) designs. We show that coefficients
of tactical decomposition matrices of a design over finite field sat-
isfy an equation system analog to the one known for block designs.
Furthermore, taking into consideration specific properties of de-
signs over the binary field F2, we obtain an additional system of
inequations for these coefficients in that case.

1. Introduction and preliminary results

Let Fq be the finite field of order q and F
v
q the vector space of di-

mension v over the finite field Fq. An r-space is a subspace of Fv
q of

dimension r. The number of r-spaces of Fv
q is

[

v

r

]

q

=
(qv − 1) · · · (qv−r+1 − 1)

(qr − 1) · · · (q − 1)
.

The number of r-spaces containing a fixed s-space, s ≤ r, is
[

v − s

r − s

]

q

.

For every two subspaces U and V , the dimension formula holds:

dim (〈U, V 〉) = dim U + dim V − dim (U ∩ V ).

Designs over finite fields were first introduced in the 1970’s, see [4],[5],[6].
First nontrivial designs over finite fields which are not spreads were
constructed in [14].
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Definition 1.1. A finite set B is called design over finite field with

parameters t-(v, k, λt) if the following properties hold:

(1) elements of B are k-spaces of the vector space F
v
q called blocks,

(2) every t-space of Fv
q is contained in λt blocks.

Designs over finite fields are also often called q-analogs of t-designs,
or shorter q-designs. A t-(v, k, λt) design is a finite incidence structure
(P,B), where P is a set of v elements called points, and B is a multiset of
nonempty k-subsets of P called blocks such that every set of t distinct
points is contained in exactly λt blocks. When parameters are not
important, t-(v, k, λt) designs are shorter called t-designs. When t = 2,
designs are called block designs. Designs over finite fields are closely
related to t-designs. Every design B with parameters 2-(v, k, λ2; q)
gives a block design with parameters 2-(

[

v

1

]

q
,
[

k

1

]

q
, λ2), where points are

identified with 1-spaces of Fv
q and each block is identified with the set of

1-spaces it contains. The inverse statement is not valid. For example,
there are block designs with parameters 2-(15, 7, 3) which cannot be
constructed from the associated 2-(4, 3, 3; 2) design.
If B is a design with parameters t-(v, k, λt; q), then B is a design with

parameters s-(v, k, λs; q), 0 ≤ s ≤ t, where

λs = λt

[

v−s

t−s

]

q
[

k−s

t−s

]

q

.

The number of blocks in B equals

|B| = λt

[

v

t

]

q
[

k

t

]

q

.

Automorphism of B is a linear operator Φ ∈ GLv(q) such that ΦB =
B. The set AutB of all automorphisms of B is a subgroup of the
general linear group GLv(q), called full automorphism group of B. Any
subgroup of AutB is an automorphism group of B.

2. Tactical decompositions of designs over finite fields

The idea of considering tactical decompositions of block designs was
first introduced by Dembowski [7]. Equations for coefficients of tactical
decomposition matrices for block designs are well known [9] and they
were used for constructions of many examples of block designs (listed
in [13]). These equations were generalized for any t ≥ 1 in [12]. In this
article we introduce tactical decompositions of designs over finite fields
for t = 2. We show that coefficients of tactical decomposition matrices
satisfy an equation system analog to the one known for block designs.
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Furthermore, taking into consideration specific properties of designs
over the binary field F2, we obtain an additional system of inequations
for coefficients of tactical decomposition matrices of a 2-(v, k, λ2; 2)
design. The system of equations and inequations for coefficients of
tactical decomposition matrices represents necessary conditions for the
existence of designs over finite fields with an assumed automorphism
group.
The Kramer-Mesner method [10] has been adopted and used for con-

struction of designs over finite fields, see [1], [2], [3]. In [11] it was intro-
duced how a tactical decomposition of a t-design induced by an action
of a proposed automorphism group can be used for the enhancement
of the Kramer-Mesner method. The necessary conditions on the exis-
tence of designs over finite fields with an assumed automorphism group
introduced in this article can be implemented in the Kramer-Mesner
method for construction of designs over finite fields, in a manner analog
to [11].

Definition 2.1. Let Ψ be the set of all 1-spaces of a finite vector space

V over a finite field F. Elements of Ψ shall be called points. A decom-
position of a design B over a finite field F is a partition of the set of

points Ψ = Ψ1 ⊔ · · · ⊔Ψm and the set B = B1 ⊔ · · · ⊔ Bn. We say that

a decomposition is tactical if there exist nonnegative integers ρij, κij,

i = 1, . . . , m, j = 1, . . . , n, such that

(1) every point in Ψi is contained in ρij blocks in Bj,

(2) each block in Bj contains κij points in Ψi.

Matrices [ρij] i [κij ] are called tactical decomposition matrices.

There are two trivial examples of tactical decomposition of a design.
The first example is obtained by putting n = m = 1, and the second by
partitioning sets Ψ and B into 1-element subsets. A nontrivial tactical
decomposition can be obtained by an action of an automorphism group
G ≤ Aut(B) on a design.

Theorem 2.2. Let G be an automorphism group of a design over finite

field B. Then the orbits of the set of points Ψ and the orbits of B form

a tactical decomposition.

Let B be a design with parameters 2-(v, k, λ2; q). Let

Ψ = Ψ1 ⊔ · · · ⊔Ψm, B = B1 ⊔ · · · ⊔ Bn,

be a tactical decomposition of B. For P ∈ Ψ we denote by IP = {B ∈
B |P ≤ B} the set of all blocks containing P . Obviously, |IP | = λ1
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and

ρij = |IP ∩ Bj |, P ∈ Ψi,

κij = |

[

B

1

]

∩Ψi|, B ∈ Bj ,

where
[

B

1

]

is the set of all 1-spaces of B. Coefficients ρij and κij are
not dependant on the choice of P ∈ Ψi and of B ∈ Bj if and only if
the decomposition is tactical. It is easy to show that

m
∑

i=1

κij =

[

k

1

]

q

,

n
∑

j=1

ρij = λ1.

(1)

Double-counting of the set {(P,B) ∈ Ψi × Bj : P ≤ B} yields

(2) |Ψi| · ρij = |Bj | · κij .

Now, fix a point P ∈ Ψl. Double-counting of the set

{(Q,B) ∈ Ψr × B : P,Q ≤ B}

yields

(3)

n
∑

j=1

ρljκrj =
∑

Q∈Ψr

|IP ∩ IQ|.

It is easy to compute the right-hand side of the previous expression.
Obviously, IP ∩ IQ = {B ∈ B : 〈P,Q〉 ≤ B} and so

|IP ∩ IQ| =

{

λ1, P = Q,

λ2, P 6= Q.

Thus, we have obtained a system of equations for the coefficients of
tactical decomposition matrices.

Theorem 2.3. Assume B is a 2-(v, k, λ2; q) design with a tactical de-

composition

Ψ = Ψ1 ⊔ · · · ⊔Ψm, B = B1 ⊔ · · · ⊔ Bn.

Let [ρij ] and [κij ] be the associated tactical decomposition matrices.

Then

(4)
n

∑

j=1

ρljκrj =

{

λ2 · |Ψr|, l 6= r,

λ1 + λ2 · (|Ψr| − 1), l = r.
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3. Improvements for the binary field

Assume now that B is a design over the binary field F2 with parame-
ters 2-(v, k, λ2; 2) and with an automorphism group G ≤ GLv(2). Then
the orbits of Ψ and the orbits of B form a tactical decomposition

Ψ = Ψ1 ⊔ · · · ⊔Ψm, B = B1 ⊔ · · · ⊔ Bn.

Fix a point P ∈ Ψl. Double-counting of the set

{(R, S,B) ∈ Ψr ×Ψs × B : P,R, S ≤ B}

yields

(5)

m
∑

j=1

ρljκrjκsj =
∑

R∈Ψr

∑

S∈Ψs

|IP ∩ IR ∩ IS|.

Let R ∈ Ψr, S ∈ Ψs. Obviously

IP ∩ IR ∩ IS = {B ∈ B : 〈P,R, S〉 ≤ B} =: IPRS.

By the dimension formula, 1 ≤ dim〈P,R, S〉 ≤ 3. For R ∈ Ψr, let
Ψi

s(R) be the set of all Q ∈ Ψs such that dim〈P,R,Q〉 = i, i = 1, 2, 3,

Ψi
s(R) := {Q ∈ Ψs : dim〈P,R,Q〉 = i}.

Sets Ψi
s(R) are pairwise disjoint and form a partition of Ψs,

Ψs = Ψ1
s(R) ⊔Ψ2

s(R) ⊔Ψ3
s(R).

Let

φi
rs =

∑

R∈Ψr

∑

S∈Ψi
s
(R)

|IPRS|, i = 1, 2, 3.

Then

(6)
n

∑

j=1

ρljκrjκsj = φ1
rs + φ2

rs + φ3
rs.

In the continuation, we compute φ1
rs, φ

2
rs, and obtain an upper bound

for φ3
rs. It is easy to see that

|IPRS| =

{

λ1, S ∈ Ψ1
s(R),

λ2, S ∈ Ψ2
s(R).

For S ∈ Ψ3
s(R) we can obtain only an upper bound,

(7) |IPRS| ≤ min{λ2,

[

v − 3

k − 3

]

q

} =: ϕ.

Consequently, we can obtain only an upper bound for the right-hand
side of (6).
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We denote the 3 points of a 2-space 〈P,R〉 of Fv
2 by P , R and P +R.

Let Mrs(P ) ⊆ Ψr be the set of all points R ∈ Ψr, P 6= R, such that
P +R ∈ Ψs,

Mrs(P ) := {R ∈ Ψr \ {P} : P +R ∈ Ψs}.

Tactical decomposition of B is group-induced. Hence, the cardinality
of Mrs(P ) is not dependant of the choice of P ∈ Ψl, i.e. |Mrs(P )| =
|Mrs(P

′)|, ∀P ′ ∈ Ψl. We shall write σlrs := |Mrs(P )|. The cardinality
of Ψi

s(R), i = 1, 2, 3, varies depending on whether R = P , R ∈ Mrs(P )
or otherwise.

Lemma 3.1. Assume B is a 2-(v, k, λ2; 2) design with an automor-

phism group G and a G-induced tactical decomposition

Ψ = Ψ1 ⊔ · · · ⊔Ψm, B = B1 ⊔ · · · ⊔ Bn.

Let P ∈ Ψl and R ∈ Ψr. Then

|Ψ1
s(R)| =

{

1, l = r = s i R = P,

0, otherwise .

Furthermore:

(1) For l 6= r 6= s 6= l holds

|Ψ2
s(R)| =

{

1, R ∈ Mrs(P ),
0, otherwise,

|Ψ3
s(R)| =

{

|Ψs| − 1, R ∈ Mrs(P ),
|Ψs|, otherwise.

(2) For l = r = s holds

|Ψ2
s(R)| =







3, R ∈ Mrs(P ),
|Ψs| − 1, R = P,

2, otherwise,

|Ψ3
s(R)| =







|Ψs| − 3, R ∈ Mrs(P ),
0, R = P,

|Ψs| − 2, otherwise.
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(3) For l = r 6= s holds

|Ψ2
s(R)| =







1, R ∈ Mrs(P ),
|Ψs|, R = P,

0, otherwise,

|Ψ3
s(R)| =







|Ψs| − 1, R ∈ Mrs(P ),
0, R = P,

|Ψs|, otherwise.

(4) For l 6= r = s holds

|Ψ2
s(R)| =

{

2, R ∈ Mrs(P ),
1, otherwise,

|Ψ3
s(R)| =

{

|Ψs| − 2, R ∈ Mrs(P ),
|Ψs| − 1, otherwise.

Proof. It is easy to see that

Ψ1
s(R) =

{

{P}, l = r = s and R = P,

∅, otherwise.

We shall now determine Ψ2
s(R) in each of the four cases. Then,

Ψ3
s(R) = Ψs \ (Ψ

1
s(R) ⊔Ψ2

s(R)).

Note that for R ∈ Ψr holds

Ψ2
s(R) ⊆ {P,R, P +R}.

Let l 6= r 6= s 6= l. Then P,R 6∈ Ψs, hence

Ψ2
s(R) =

{

{P +R}, R ∈ Mrs(P ),
∅, R 6∈ Mrs(P ).

Let l = r = s. Then P,R ∈ Ψl and

Ψ2
s(R) =







{P,R, P +R}, R ∈ Mrs(P ),
Ψs \ {P}, R = P,

{P,R}, otherwise.

Let l = r 6= s. Then

Ψ2
s(R) =







{P +R}, R ∈ Mrs(P ),
Ψs, R = P,

∅, otherwise.
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Let l 6= r = s. Then

Ψ2
s(R) =

{

{R,P +R}, R ∈ Mrs(P ),
{R}, otherwise.

�

The following theorem gives additional necessary conditions on the
existence of a 2-(v, k, λ2; 2) design with an assumed automorphism
group.

Theorem 3.2. Assume B is a 2-(v, k, λ2; 2) design with an automor-

phism group G and a G-induced tactical decomposition

Ψ = Ψ1 ⊔ · · · ⊔Ψm, B = B1 ⊔ · · · ⊔ Bn.

Let [ρij ] and [κij ] be the associated tactical decomposition matrices.

Then

n
∑

j=1

ρljκrjκsj =

=







σlrs · λ2 + φ3
rs, l 6= r 6= s 6= l,

λ1 + (3|Ψl|+ σlrs − 3)λ2 + φ3
rs, l = r = s,

(|Ψs|+ σlrs)λ2 + φ3
rs, l = r 6= s or l 6= r = s,

and

φ3
rs ≤







(|Ψr| · |Ψs| − σlrs)ϕ, l 6= r 6= s 6= l,

(|Ψl|
2 − 3|Ψl| − σlrs + 2)ϕ, l = r = s,

(|Ψr| · |Ψs| − |Ψs| − σlrs)ϕ, l = r 6= s or l 6= r = s,

where ϕ := min{λ2,
[

v−3
k−3

]

q
}.

Proof. Fix a point P ∈ Ψl. Then it holds

n
∑

j=1

ρljκrjκsj = φ1
rs + φ2

rs + φ3
rs.

Applying Lemma 3.1, it is easy to compute φ1
rs and φ2

rs, and obtain an
upper bound for φ3

rs.
Let l 6= r 6= s 6= l. Then Ψr = Mrs(P ) ⊔Mrs(P ),

φ2
rs =

∑

R∈Ψr

∑

S∈Ψ2
s
(R)

λ2 =
∑

R∈Mrs(P )

∑

S∈Ψ2
s
(R)

λ2 = σlrs · λ2,
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while

φ3
rs =

∑

R∈Ψr

∑

S∈Ψ3
s(R)

|IPRS|

=
∑

R∈Mrs(P )

∑

S∈Ψ3
s
(R)

|IPRS|+
∑

R∈Mrs(P )

∑

S∈Ψ3
s
(R)

|IPRS|

≤ σlrs(|Ψs| − 1)ϕ+ (|Ψr| − σlrs)|Ψs|ϕ
= (|Ψr| · |Ψs| − σlrs)ϕ.

Let l = r = s. Then Ψr = Mrs(P ) ⊔ {P} ⊔Mrs(P ),

φ2
rs =

∑

R∈Mrs(P )

∑

S∈Ψ2
s(R)

λ2 +
∑

R∈Mrs(P )

∑

S∈Ψ2
s(R)

λ2 +
∑

S∈Ψ2
s(P )

λ2

= 3σlrsλ2 + 2(|Ψl| − σlrs − 1)λ2 + (|Ψl| − 1)λ2

= (3|Ψl|+ σlrs − 3)λ2,

while

φ3
rs =

∑

R∈Mrs(P )

∑

S∈Ψ3
s
(R)

|IPRS|+
∑

R∈Mrs(P )

∑

S∈Ψ3
s
(R)

|IPRS|

≤ σlrs(|Ψs| − 3)ϕ+ (|Ψr| − σlrs − 1)(|Ψs| − 2)ϕ
= (|Ψl|

2 − 3|Ψl| − σlrs + 2)ϕ.

Let l = r 6= s. Then Ψl = Mrs(P ) ⊔ {P} ⊔Mrs(P ),

φ2
rs =

∑

R∈Mrs(P )

∑

S∈Ψ2
s
(R)

λ2 +
∑

S∈Ψ2
s
(P )

λ2

= (σlrs + |Ψs|)λ2,

while

φ3
rs =

∑

R∈Mrs(P )

∑

S∈Ψ3
s(R)

|IPRS|+
∑

R∈Mrs(P )

∑

S∈Ψ3
s(R)

|IPRS|

≤ (|Ψs| − 1)σlrsϕ+ (|Ψr| − σlrs − 1)|Ψs|ϕ
= (|Ψr| · |Ψs| − |Ψs| − σlrs)ϕ.

Let l 6= r = s. Then Ψr = Mrs(P ) ⊔Mrs(P ),

φ2
rs =

∑

R∈Mrs(P )

∑

S∈Ψ2
s(R)

λ2 +
∑

R∈Mrs(P )

∑

S∈Ψ2
s(R)

λ2

= 2σlrsλ2 + (|Ψs| − σlrs)λ2

= (|Ψs|+ σlrs)λ2,

while

φ3
rs =

∑

R∈Mrs(P )

∑

S∈Ψ3
s
(R)

|IPRS|+
∑

R∈Mrs(P )

∑

S∈Ψ3
s
(R)

|IPRS|

≤ σlrs(|Ψs| − 2)ϕ+ (|Ψr| − σlrs)(|Ψs| − 1)ϕ
= (|Ψr| · |Ψs| − |Ψr| − σlrs)ϕ.



10 ANAMARI NAKIĆ AND MARIO OSVIN PAVČEVIĆ

�

Note that the application of the equality

κij =
|Ψi|

|Bj |
ρij

on the left-hand side of the expression (6) eliminates the coefficients
κij from (6) and yields a system of inequations for the coefficients ρij

n
∑

j=1

ρljκrjκsj =
n

∑

j=1

|Ψr| · |Ψs|

|Bj |2
ρljρrjρsj .

An analog relation is valid for the coefficients κij as well.

4. Examples for some cyclic groups

We shall now illustrate our results on the example of a design B with
parameters 2-(4, 3, 3; 2). Let G = 〈Φ〉 ≤ GL2(4),

Φ =









0 0 0 1
0 0 1 0
0 1 1 0
1 0 0 1









.

Group G is the cyclic group of order 3. Assume G is an automorphism
group of B. Then

Ψ = Ψ1 ⊔ · · · ⊔Ψ5,

with respective orbit representatives 〈[1, 0, 0, 0]〉, 〈[1, 0, 1, 0]〉, 〈[1, 0, 1, 1]〉,
〈[1, 1, 0, 0]〉, 〈[0, 1, 0, 0]〉. All orbits are of length 3. The orbits of B
are currently unknown to us, but it is obvious that these orbits are of
length 3. In addition, the orbits of Ψ and the orbits of B form a tactical
decomposition

Ψ = Ψ1 ⊔ · · · ⊔Ψ5, B = B1 ⊔ · · · ⊔ B5.
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Coefficients of a corresponding tactical decomposition matrix [ρij ] must
satisfy the equations (1) and (4),

5
∑

j=1

ρij = 7, i = 1, . . . , 5,

5
∑

i=1

ρij = 7, j = 1, . . . , 5,

5
∑

j=1

ρ2ij = 13, i = 1, . . . , 5,

5
∑

j=1

ρrjρsj = 9, r 6= s.

There are two matrices, up to a rearrangement of rows and columns,
with coefficients that satisfy the above mentioned equations:













3 1 1 1 1
1 3 1 1 1
1 1 3 1 1
1 1 1 3 1
1 1 1 1 3













,













3 1 1 1 1
1 2 2 2 0
1 2 2 0 2
1 2 0 2 2
1 0 2 2 2













.

Note that the coefficients of the tactical decomposition matrices of a
block design with corresponding parameters 2-(15, 7, 3) also necessarily
satisfy this system of equations.
Furthermore, by the Theorem 3.2, the coefficients ρij satisfy an ad-

ditional system of inequations. First we determine the values σlrs,

σlrs =







1, l 6= r 6= s 6= l,

2, l = r = s,

0, l = r 6= s or l 6= r = s.

Coefficients ρij necessarily satisfy these inequations:

(8) 31 ≤
5

∑

j=1

ρ3lj ≤ 31, l = 1, . . . , 5,

(9) 3 ≤
5

∑

j=1

ρljρrjρsj ≤ 11, l 6= r 6= s 6= l,

(10) 9 ≤
5

∑

j=1

ρ2ljρrj ≤ 15, l 6= r.
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Only one of the two constructed matrices satisfies these additional con-
straints. For the matrix













3 1 1 1 1
1 2 2 2 0
1 2 2 0 2
1 2 0 2 2
1 0 2 2 2













,

it holds that
5

∑

j=1

ρ32j = 25,

a contradiction with inequation (8). Hence, the associated tactical
decomposition matrix [ρij ] of a design with parameters 2-(4, 3, 3; 2) and
automorphism group G, equals to the matrix













3 1 1 1 1
1 3 1 1 1
1 1 3 1 1
1 1 1 3 1
1 1 1 1 3













,

up to a rearrangement of rows and columns. There is a unique 2-
(4, 3, 3; 2) design. It can be obtained by taking all the hyperplanes of
the projective space PG(3, 2). In general, the coefficients of the tactical
decomposition matrices of a block design with the corresponding pa-
rameters do not necessarily satisfy the system of inequations from The-
orem 3.2. Namely, there are block designs with parameters 2-(15, 7, 3)
for each of the two constructed tactical decomposition matrices. For
the computation of the matrices we used the program orbmat5qd made
by V. Krčadinac [11], application GAP [8] and our own programs.
Hereafter, we give another example. Consider now a design B with

parameters 2-(6, 3, 6; 2). Let Φ ∈ GL6(2),

Φ =















0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 1 1















.

Then G = 〈Φ〉 ≤ GL6(2) is the cyclic group of order 31. Assume that
G is an automorphism group of B. Then

Ψ = Ψ1 ⊔Ψ2 ⊔Ψ3,
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with respective orbit representatives 〈[1, 1, 1, 1, 0, 1]〉, 〈[1, 0, 0, 0, 0, 0]〉,
〈[1, 0, 0, 0, 0, 1]〉. Moreover, |Ψ1| = 1, |Ψ2| = |Ψ3| = 31. Furthermore,
all orbits of B, currently unknown to us, are necessarily of length 31,
and the orbits of Ψ and the orbits of B form a tactical decomposition

Ψ = Ψ1 ⊔Ψ2 ⊔Ψ3, B = B1 ⊔ · · · ⊔ B18.

In addition,

σ1rs =

{

31, 1 6= r 6= s 6= 1,
0, otherwise,

σ2rs =







30, r 6= s, r, s = 2, 3,
1, 2 6= r 6= s 6= 2,
0, otherwise,

σ3rs =







30, r = s, r, s = 2, 3,
1, 3 6= r 6= s 6= 3,
0, otherwise.

We constructed 65 matrices satisfying the equations (1) and (4) for
coefficients ρij of tactical decomposition matrices. Out of these 65
matrices, 3 do not satisfy the system of inequations from Theorem 3.2:





31 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 6 1 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4
6 0 6 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3



 ,





31 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 6 2 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4
6 0 5 5 5 4 4 3 3 3 3 3 3 3 3 3 3 3



 ,





31 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 5 5 4 4 4 4 4 3 3 3 3 3 3 3 3 2
0 6 2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 5



 .

Namely, the coefficients of these 3 matrices do not satisfy the inequality

186 ≤
18
∑

j=1

ρ1jρ2jρ3j ≤ 1116.

For each of the remaining 62 matrices we attempted to construct a de-
sign over finite field with parameters 2-(6, 3, 6; 2), automorphism group
G and associated tactical decomposition matrix M . For the construc-
tion we used a method analog to the one described in [11]. We conclude
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that such design exists only when M is




31 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 3 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4
3 3 7 7 3 3 3 3 3 3 3 3 3 3 3 3 3 3



 .

In [1] examples of 2-(6, 3, 6; 2) were constructed. Using the Kramer-
Mesner method the author constructed designs with an automorphism
group G = 〈σ7〉, where σ is the Singer cycle, hence, G is the cyclic
group of order 9. The number of constructed designs is not reported.
We could construct 330 designs with given parameters, admitting the
action of the cyclic group G of order 31.
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