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Abstract

Block ciphers use Substitution boxes (S-boxes) to create confusion into the cryp-
tosystems. Functions used as S-boxes should have low differential uniformity, high
nonlinearity and algebraic degree larger than 3 (preferably strictly larger). They should
be fastly computable; from this viewpoint, it is better when they are in even number of
variables. In addition, the functions should be bijections in a Substitution-Permutation
Network. Almost perfect nonlinear (APN) functions have the lowest differential uni-
formity 2 and the existence of APN bijections over F2n for even n ≥ 8 is a big open
problem. In the present paper, we focus on constructing differentially 4-uniform bijec-
tions suitable for designing S-boxes for block ciphers. Based on the idea of permuting
the inverse function, we design a construction providing a large number of differentially
4-uniform bijections with maximum algebraic degree and high nonlinearity. For every
even n ≥ 12, we mathematically prove that the functions in a subclass of the con-
structed class are CCZ-inequivalent to known differentially 4-uniform power functions
and to quadratic functions. This is the first mathematical proof that an infinite class of
differentially 4-uniform bijections is CCZ-inequivalent to known differentially 4-uniform
power functions and to quadratic functions. We also get a general lower bound on the
nonlinearity of our functions, which can be very high in some cases, and obtain three
improved lower bounds on the nonlinearity for three special subcases of functions which
are extremely large.
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1 Introduction

The generally accepted design principles for block ciphers and stream ciphers are con-
fusion and diffusion; they were introduced by Shannon in [12]. Confusion means making
the relation between the ciphertext and the plaintext as complex as possible for the at-
tacker and diffusion is the spreading out of the influence of one or several arbitrary bits
of the plaintext or/and of the key over the output bits. In block ciphers, the confusion
property is provided by Substitution boxes (S-boxes) with good cryptographic properties
and the diffusion is created by (generally) linear transformations with large branch number
(related to codes of large minimum distance). In addition, S-boxes must be bijective in
Substitution-Permutation Networks (like the Advanced Encryption Standard, AES). In the
present paper, we concentrate on the design of bijective S-boxes.

An S-box with n input bits and m output bits is a multiple-output Boolean function
which is often called an (n,m)-function or (if the values n and m are omitted) a vectorial
Boolean function. The S-boxes used in cryptosystems should satisfy all relevant design
criteria simultaneously in order to be resistant against the known attacks and, hopefully,
against some attacks which may exist but are not yet efficient and might be improved in
the future. Linear cryptanalysis is a known-plaintext attack based on the existence of linear
relations satisfied with a probability significantly different from 1/2, relating the plaintext
bits, the ciphertext bits and the key bits. To contribute to resisting linear cryptanalysis
[10], S-boxes used in cryptosystems should have high nonlinearity. The differential attack,
developed by Biham and Shamir [1], is a chosen-plaintext attack that exploits the correlation
between the input and output differences of a pair of plaintext blocks through the network
of transformations with same key. The differential attack has a substantial impact on the
design of block encryption algorithms. After this attack was invented, Nyberg [11] proposed
the concept of differential δ-uniformity (see Definition 1 below), for measuring the ability
of a given function to contribute to resisting this attack. For a given (n,m)-function G,
the value of δ should be as small as possible. It is well-known that the smallest possible
value of δ is 2 when n = m; the functions achieving this value are called almost perfect
nonlinear (APN). Furthermore, functions used as S-boxes should have algebraic degree
as high as possible, or at least not low, to resist the higher order differential attack [8]
introduced by Knudsen. The algebraic degree of 2 is very weak but a degree of 3 seems
not enough and a degree at least 4 is safer. In addition, functions would better have high
graph algebraic immunity to resist the algebraic attacks (this attack is not yet efficient but
we must consider the possibility it becomes efficient in the future). Moreover, we need the
S-boxes to be efficiently computable, which in software is easier if the number n of input
bits is even; in fact, the best is to take n equal to a power of 2, since this allows decomposing
optimally the computation of the output in F2n into computations in subfields. In hardware,
n does not need to be a power of 2, but we like in general the cryptosystems to be efficiently
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implementable in both hardware and software (which is also more convenient for the design
of the whole cipher); for instance the number of input and output bits of the S-boxes of the
AES is 8.

Up to now, there is only one sporadic example of APN bijection for n = 6, found in
[3] and it is a big open problem to know whether there exist APN bijections over F2n for
even n ≥ 8. So, for resisting differential attacks in even dimensions, we need to choose
differentially 4-uniform bijections as S-boxes when n is even. Differential 4-uniformity is
not optimal but it can withstand differential attacks in an efficient way. For example, the
AES uses a differentially 4-uniform bijection with 8 input bits. By now, only a few classes
of differentially 4-uniform bijections in even dimensions have been found, some of them are
listed in [5, 14]. We list all known APN bijections and differentially 4-uniform bijections in
even dimensions below for the convenience of the reader. Clearly, the functions xd and x2id

are affine equivalent for every i, so we only list one value of d for each cyclotomic coset of
2 mod 2n − 1. Besides, any bijection is CCZ-equivalent (see definition in Section 2) to its
compositional inverse, so we also omit d−1 when d is co-prime with 2n − 1.

• There is only one example of APN bijection on 6 variables, given by J. Dillon [3] (the
problem of finding an example of APN bijections in even number of variables had been
open for ten years). But it is CCZ-equivalent to a quadratic function, which may be
vulnerable by the higher order differential attack, and its expression is complex, which
leads to inefficient implementation in both hardware and software.

• The inverse function x2n−2 is bijective and is differentially 4-uniform when n is even
[11]; it is used as the S-box of the AES with n = 8. This class of functions has best
known nonlinearity 2n−1−2n/2 and has maximum algebraic degree n−1. But it is the
worst possible with respect to algebraic attacks since if we denote y = x−1 then we
have the bilinear relation x2y = x. As mentioned above, though the algebraic attacks
are not yet efficient, they represent a threat. A possible way to repair this weakness
will be to compose the inverse function with a simple permutation, see below.

• The Gold functions x2i+1 such that gcd(i, n) = 2 are differentially 4-uniform. Some-
times, functions in this class are bijective since gcd(2i + 1, 2n − 1) divides gcd(22i −
1, 2n − 1) = 2gcd(2i,n) − 1; hence if n ≡ 2 [mod 4], the function is bijective, but n is
not a power of 2 and more problematically this class of functions is quadratic and can
not be used as S-box.

• The Kasami functions x22i−2i+1 such that n ≡ 2 [mod 4] and gcd(i, n) = 2 are
differentially 4-uniform. Sometimes, functions in this class are bijective as well. This
class of functions never reaches the maximum algebraic degree n − 1 (but this may
not be a problem). More problematically, it is related to quadratic functions when it
is bijective, since 22i− 2i + 1 = 23i+1

2i+1
, 2i + 1 is co-prime with 2n− 1 when n ≡ 2 [mod

4] and gcd(i, n) = 2; this implies that it has the form F (x) = Q1(x)Q−1
2 (x) where Q1
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and Q2 are quadratic permutations. Maybe this could be used in an extended higher
order differential attack. So this function, which is clearly the most interesting power
function to be used as S-box, would represent some risk.

• The function x2n/2+n/4+1
is differentially 4-uniform [2] and has best known nonlinearity

2n−1 − 2n/2 as well. It is bijective if n is divisible by 4 but not by 8; in this case, n

is not a power of 2; more problematically the function has algebraic degree 3 which is
too low.

• Very recently, Qu et. al [14] proposed two classes of differentially 4-uniform bijections
in even dimensions by adding some special Boolean functions to the inverse function.
The first class of functions is of the form x2n−2 + trn

1 (x2(x + 1)2
n−2), which has

optimal algebraic degree n−1 and a nonlinearity greater than 2n−1−2n/2+1−2. The
second one is of the form x2n−2 + trn

1

(
x(2n−2)d + (x2n−2 + 1)d

)
, where d = 3(2t + 1),

2 ≤ t ≤ n/2 − 1. It has algebraic degree n − 1 as well and a nonlinearity at least
2n−2− 2n/2−1− 1. The authors did not mathematically prove whether their functions
are CCZ-inequivalent to the inverse function, but we can easily check, with the help
of computer, that those two classes of functions are CCZ-inequivalent to the inverse
function for even n = 6, 8, 10, 12. These two classes of functions are then interesting;
they have high nonlinearity, maximum algebraic degree and no obvious weakness.

Except for the the inverse function (which has however a potential weakness), the Kasami
functions (which may have some potential weaknesses) and the functions constructed in
[14] (which have not been proven CCZ-inequivalent to the inverse function) there is no low
differentially uniform bijection which can be used as S-box. Therefore, the research of more
functions having all the desired features is useful and this is our motivation in the present
paper.

Since the inverse function is a differentially 4-uniform bijection when n is even and
has best known nonlinearity and maximum algebraic degree, we can try, as Qu et. al,
to construct new differentially 4-uniform bijections by modifying the inverse function. A
natural method for doing this is, contrary to Qu et. al, to compose the inverse function with
a well-chosen permutation, simple enough to allow handling the behavior of the parameters
above. In the present paper, we give a construction of differentially 4-uniform bijections in
even dimensions by “permuting” this way the inverse function. More precisely, for any even
n ≥ 6, we show we can find a class of subsets, denoted by U , of F2n , such that, taking as
output (x+1)2

n−2 if x ∈ U and x2n−2 otherwise gives a differentially 4-uniform permutation.
For every even n, we can get at least 22n−3−2n/2−2

different such sets U . For example, for
n = 6 we can obtain 27 differentially 4-uniform bijections; for n = 8 we can obtain 236 ones.
We list the numbers of constructed differentially 4-uniform bijections in Table 2 for even n

ranging from 6 to 20. Furthermore, for every even n ≥ 12, we mathematically prove that
if the size of U is such that 0 < |U | < (2n−1 − 2n/2)/3 − 2 then our functions are CCZ-
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inequivalent to known differentially 4-uniform power functions and to quadratic functions.
This is the first time that can be mathematically proven that an infinite class of differentially
4-uniform bijections contains elements CCZ-inequivalent to known differentially 4-uniform
power functions and to quadratic functions. By computer investigation, we checked that
when n = 6 all the obtained bijections are CCZ-inequivalent to known differentially 4-
uniform bijections listed above. We also prove that, for any even n ≥ 6, our functions have
maximum algebraic degree n − 1. We also have a lower bound on the nonlinearity for all
our functions, that is 2n−1 − 2n/2 − |U |, which can be quite high in some cases since the
size of U can take any even integer ranging from 2 to Umax (see the definition of Umax in
Subsection 4.2). For special sets U = Umax, U = Um0 and U = Um1 (see Subsection 4.2
for their definitions) we obtain improved lower bounds on the nonlinearity and the actual
nonlinearities are very high. We summarize in Table 1 the cryptographic properties of
known differentially 4-uniform bijections on even variables. It is seen from Table 1 that all
known differentially 4-uniform power bijections on even variables have exact or potential
weakness, so we only compare our functions with known non-power differentially 4-uniform
bijections proposed in [14]. We can see from Table 1 that compared with the bijections
constructed in [14], our lower bound on nonlinearity with 0 < |U | < (2n−1 − 2n/2)/3− 2 is
better than that of the functions in [14] when we restrict the size of U to at most 2n/2. We
also can see from Table 1 that the lower bounds on the nonlinearity of our functions with
U = Umax, U = Um0 and U = Um1 are a little less than that of the first class of functions
in [14] but much better than that of the second one in [14] . Actually, for small numbers
of variables n, the exact nonlinearities of these three classes of functions are very close to
that of the first class in [14] (see Table 4 in Section 5) and, the most important point,
our functions with U = Um0 and U = Um1 are CCZ-inequivalent to known differentially
4-uniform power functions.

Table 1: Known differentially 4-uniform bijections on even variables n

Known differentially Lower bound on CCZ-inequivalent to known Algebraic Cryptographic

4-uniform bijections nonlinearity power functions for large n degree properties

The inverse function 2n−1 − 2n/2 − n− 1 potentially weak

The Gold functions 2n−1 − 2n/2 − 2 very weak

The Kasami functions 2n−1 − 2n/2 − < n− 1 potentially weak

Functions in [2] 2n−1 − 2n/2 − 3 very weak

The first class in [14] 2n−1 − 2n/2+1 − 2 unknown n− 1 strong

The second class in [14] 2n−2 − 2n/2−1 − 1 unknown n− 1 weak

Ours with U = Umax 2n−1 − 3 · 2n/2 − 2 unknown n− 1 strong

Ours with 0 < |U | < (2n−1 − 2n/2)/3− 2 2n−1 − 2n/2 − |U | Yes n− 1 strong

Ours with U = Um0 2n−1 − 2n/2+2 − 2 Yes n− 1 very strong

Ours with U = Um1 2n−1 − 2n/2+2 − 2 Yes n− 1 very strong

The remainder of this paper is organized as follows. In Section 2, the notation and the
necessary preliminaries required for the subsequent sections are reviewed. We propose in
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Section 3 a new construction of differentially 4-uniform bijections over F2n (n even). In
Section 4, the algebraic degree is determined and several lower bounds on the nonlinearity
of the constructed functions are presented. The CCZ-inequivalence between constructed
functions and known differentially 4-uniform power bijections are proved as well. In Section
5, we compare the nonlinearity of our functions to the nonlinearity of all known differentially
4-uniform bijections. Finally, Section 6 concludes the paper.

2 Preliminaries

Let n and m be two integers; mappings G from the finite field F2n to the finite field F2m

are often called (n,m)-functions or (if the values n and m are omitted) vectorial Boolean
functions. G is called a Boolean function ( in n variables) when m = 1. We denote by Bn

the set of Boolean functions in n variables. The basic representation of a Boolean function
f(x1, · · · , xn) is by its truth table, i.e.,

f =
[
f(0, 0, · · · , 0), f(1, 0, · · · , 0), f(0, 1, · · · , 0), f(1, 1, · · · , 0), · · · , f(1, 1, · · · , 1)

]
.

We say that a Boolean function f is balanced if its truth table contains an equal number
of ones and zeros, that is, if its Hamming weight equals 2n−1. The Hamming weight of
f , denoted by wt(f), is the size of the support of f , where the support of f is defined
as Supp(f) = {x ∈ Fn

2 | f(x) = 1}. Given two Boolean functions f and g in n variables,
the Hamming distance between f and g is defined as dH(f, g) = |{x ∈ Fn

2 | f(x) 6= g(x)}|.
Let G be an (n,m)-function, the Boolean functions g1(x), · · · , gm(x) such that G(x) =
(g1(x), · · · , gm(x)), are called the coordinate functions of G. The linear combinations, with
non all-zero coefficients, of the coordinate functions of G are called the component functions
of G. The component functions of G can be expressed as trn

1 (aG), where a ∈ F∗2n and

trn
1 (x) =

n−1∑
i=0

x2i
is the trace function from F2n to F2. Design criteria on S-boxes can be

expressed as properties of the component functions or of the vectorial function itself.
For measuring the quality of a given function to resist the differential attack [1], Nyberg

[11] introduced the concept of differential δ-uniformity:

Definition 1. An (n,m)-function G is called differentially δ-uniform if, for every nonzero
a ∈ F2n and every b ∈ F2m, the equation G(x) + G(x + a) = b has at most δ solutions.

The smaller δ is, the better is the contribution of G to resist the differential attack. The
values of δ are always even since if x is a solution of equation G(x)+G(x+a) = b then x+a is
also a solution. When m = n, the smallest possible value of δ is 2 and the functions achieving
this value are called almost perfect nonlinear (APN) functions. For every a ∈ F∗2n and every
b ∈ F2m , we denote by δG(a, b) the size of the set {x ∈ F2n |G(x) + G(x + a) = b} and
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therefore δ equals the maximum value of δG(a, b). The multi-set [δG(a, b) | a ∈ F∗2n , b ∈ F2m ]
is called the differential spectrum of G.

S-boxes used in cryptosystems should have high nonlinearity in order to prevent linear
cryptanalysis [10]. The nonlinearity NL(G) of an (n,m)-function G is the minimum Ham-
ming distance between all the component functions trn

1 (aG) of G, where a ∈ F∗2n , and all
affine functions on n variables. We have:

NL(G) = 2n−1 − 1
2

max
(a,b)∈F∗2m×F2n

|WG(a, b)|,

where WG(a, b) =
∑

x∈F2n
(−1)trn

1 (aG(x)+bx) is the value of the Walsh transform of G at (a, b);
the multi-set of these values is called the Walsh spectrum of G. We call extended Walsh
spectrum of G the multi-set of their absolute values. It is well known that the nonlinearity
NL(G) is upper-bounded by 2n−1− 2

n−1
2 for n = m and the best known value of NL(G) is

2n−1 − 2
n
2 for even n = m.

The algebraic degree is also an important parameter of the S-boxes used in cryptosys-
tems. Every (n,m)-function G can be uniquely represented by an univariate polynomial:

G(x) =
2n−1∑

i=0

aix
i, ai ∈ F2n .

The algebraic degree, denoted by deg(G), is defined as the maximal 2-weight of the exponents
i such that ai 6= 0, where the 2-weight of a given integer i is the number of ones in its binary
expansion. S-boxes used in cryptosystems should have high algebraic degree, or at least
not a low one, to resist the higher order differential attack; it is known that the algebraic
degree of bijective functions on n variables is upper-bounded by n− 1.

Two functions are considered as equivalent if one can be obtained from the other by
some simple transformation (and a function equivalent to a weak function under some
transformation preserving the attack on this function will be weak as well). There are
mainly three such equivalence notions, called affine equivalence, extended affine equivalence
(in brief, EA equivalence) and Carlet-Charpin-Zinoviev equivalence (CCZ-equivalence), re-
spectively. Given two (n, n)-functions G and H, we say that they are affine equivalent if
G(x) = A1(H(A2(x))), where A1 and A2 are affine permutations on F2n ; we say that they
are EA-equivalent if G(x) = A1(H(A2(x))) + A3(x), where A1 and A2 are affine permu-
tations on F2n and A3 is an affine function on F2n ; we say that they are CCZ-equivalent
[6, 4] if their graphs {(x, y) ∈ F2n × F2n | y = G(x)} and {(x, y) ∈ F2n × F2n | y = H(x)}
are affine equivalent, that is, if there exists an affine automorphism L = (L1, L2) of
F2n × F2n , where L1 and L2 are two affine functions from F2n × F2n to F2n , such that
y = G(x) ⇔ L2(x, y) = H(L1(x, y)). It is well-known that EA equivalence implies CCZ-
equivalence, but the converse is false. The differential spectrum and extended Walsh spec-
trum are invariant under EA and CCZ-equivalence; the algebraic degree is not invariant
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under CCZ-equivalence but it is invariant under EA equivalence, for functions of degrees at
least 2.

3 New differentially 4-uniform bijections

Let n be an even integer. In this section, we obtain a class of differentially 4-uniform
bijections of the form x ∈ F2n → (T (x))−1 ∈ F2n (we shall call such composition with T

“permuting the inverse function”), where T is a bijective mapping from F2n to F2n and
x → x−1 is the inverse function, with the convention 0−1 = 0 (we shall always use this kind
of convention in the sequel). It is well-known that the inverse function is a differentially
4-uniform bijection.

Construction 1. Let n ≥ 6 be an even number and U be a subset of F2n satisfying:
a) for any x ∈ U , x + 1 ∈ U and
b) for any x ∈ U , trn

1 (x−1) = 1.
We define an (n, n)-function F on F2n as follows:

F (x) =

{
(x + 1)−1, x ∈ U

x−1, x ∈ F2n \ U
.

In fact, the function F can be rewritten as

F (x) = (x + δU (x))−1 (1)

where δU is the indicator function of U , i.e. δU (x) = 1 if x ∈ U and δU (x) = 0 otherwise.
Since U is stable under the addition by 1, i.e.,

δU (x) + δU (x + 1) = 0, for all x ∈ F2n ,

we can easily see that x → x + δU (x) is its own inverse, and therefore is a bijection on F2n .
Hence, function F is bijective on F2n .

3.1 Differential 4-uniformity

In what follows, we shall prove that any function F , defined above, is differentially
4-uniform. For doing this, we first need several preliminary results.

Lemma 1 ([9]). Let n be a positive integer. For any (a, b) ∈ F∗2n × F2n let us define the
polynomial µ(x) = ax2 + bx + c ∈ F2n [x]. Then µ(x) = 0 has 2 solutions if and only if
trn

1 (b−2ac) = 0.

Lemma 2. Let n be a positive integer. For any b ∈ F∗2n, let us define the polynomial
µ(x) = bx2 + (1 + b)x + b−1 ∈ F2n [x]. If µ(x) = 0 has 2 solutions λ, ν then we have
trn

1 (λ−1) = trn
1 (ν−1) = 0 if n is even and trn

1 (λ−1) = trn
1 (ν−1) = 1 if n is odd.
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Proof. The two roots λ and ν of the equation bx2 + (1 + b)x + b−1 = 0 are nonzero since
b 6= 0. It is sufficient to show that trn

1 (λ−1 + 1) = trn
1 (ν−1 + 1) = 0. Note that λ−1 and

ν−1 are the roots of the reciprocal equation b + (1 + b)x + b−1x2 = 0. Multiplying by b, we
have x2 + (b + b2)x + b2 = 0. Given an equation x2 + Sx + P = 0, adding 1 to each root
corresponds to keeping the same sum S and to replacing the product P by P + S + 1. We
obtain here the equation x2 +(b+ b2)x+ b+1 = 0 having roots λ−1 +1 and ν−1 +1. What
we need is to prove that the roots of this equation have null trace, that is, have the form
u+u2. Given an equation x2+sx+p = 0 whose roots are u and v, the equation whose roots
are u+u2 and v+v2 is x2 +Sx+P = 0 with S = s+s2 and P = p(1+s+p). Applying this
observation to the equation x2 + (b + b2)x + b + 1 = 0 with s = b and S = b + b2, the roots
have null trace only if there exists p in F2n such that p2 +(b+1)p = b+1. The existence of
p is guaranteed by Lemma 1, due to the fact that trn

1 ((b+1)−1) = trn
1 ((b+1)−2) = 0, where

the latter follows from applying Lemma 1 to the original equation bx2 + (1 + b)x + b−1 = 0
with two solutions.

The proof of the differential 4-uniformity of our functions will be based on the following
lemma:

Lemma 3. Let U be the set defined in Construction 1. For any (a, b) ∈ F∗2n × F2n, let us
consider the four following equations on F2n:

x−1 + (x + a)−1 = b, x, x + a ∈ F2n \ U (2)

(x + 1)−1 + (x + 1 + a)−1 = b, x, x + a ∈ U (3)

(x + 1)−1 + (x + a)−1 = b, x ∈ U, x + a ∈ F2n \ U (4)

x−1 + (x + 1 + a)−1 = b, x ∈ F2n \ U, x + a ∈ U. (5)

If (a, b) ∈ F2n \ {0, 1} × F∗2n, then the following statements hold:

1) The sum of the numbers of solutions of (2) and (3) is at most 4. Moreover:

1.1) If ab 6= 1, then the sum of the numbers of solutions of (2) and (3) is at most 2.

1.2) If a ∈ U and b(a + 1) = 1, then equations (2) and (3) have no solution.

2) The sum of the numbers of solutions of (4) and (5) is at most 4. Moreover:

2.1) If b(a + 1) 6= 1 or a 6∈ U , then the sum of the numbers of solutions of (4) and
(5) is at most 2.

2.2) If ab = 1, then equations (4) and (5) have no solution.

Lemma 3 will be proved in Appendix. Now we are ready to prove our main result.

Theorem 1. The bijection F defined in Construction 1 is differentially 4-uniform.
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Proof. Let us check that

F (x) + F (x + a) = b (6)

has at most 4 solutions for every fixed (a, b) ∈ F∗2n × F2n . By the definition of F , (6) is
equivalent to equations (2)-(5). Recall that F is a bijection. Then (6) has no solution for
(a, b) ∈ F∗2n × {0}. So we only need to consider (a, b) ∈ F∗2n × F∗2n .

Firstly, we can see that (6) has at most 4 solutions if (a, b) ∈ {1} × F∗2n . In this case,
(2) and (3) become the same equation x−1 + (x + a)−1 = b with x, x + a in U and F2n \ U

respectively. Since the function x → x−1 is 4 uniform, we can see that the sum of the
numbers of solutions of (2) and (3) is at most 4; and (4), (5) have no solution for a = 1
since we assume b 6= 0.

Secondly, we prove that (6) has at most 4 solutions for every (a, b) ∈ F2n \ {0, 1} × F∗2n .
Case A. ab = 1.
It follows from 1) in Lemma 3 that the sum of the numbers of solutions of (2) and (3) is at
most 4 and from 2.2) of Lemma 3 that equations (4) and (5) have no solution. Therefore,
(6) has at most 4 solutions.
Case B. ab 6= 1
• Case B-1 b(a + 1) = 1 and a ∈ U

According to 1.2) in Lemma 3, equations (2) and (3) have no solution in this case, and
according to 2) in Lemma 3, the sum of the numbers of solutions of (4) and (5) is at most
4. This implies that (6) has at most 4 solutions in this case.
• Case B-2 b(a + 1) 6= 1 or a 6∈ U

According to 1.1) (2.1) resp.) in Lemma 3 respectively, the sum of the numbers of solutions
of (2) and (3) ((4) and (5) resp.) is at most 2. So (6) has at most 4 solutions.

Hence, function F is differentially 4-uniform.

4 Other cryptographic properties of F

In this section, we focus on the cryptographic properties of F . We first prove that F

has maximum algebraic degree n − 1. In addition, we obtain several lower bounds on the
nonlinearity for F . Finally, we show that our functions, in some cases, are CCZ-inequivalent
to known differentially 4-uniform power functions, including the inverse function, and to
quadratic functions.

4.1 Algebraic degree

Theorem 2. For every even n ≥ 6, F has algebraic degree n− 1.

Proof. Recall that F has algebraic degree at most n − 1 since F is bijective. So we only
need to prove that F has algebraic degree at least n− 1. Recall the following two facts:

10



1. F has algebraic degree at most k if and only if, for every a ∈ F∗2n , the Boolean function
trn

1 (aF ) defined on F2n has algebraic degree at most k;

2. An n-variable Boolean function f has algebraic degree n if and only if wt(f) ≡ 1
(mod 2).

If F has algebraic degree at most k, we have that, for every n-variable Boolean function h

with deg(h) ≤ n− k − 1, the expression trn
1 (

∑
x∈F2n

aF (x)h(x)) =
∑

x∈F2n
trn

1 (aF (x))h(x)
is null for all a ∈ F∗2n and hence

∑
x∈F2n

F (x)h(x) = 0.
Therefore, for proving that F has algebraic degree at least n − 1, it is sufficient to

show that there exists a Boolean function h with algebraic degree at most 1 such that∑
x∈F2n

F (x)h(x) 6= 0. Taking h(x) = trn
1 (x) which has algebraic degree 1, we have

∑

x∈F2n

F (x)h(x)

=
∑

x∈F2n

trn
1 (x)(x + δU (x))−1

=
∑

x∈F2n

trn
1 (x + δU (x))x−1

=
∑

x∈U

trn
1 (x + 1)x−1 +

∑

x∈F2n\U
trn

1 (x)x−1

=
∑

x∈F2n

trn
1 (x)x−1

=
∑

x∈F∗2n

n−1∑

i=0

x2i−1

= 1

where we use that x → x + δU (x) is its own inverse in the second identity, that trn
1 (1) = 0

for even n in the fourth identity, and that
∑

x∈F∗2n
x2i−1 =

∑
x∈F∗2n

1 = 1(mod 2) for i = 0

and
∑

x∈F∗2n
x2i−1 = 0 for 0 < i < n in the last identity.

4.2 Nonlinearity

In this subsection, we will give several lower bounds on the nonlinearity of F . Let us
first give a lower bound on the nonlinearity of F , which only relies on the nonlinearity of
the inverse function and on the size of U .

Let us denote by I the inverse function. We recall what we know on the Walsh spectrum
of the component functions of I.

11



Lemma 4 ([13]). For any positive integer n and arbitrary a ∈ F∗2n, the Walsh spectrum of
trn

1 (ax−1) defined on F2n can take any value divisible by 4 in the range [−2n/2+1+1, 2n/2+1+
1].

By Lemma 4, the following naive bound on the nonlinearity of F is straightforward.

Theorem 3. For every even n ≥ 6, we have NL(F ) ≥ 2n−1 − 2n/2 − |U |.

Proof. For any (a, b) ∈ F∗2n × F2n , we have

|WF (a, b)|
= |

∑

x∈F2n\U
(−1)trn

1 (ax−1+bx) +
∑

x∈U

(−1)trn
1 (a(x+1)−1+bx)|

= |
∑

x∈F2n

(−1)trn
1 (ax−1+bx) +

∑

x∈U

(−1)trn
1 (a(x+1)−1+bx) −

∑

x∈U

(−1)trn
1 (ax−1+bx)|

≤ |WI(a, b)|+ 2|U |.

By Lemma 4 we have |WF (a, b)| ≤ 2n/2+1 + 2|U | and therefore NL(F ) ≥ 2n−1 − 2n/2 −
|U |.

This bound indicates that if the size of U is very small, then the nonlinearity of F is
close to that of I, which is very high. However, if the size of U is too small, then F is very
close to the inverse function. Then if there exists an attack on the inverse function, this
attack can represent a threat for function F too. Thus, the size of U should not be too
small.

For even n ≥ 6, we can see that the union of all the sets U satisfying the conditions
of Construction 1, that is the set {x ∈ F2n | trn

1 (x−1) = trn
1 ((x + 1)−1) = 1}, that we shall

denote by Umax from now on, is the largest one. Let us define Um0 = {x ∈ Umax | trn
1 (x) = 0}

and Um1 = {x ∈ Umax | trn
1 (x) = 1} from now on. We can see that Umax = Um0 ∪ Um1 , and

both Um0 and Um1 satisfy the two conditions for U in Construction 1. It is easily checked
that

δUmax(x) = trn
1 (x−1)trn

1 ((x + 1)−1) (7)

δUm0
(x) = (1 + trn

1 (x))trn
1 (x−1)trn

1 ((x + 1)−1) (8)

and

δUm1
(x) = trn

1 (x)trn
1 (x−1)trn

1 ((x + 1)−1) (9)

In what follows, we will give three lower bounds on the nonlinearity of F with U =
Umax, Um0 , Um1 respectively.

We need some lemmas and corollaries, which will be useful for establishing our lower
bounds.
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Lemma 5. Let n be a positive integer and h be a Boolean function defined on F2n. Then
for any b ∈ F2n, the following statements hold:

1)
∑

x∈F2n ,trn
1 (x)=0

(−1)h(x)+trn
1 (bx) = 1

2

(
Wh(b) + Wh(b + 1)

)
;

2)
∑

x∈F2n ,trn
1 (x)=1

(−1)h(x)+trn
1 (bx) = 1

2

(
Wh(b)−Wh(b + 1)

)
;

3) | ∑
x∈F2n ,trn

1 (x)=c

(−1)h(x)+trn
1 (bx)| ≤ max

a∈F2n
|Wh(a)|, where c ∈ F2.

We omit the proof of Lemma 5, which follows easily from the fact that
∑

x∈F2n
(−1)trn

1 (x) =
0.

Lemma 6 ([14]). Let n be a positive integer, then |∑x∈F2n
(−1)trn

1 (ax+bx−1+x2(x+1)−1)| ≤
2b2n/2+1c+ 4 for any (a, b) ∈ F2n × F2n.

Note that x2(x + 1)−1 = x + 1 + (x + 1)−1. Then Lemma 6 is equivalent to:

Corollary 1. For any positive integer n, we have |∑x∈F2n
(−1)trn

1 (ax+bx−1+(x+1)−1)| ≤
2b2n/2+1c+ 4 for any (a, b) ∈ F2n × F2n.

Lemma 7. For any even integer n, we have

max
(a,b)∈F∗2n×F∗2n

|
∑

x∈F2n ,trn
1 (x)=c

(−1)trn
1 (ax−1+bx)+trn

1 (x−1)trn
1 ((x+1)−1)| ≤ 6 · 2n/2 + 4,

where c ∈ F2.

Proof. For any (a, b) ∈ F∗2n × F∗2n , we have

∑

x∈F2n

(−1)trn
1 (ax−1+bx)+trn

1 (x−1)trn
1 ((x+1)−1)

=
∑

x∈F2n\F2

(−1)trn
1 (ax+bx−1)+trn

1 (x)trn
1 (x(x+1)−1) +

∑

x∈F2

(−1)trn
1 (ax+bx−1)+trn

1 (x)trn
1 ((x+1)−1)

(by changing x into x−1 and checking for x = 0, 1)

=
∑

x∈F2n

(−1)trn
1 (ax+bx−1)+trn

1 (x)trn
1 ((x+1)−1) (since trn

1 (1) = 0 for even n)

=
∑

x∈F2n ,trn
1 (x)=0

(−1)trn
1 (ax+bx−1) +

∑

x∈F2n ,trn
1 (x)=1

(−1)trn
1 (ax+bx−1+(x+1)−1)

It follows from Lemmas 4 and 5 that

|
∑

x∈F2n ,trn
1 (x)=c

(−1)trn
1 (ax+bx−1)| ≤ 2n/2+1.
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By Corollary 1 and Lemma 5, we get

|
∑

x∈F2n ,trn
1 (x)=c

(−1)trn
1 (ax+bx−1+(x+1)−1)| ≤ 2n/2+2 + 4

Therefore, we have max(a,b)∈F∗2n×F∗2n
|∑x∈F2n ,trn

1 (x)=c(−1)trn
1 (ax−1+bx)+trn

1 (x−1)trn
1 ((x+1)−1)| ≤

6 · 2n/2 + 4.

Lemma 8. Let n be an integer and f be a Boolean function defined on F2n such that f(x)+
f(x + 1) = 0. Then for any (a, b) ∈ F ∗

2n × F2n, we have
∑

x∈F2n
(−1)trn

1 (a(x+f(x))−1+bx) =∑
x∈F2n

(−1)trn
1 (ax−1+b(x+f(x))).

Proof. Indeed, x → x + f(x) is a bijection on F2n . The equality is then obtained by the
change of variable x := x + f(x).

We are now ready to give the lower bounds on the nonlinearity of F with U = Umax, Um0

and Um1 respectively

Theorem 4. For every even n ≥ 6, taking U = Umax, we have NL(F ) ≥ 2n−1−3 ·2n/2−2.

Proof. If b = 0, then we have WF (a, b) = 0 for all a ∈ F∗2n since F is bijective. We assume
now that b 6= 0. Then, by Lemma 8 and Equation (7), we have

WF (a, b) =
∑

x∈F2n

(−1)trn
1 (a(x+δUmax (x))−1+bx)

=
∑

x∈F2n

(−1)trn
1 (ax−1+b(x+δUmax (x)))

=
∑

x∈F2n

(−1)trn
1 (ax−1+bx)+δUmax (x)trn

1 (b).

If trn
1 (b) = 0, then WF (a, b) =

∑
x∈F2n

(−1)trn
1 (ax−1+bx) and hence |WF (a, b)| ≤ 2n/2+1

according to Lemma 4. If trn
1 (b) = 1, we have

|WF (a, b)|
= |

∑

x∈F2n

(−1)trn
1 (ax−1+bx)+δUmax (x)|

= |
∑

x∈F2n

(−1)trn
1 (ax−1+bx)+trn

1 (x−1)trn
1 ((x+1)−1)|,

which is less or equal to 6 · 2n/2 + 4 by Lemma 7.
We deduce that |WF (a, b)| ≤ 6·2n

2
+1+4 for all (a, b) ∈ F ∗

2n×F∗2n . Recall that WF (a, b) =
0 if b = 0. Then we can see that NL(F ) ≥ 2n−1 − 3 · 2n/2 − 2.
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Theorem 5. For every even n ≥ 6, taking U = Um0, we have NL(F ) ≥ 2n−1− 2n/2+2− 2.

Proof. Since F is bijective, we have WF (a, b) = 0 for all a ∈ F∗2n , b = 0. We assume now
that b 6= 0. Applying Lemma 8 to Equation (8), we have

WF (a, b) =
∑

x∈F2n

(−1)trn
1 (a(x+δUm0

(x))−1+bx)

=
∑

x∈F2n

(−1)trn
1 (ax−1+b(x+δUm0

(x)))

=
∑

x∈F2n

(−1)trn
1 (ax−1+bx)+δUm0

(x)trn
1 (b).

If trn
1 (b) = 0, then WF (a, b) =

∑
x∈F2n

(−1)trn
1 (ax−1+bx) and therefore |WF (a, b)| ≤ 2n/2+1,

by Lemma 4.
Consider the case trn

1 (b) = 1, we get

WF (a, b) =
∑

x∈F2n

(−1)trn
1 (ax−1+bx)+δUm0

(x)

=
∑

x∈F2n

(−1)trn
1 (ax−1+bx)+(1+trn

1 (x))trn
1 (x−1)trn

1 ((x+1)−1)

=
∑

x∈F2n ,trn
1 (x)=1

(−1)trn
1 (ax−1+bx) +

∑

x∈F2n ,trn
1 (x)=0

(−1)trn
1 (ax−1+bx)+trn

1 (x−1)trn
1 ((x+1)−1)

By Lemmas 4 and 5, we have

|
∑

x∈F2n ,trn
1 (x)=1

(−1)trn
1 (ax−1+bx)| ≤ 2n/2+1.

According to Lemma 7, we have

|
∑

x∈F2n ,trn
1 (x)=0

(−1)trn
1 (ax−1+bx)+trn

1 (x−1)trn
1 ((x+1)−1)| ≤ 6 · 2n/2 + 4.

Hence, |WF (a, b)| ≤ 8 · 2n/2 + 4 for trn
1 (b) = 1.

Combining above cases, we can see that |WF (a, b)| ≤ 8 ·2n/2+4 for all (a, b) ∈ F ∗
2n×F∗2n .

Recall that WF (a, b) = 0 if b = 0. Therefore, we have NL(F ) ≥ 2n−1 − 2n/2+2 − 2.

Similar to the case U = Um0 , we can easily get a lower bound on the nonlinearity of F

with U = Um1 .

Theorem 6. For every even n ≥ 6, taking U = Um1, we have NL(F ) ≥ 2n−1− 2n/2+2− 2.
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4.3 CCZ-inequivalence

Since our functions are derived from the inverse function, we need to investigate whether
they are CCZ-inequivalent to the inverse function. We will prove that, for any even n ≥ 6,
our functions are CCZ-inequivalent to the inverse function when the size of U is such
that 0 < |U | < (2n−1 − 2n/2)/3 − 2. Besides, we also prove that our functions are CCZ-
inequivalent to the Gold functions, the Kasami functions, the functions discussed in [2]
and quadratic functions. Thus, our functions are CCZ-inequivalent to known differentially
4-uniform power functions and to quadratic functions for any even n ≥ 6 when the size of
U is such that 0 < |U | < (2n−1 − 2n/2)/3− 2.

Proving the CCZ-inequivalence between two functions by directly using the definition of
CCZ-equivalence is very difficult, but some CCZ-invariant parameters can be proved to be
different for the two functions. Our results on the CCZ-inequivalence rely on the following
lemma.

Lemma 9 ([6, 4]). The differential and extended Walsh spectra are CCZ-invariant param-
eters.

As we know, for even n, the number of pairs (a, b) ∈ F∗2n × F2n such that δI(a, b) = 4
is 2n − 1. According to Lemma 9, for proving that F is CCZ-inequivalent to the inverse
function, we only need to prove that the number of pairs (a, b) such that δF (a, b) = 4 is
not 2n − 1; similarly, for proving that F is not CCZ-equivalent to the Gold functions, the
Kasami functions, the functions discussed in [2] and quadratic functions, we only need to
show that F has extended Walsh spectrum distinct from those of these functions.

We first need the following corollaries which can be deduced from Lemma 4.

Corollary 2. For even n ≥ 6, we have 2n−2 − 2n/2−1 ≤ |Umax| ≤ 2n−2 + 2n/2−1

Proof. Let R =
∑

x∈F2n
(−1)trn

1 (x−1+(1+x)−1). On one hand, since the Hamming weights of
the functions trn

1 (x−1) and trn
1 ((1+x)−1) equal 2n−1, then R = 2n−2wt(trn

1 (x−1)+trn
1 ((1+

x)−1)) = 2n−2wt(trn
1 (x−1))−2wt(trn

1 ((1+x)−1))+4|Umax| = −2n +4|Umax| and |Umax| =
2n−2+R/4. On the other hand, R =

∑
x∈F2n

(−1)trn
1 (x−1+(1+x)−1) =

∑
x∈F2n

(−1)trn
1 (x+(1+x−1)−1) =∑

x∈F2n
(−1)trn

1 (x+1+(x+1)−1) =
∑

x∈F2n
(−1)trn

1 (x+x−1), which can be checked separately for
x 6∈ F2 and x ∈ F2 by using that trn

1 (1) = 0. Then by Lemma 4 we have |R| ≤ 2n/2+1 and
hence 2n−2 − 2n/2−1 ≤ |Umax| ≤ 2n−2 + 2n/2−1.

Remark 1. Obviously, the size of U can be any even integer ranging from 2 to Umax. By
Corollary 2, we can see that there are at least 22n−3−2n/2−2

different sets U . We list in Table
2 the exact numbers of sets U for even n ranging from 6 to 20.

Corollary 3. Let n ≥ 3 be an integer and h ∈ Bn be defined as h(x) = trn
1 (x−1). De-

fine Chµ,ν (τ) =
∑

x∈F2n
(−1)trn

1 (µx−1)+trn
1 (ν(x+τ)−1), where µ, ν, τ ∈ F∗2n. Then the value of

Chµ,ν (τ) belongs to [−2n/2+1 − 3, 2n/2+1 + 1] and is divisible by 4.
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Table 2: The exact numbers of the sets U
n 6 8 10 12 14 16 18 20

numbers of U 27 236 2121 2518 22059 28136 232893 2130922

Proof. For any µ, ν, τ ∈ F∗2n , we have (still using the convention 1
0 = 0)

Chµ,ν

=
∑

x∈F2n

(−1)trn
1 (µ

x
+ ν

x+τ
)

=
∑

x∈F2n\{0,τ}
(−1)trn

1 (µ
x
+ ν

x+τ
) + (−1)trn

1 (µ
τ
) + (−1)trn

1 ( ν
τ
)

=
∑

x∈F2n\{0,τ−1}
(−1)trn

1 (µx+ νx
1+τx

) + (−1)trn
1 (µ

τ
) + (−1)trn

1 ( ν
τ
)

=
∑

x∈F2n\{0,τ−1}
(−1)trn

1 (µx+ 1
1+τx

· ν
τ
+ ν

τ
) + (−1)trn

1 (µ
τ
) + (−1)trn

1 ( ν
τ
)

=
∑

x∈F2n\{0,1}
(−1)trn

1 (µx
τ

+ ν
τx

+µ
τ
+ ν

τ
) + (−1)trn

1 (µ
τ
) + (−1)trn

1 ( ν
τ
)

=
∑

x∈F2n\{0, τ
ν
}
(−1)trn

1 ( 1
x
+µν

τ2 x)+trn
1 (µ

τ
+ ν

τ
) + (−1)trn

1 (µ
τ
) + (−1)trn

1 ( ν
τ
)

=
∑

x∈F2n

(−1)trn
1 ( 1

x
+µν

τ2 x)+trn
1 (µ

τ
+ ν

τ
) − (−1)trn

1 (µ
τ
+ ν

τ
) − (−1)trn

1 (0) + (−1)trn
1 (µ

τ
) + (−1)trn

1 ( ν
τ
)

where the third, fifth, and sixth identities hold by changing x to 1
x , x+1

τ , and νx
τ respectively.

Note that −(−1)trn
1 (µ

τ
+ ν

τ
) − (−1)trn

1 (0) + (−1)trn
1 (µ

τ
) + (−1)trn

1 ( ν
τ
) equals 0 or −4. According

to Lemma 4, we can see that Chµ,ν (τ) belongs to [−2n/2+1 − 3, 2n/2+1 + 1] and is divisible
by 4. This finishes the proof.

In addition, we need the following lemmas.

Lemma 10. Let n be an even number and U be a set defined in Construction 1. Then for
any β ∈ U , there is no a ∈ F2n such that

a(β + 1)−1 + a(β + a)−1 + 1 = 0, (10)

Proof. In (10), note that a 6= β and β 6= 1 because of 1 6∈ U . Multiplied by (β + 1)(β + a),
it gives a2 + βa + (β2 + β) = 0. Further, β 6= 0 because of 0 6∈ U . We then have
trn

1 ((β2 + β)β−2) = trn
1 (1 + β−1) = trn

1 (1) + trn
1 (β−1) = 0 + 1 = 1 for n even and β ∈ U .

Hence, it follows from Lemma 1 that a2 + βa + (β2 + β) = 0 has no solution in F2n . That
is to say, there is no element a ∈ F2n satisfying Equation (10).
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Lemma 11. Let n be an even number and U be the set defined in Construction 1. Then
for any β ∈ U and ξ ∈ F2n, there are at most two elements a ∈ F2n \ {0, β} such that(
(β + 1)−1 + (β + a)−1

)
ξ2 +

(
a(β + 1)−1 + a(β + a)−1

)
ξ + a = 0.

Proof. If ξ = 0, then there is no such element a ∈ F2n \ {0, β}. So we assume that ξ 6= 0.
Since a(β + a)−1 = 1 + β(β + a)−1, the equality

(
(β + 1)−1 + (β + a)−1

)
ξ2 +

(
a(β + 1)−1 + a(β + a)−1

)
ξ + a = 0

is equivalent to

(ξ2 + βξ)(β + a)−1 + (ξ(β + 1)−1 + 1)a + (ξ + ξ2(β + 1)−1) = 0. (11)

Since β 6= a, multiplied by β + a, (11) becomes

(ξ2 + βξ) + (ξ(β + 1)−1 + 1)(βa + a2) + (ξ + ξ2(β + 1)−1)(β + a) = 0,

or equivalently

(
ξ(β + 1)−1 + 1

)
a2 + (ξ(β + 1)−1 + 1)(β + ξ)a + ξ2(β + 1)−1 = 0, (12)

which is a quadratic equation in a. Note that ξ 6= 0. Then we have ξ2(β + 1)−1 6= 0 and
hence the coefficients of Equation (12) do not vanish simultaneously, implying that for any
β ∈ U and ξ ∈ F∗2n , there are at most two elements a ∈ F2n \ {0, β} satisfying Equation
(11).

We now show the CCZ-inequivalence of our functions.

Theorem 7. For every even n ≥ 6, the functions generated by Construction 1 are CCZ-
inequivalent to the inverse function when the set U is such that 0 < |U | < 2n−1−2n/2

3 − 2.

Proof. As mentioned before, it suffices to show that the number of pairs (a, b) ∈ F∗2n × F2n

such that δF (a, b) = 4 is strictly greater than 2n−1 when 0 < |U | ≤ d2n−1−2n/2

3 e−3. Recall
that (6) is equivalent to Equations (2)-(5). For obtaining such a lower bound, we consider
the following two cases:
• Case 1. ab = 1

For every a 6∈ U , we can see that x = 0, x = a are two solutions of Equation (2). Let us
bound from below the number of cases that Equation (2) has two more solutions. It follows
from ab = 1 that trn

1 ((ab)−1) = trn
1 (1) = 0 and hence the equation bx2 + abx + a = 0 has

two solutions, that is,
(

x
a

)2 + x
a = 1

ab has two solutions. More precisely, it is easy to see
that, denoting by d the integer (2n − 1)/3 and by α a primitive element of F2n , the two
solutions are aαd and aαd + a since α2d + αd = 1. Hence, if aαd 6∈ U and aαd + a 6∈ U then
we can check that aαd and aαd + a are two more solutions of Equation (2). Note that aαd
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and aαd + a range over F∗2n when a ranges over F∗2n . So there are at most 2|U | elements
a ∈ F∗2n such that aαd ∈ U or aαd + a ∈ U . Further by excluding the case where a ∈ U ,
there are at least 2n − 1− 3|U | pairs (a, a−1) with δF (a, a−1) = 4.
• Case 2. ab 6= 1, b 6= 0

Note that we need to exclude b = 0 because, F being bijective, we have δF (1, 0) = 0.
For simplicity, we restrict our discussion to the case that there exists β ∈ U such that
b = (β + 1)−1 + (β + a)−1, which satisfies ab 6= 1 by Lemma 10. In this case, β and β + a

are respectively the solutions of Equations (4) and (5) only if β ∈ U and β + a ∈ F2n \ U .
Additionally, we require trn

1 ((ab)−1) = 0 so that bx2 + abx + a = 0 has two solutions and
then (2) may have two solutions. We shall bound from below the number of such pairs
(a, b).

Firstly we bound the cardinality of Tβ = {a ∈ F2n \ {0, 1, β} | trn
1 ((ab)−1) = 0, b =

(β + 1)−1 + (β + a)−1} for given β ∈ U , where we exclude a = 1 for avoiding b = 0 and
a = β for simplifying our proof. Since

(ab)−1 = (a(β + 1)−1 + a(β + a)−1)−1

= (β2 + β + aβ + a)(a + a2)−1

= (β2 + β + aβ + a)(a−1 + (a + 1)−1)

= (β2 + β)a−1 + β + 1 + (β2 + β + aβ + a)(a + 1)−1

= (β2 + β)a−1 + (β2 + 1)(a + 1)−1,

applying Corollary 3 in place of x = a, µ = β2 + β, ν = β2 + 1 and τ = 1, we deduce that
Chµ,ν (τ) = 2N − 2n ≥ −2n/2+1− 3 where N is the number of a ∈ F2n with trn

1 ((ab)−1) = 0.
That is, 2N − 2n ≥ −2n/2+1 because Chµ,ν (τ) is divisible by 4 and n is even. Therefore,
|Tβ| ≥ 2n−1 − 2n/2 − 3.

For any a ∈ Tβ, assume that the two distinct solutions of equation bx2 + abx + a = 0,
or equivalently

(
(β + 1)−1 + (β + a)−1

)
x2 +

(
a(β + 1)−1 + a(β + a)−1

)
x + a = 0 (13)

are x′a and x′′a. There are 3 cases: 1) x′a, x′′a ∈ U , 2) x′a, x′′a 6∈ U and 3) x′a ∈ U, x′′a 6∈ U or
x′′a ∈ U, x′a 6∈ U . Suppose that cases 1), 2) and 3) occur t1, t2 and t3 times respectively
with a ranging through Tβ . Straightforwardly, t1 + t2 + t3 = |Tβ|. It further follows from
Lemma 11 that, if we let x = x′a or x = x′′a in (13), there are at most two a ∈ Tβ such
that Equation (13) holds. This means that every element of U as the solutions of (13)
appears at most two times when a runs through Tβ . So we have 2t1 + t3 ≤ 2|U | and hence
t2 = |Tβ| − (t1 + t3) ≥ |Tβ| − (2t1 + t3) ≥ |Tβ| − 2|U |.

Denote by Sβ the subset of Tβ such that Equation (2) has two distinct solutions. We
then have |Sβ| = t2 ≥ 2n−1 − 2n/2 − 2|U | − 3. Define S′β = {a ∈ Sβ |β + a 6∈ U} whose
size is at least 2n−1 − 2n/2 − 3|U | − 3. By the definition of S′β and β ∈ U , β and β + a are
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respectively solutions of (4) and (5) for any a ∈ S′β . Note that β 6= β + a for every a ∈ Tβ

due to a 6= 1. Note also that neither β nor β +a are solutions of (2) due to β ∈ U . In other
words, for any a ∈ S′β, the four elements β, β + a, x′a and x′′a are distinct. Therefore, given
an element β ∈ U , for all a ∈ S′β and b = (β + 1)−1 + (β + a)−1 6= 0 we have δF (a, b) = 4 in
this case.

Next we bound from below the total number of pairs (a, b) = (a, (β + 1)−1 + (β + a)−1)
such that δF (a, b) = 4 when β runs through U . For any two distinct elements β1, β2 ∈ U , we
define Bi = {(a, b) | a ∈ S′βi

, b = (βi +1)−1 +(βi +a)−1} for i = 1, 2. We now prove that the
intersection of B1 and B2 is empty. Assume that B1 and B2 have a common element (a, b).
According to the definitions of S′β1

and S′β2
, β1, β2 (resp. β1 + a, β2 + a) are two distinct

solutions of (4) and (5), β1 6= β2 + a and β2 6= β1 + a because of β1, β2 ∈ U . Moreover,
β1 6= β1 + a and β2 6= β2 + a because of a 6= 0. Hence, β1, β2, β1 + a + 1 and β2 + a + 1 are
four distinct solutions of Equation (6). Since β1, β2 ∈ U and β1 + a, β2 + a 6∈ U , none of
them is a solutions of (2). By the definitions of S′β1

and S′β2
, Equation (2) has two distinct

solutions x′a and x′′a. That is to say, the six elements β1, β2, β1 +a, β2 +a, x′a, x′′a are distinct,
a contradiction to the fact that F is differentially 4-uniform. Then, for any two distinct
elements β1, β2 ∈ U , sets B1 and B2 have no common element. Thus, there are at least∑

β∈U |S′β | ≥ (2n−1 − 2n/2 − 3|U | − 3)|U | pairs (a, b) with ab 6= 1 such that δF (a, b) = 4
when β runs through U in this case.

From above discussion, there are at least
(
2n−1−3|U |) pairs (a, b) with ab = 1 such that

δF (a, b) = 4 by Case 1 and there are at least (2n−1−2n/2−3|U |−3)|U | pairs (a, b) with ab 6= 1
such that δF (a, b) = 4 by Cases 2. We then have

(
2n−1−3|U |)+(

2n−1−2n/2−3|U |−3
)|U | >

2n − 1, i.e.,
(
2n−1 − 2n/2 − 3|U | − 6

)|U | > 0 if and only if 0 < |U | < 2n−1−2n/2

3 − 2. This
completes the proof.

Theorem 8. For every even n ≥ 6, the functions F are CCZ-inequivalent to the Gold
functions, the Kasami functions, the functions discussed in [2] and quadratic functions.

Proof. By Lemma 9, the extended Walsh spectrum is a CCZ-invariant parameter. It is well
known that, for even n, the elements of the extended Walsh spectra of the Gold functions,
the Kasami functions and the functions discussed in [2] belong to the set {0,±2n/2,±2n/2+1}
and that the elements of the extended Walsh spectrum of quadratic functions can be divisible
by 2n/2 (indeed, the component functions of any quadratic function have algebraic degree
at most 2. We know that the nonlinearity of any affine function is equal to 0 and the Walsh
spectrum of any quadratic Boolean function is ±2n/2 or 0,±2n/2+l, where l ≥ 1). Hence, for
proving that F is CCZ-inequivalent to those functions, it is sufficient to prove that F has
different extended Walsh spectrum compared to theirs. Note that, for any (a, b) ∈ F ∗

2n×F2n ,
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we get

WF (a, b)

=
∑

x∈F2n\U
(−1)trn

1 (ax−1+bx) +
∑

x∈U

(−1)trn
1 (a(x+1)−1+bx)

=
∑

x∈F2n\U
(−1)trn

1 (ax−1+bx) +
∑

x∈U

(−1)trn
1 (ax−1+b(x+1))

where in the last identity we make use of the fact that U is stable with respect to the
addition by 1. Then, WF (a, b) = WI(a, b) when trn

1 (b) = 0. Let b0 be a nonzero element of
F∗2n with trn

1 (b0) = 0. Thus, we have WF (a, b0) = WI(a, b0) =
∑

x∈F2n
(−1)trn

1 (ax−1+b0x) =∑
x∈F2n

(−1)trn
1 (x−1+ab0x) = WI(1, ab0) for any a ∈ F∗2n . Note that ab0 can runs through

F∗2n when a runs through F∗2n and WI(1, 0) =
∑

x∈F2n
(−1)trn

1 (x−1) = 0. Therefore, it follows
from Lemma 4 that the extended Walsh spectrum of F includes any value divisible by 4 in
the range [−2n/2+1 + 1, 2n/2+1 + 1]. That is, the extended Walsh spectrum of F is different
from that of the Gold functions, the Kasami functions, the functions discussed in [2] and
quadratic functions, and then functions F are CCZ-inequivalent to them. This completes
the proof.

By Theorems 7 and 8, we directly get the following corollary.

Corollary 4. For every even n ≥ 6, F is CCZ-inequivalent to all known differentially 4-
uniform power functions and to quadratic functions when the set U is such that 0 < |U | <
2n−1−2n/2

3 − 2.

Remark 2. This is the first time mathematically prove that an infinite class of differen-
tially 4-uniform functions is CCZ-inequivalent to all known differentially 4-uniform power
functions and to quadratic functions.

For n = 6, by a Magma program, we checked that there are 14 elements of F26 such that
trn

1 (x−1) = trn
1 ((x + 1)−1) = 1. So there are 27 = 128 different sets U . With the help of

computer, we can obtain all differentially 4-uniform bijections generated by Construction 1.
There exist at least 22 classes of differentially 4-uniform bijections according to nonlinearity
and differential spectrum are CCZ-invariant parameters. We list them in Table 3, in which
Dt = |{(a, b) | δF (a, b) = t}|, and α is the default primitive element of F26 in Magma version
2.12-16. We also checked that these 22 classes of differentially 4-uniform bijections are
CCZ-inequivalent to the two classes of functions x−1 + trn

1 (x2(x+1)−1) and x−1 + tr
(
x−d +

(x−1 + 1)d
)

where d = 3(2t + 1) and 2 ≤ t ≤ n/2− 1 presented in [14].
We shall now prove that F with U = Um0 and U = Um1 are CCZ-inequivalent to known

differentially 4-uniform power functions and to quadratic functions. For doing this, we first
need two upper bounds on the sizes of Um0 and Um1 respectively.
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Table 3: The classes of differentially 4-uniform bijections for n = 6
U nl (D0,D2,D4)

{αi | i ∈ {21, 42}} 22 (2127,1794,111)

{αi | i ∈ {5, 30}} 22 (2139,1770,123)

{αi | i ∈ {20, 40, 57, 51}} 22 (2181, 1686, 165)

{αi | i ∈ {21, 40, 42, 51}} 20 (2181, 1686, 165)

{αi | i ∈ {5, 17, 30, 39}} 20 (2187, 1674, 171)

{αi | i ∈ {5, 10, 15, 30, 60, 34}} 20 (2211, 1626, 195)

{αi | i ∈ {5, 10, 21, 30, 60, 42}} 20 (2217, 1614, 201)

{αi | i ∈ {5, 21, 40, 30, 42, 51}} 18 (2217, 1614, 201)

{αi | i ∈ {5, 10, 17, 30, 60, 39}} 20 (2223, 1602, 207)

{αi | i ∈ {5, 10, 15, 17, 30, 60, 34, 39}} 20 (2235, 1578, 219)

{αi | i ∈ {10, 15, 20, 40, 60, 34, 57, 51}} 20 (2241, 1566, 225)

{αi | i ∈ {5, 10, 15, 21, 30, 60, 34, 42}} 18 (2241, 1566, 225)

{αi | i ∈ {5, 10, 17, 40, 30, 60, 39, 51}} 20 (2247, 1554, 231,)

{αi | i ∈ {5, 17, 20, 21, 30, 39, 57, 42}} 20 (2253, 1542, 237)

{αi | i ∈ {5, 20, 21, 40, 30, 57, 42, 51}} 18 (2253, 1542, 237)

{αi | i ∈ {5, 10, 15, 17, 20, 30, 60, 34, 39, 57}} 20 (2259, 1530, 243)

{αi | i ∈ {5, 10, 15, 17, 21, 30, 60, 34, 39, 42}} 18 (2259, 1530, 243)

{αi | i ∈ {5, 10, 15, 21, 40, 30, 60, 34, 42, 51}} 18 (2265, 1518, 249)

{αi | i ∈ {5, 10, 17, 21, 40, 30, 60, 39, 42, 51}} 18 (2271, 1506, 255)

{αi | i ∈ {5, 10, 15, 17, 20, 40, 30, 60, 34, 39, 57, 51}} 22 (2277, 1494, 261)

{αi | i ∈ {5, 10, 15, 17, 21, 40, 30, 60, 34, 39, 42, 51}} 18 (2277, 1494, 261)

{αi | i ∈ {5, 10, 15, 17, 20, 21, 40, 30, 60, 34, 39, 57, 42, 51}} 20 (2289, 1470, 273)

Lemma 12. For every even n ≥ 6, we have 2n−3 − 7 · 2n/2−2 ≤ |Um0 | ≤ 2n−3 + 7 · 2n/2−2

and 2n−3 − 5 · 2n/2−2 ≤ |Um1 | ≤ 2n−3 + 5 · 2n/2−2.

This lemma will be proved in Appendix.

We can easily deduce that 2n−3 + 7 · 2n/2−2 < (2n−1 − 2n/2)/3− 2 when n ≥ 12. Hence,
By Lemma 12 and Theorem 7, we directly obtain the following theorem.

Theorem 9. For even n ≥ 12. F with U = Um0 and U = Um1 are CCZ-inequivalent to
known differential 4-uniformity power functions and to quadratic functions.

5 Comparison of the nonlinearity with that of all known dif-

ferentially 4-uniform bijections

In this section, we compare our lower bounds and the actual values on the nonlinearity
of F to that of all known differentially 4-uniform bijections.

We first compare our lower bounds and the actual values on the nonlinearity of F to
that of known differentially 4-uniform non-power bijections. In [14], two infinite classes of
differentially 4-uniform bijections were proposed. They are of the form x−1+trn

1 (x2(x+1)−1)
and x−1 + tr

(
x−d +(x−1 +1)d

)
where d = 3(2t +1) and 2 ≤ t ≤ n/2− 1. To the best of our
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knowledge, this was the first time an infinite family of non-power differentially 4-uniform
bijections was found in even dimension. For convenience, we denote these two classes of
functions by Q1 and Q2 respectively. For a given infinite class of functions, let us denote
by NL the best known lower bound on their nonlinearity and by NL the actual value of
their nonlinearity. We list in Table 4 below, for even numbers of variables ranging from
6 to 12, the concrete values of NL and NL of our functions and of the functions Q1 and
Q2 (we list the values of NL corresponding to the parameter t from 2 to n/2 − 1 in one
cell). We can see from Tables 1 and 4 that although the lower bounds on the nonlinearity
of F with U = Umax, U = Um0 and U = Um1 are a little less than that of the function Q1,
the actual value of the nonlinearity is very close to that of function Q1, and that our three
lower bounds are much better than those for function Q2. Particularly, the lower bound on
the nonlinearity of F given in Theorem 3 is better than the actual nonlinearities of Q1 and
Q2 when we take |U | < 10 for n = 8, |U | < 26 for n = 10 and |U | < 56 for n = 12.

We now compare our lower bounds and the actual values on the nonlinearity of F to
those of known differentially 4-uniform bijections. Recall that all known differentially 4-
uniform power bijections have exact nonlinearity 2n−1 − 2n/2 which is equal to the best
known nonlinearity. We can see from Table 1 that all our lower bounds on nonlinearity
of F are strictly less than that those for the differentially 4-uniform power bijections. But
by Theorem 3, the nonlinearity of our functions can be very close to 2n−1 − 2n/2 when we
restrict the size of U to a very small value (e.g. |U | = 2). More interestingly, we can see
from Table 1 that the lower bounds on the nonlinearity of F with U = Umax, U = Um0 and
U = Um1 are not much less than 2n−1 − 2n/2 and we can see from Table 4 that the actual
values on the nonlinearity of F with those sets are better than their lower bounds.

Obviously, the lower bound given in Theorem 3 is not tight, we give some examples for
n = 8 below to show that Construction 1 can generate bijections with actual nonlinearity
larger than those of Q1 and Q2 and very close to 2n−1 − 2n/2 = 112 when the size of U is
greater than 10.

Example 1. For n = 8, let α be the default primitive element of F28 in Magma version
2.12-16.

• If U = {αi | i ∈ {11, 22, 44, 88, 95, 97, 125, 133, 175, 176, 190, 194, 215, 235, 245, 250, 138,

42, 162, 168}}, we have the size of U is 20 and NL(F ) = 106.

• If U = {αi | i ∈ {5, 10, 11, 20, 21, 22, 40, 42, 44, 65, 69, 80, 81, 84, 88, 95, 97, 111, 123, 125, 130,

133, 138, 160, 162, 168, 175, 176, 183, 189, 190, 194, 215, 219, 222, 235, 237, 245, 246, 250,

186, 174, 167, 158, 122, 211, 233, 244}}, we have the size of U is 48 and NL(F ) = 104.
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Table 4: Comparison of the lower bound and actual values on nonlinearity

Our functions F Functions in [14]

n U = Umax U = Um0 U = Um1 Q1 Q2 Known maximal NL

NL NL NL NL NL NL NL NL NL NL on n-dimensional bijections

6 6 20 -2 22 -2 22 14 20 12 22 24

8 78 100 62 102 62 102 94 102 56 98,100 112

10 414 442 382 450 382 444 446 454 240 446,448,440 480

12 1854 1902 1790 1924 1790 1892 1918 1928 992 1884,1890,1898,1900 1984

6 Conclusion

For any even n ≥ 6, a construction of differentially 4-uniform bijections on F2n are
proposed in this paper. We deduced a lower bound on the nonlinearity for our functions
which is very high in some cases and three improved lower bounds on the nonlinearity for
three special subcases. Compared to all known differentially 4-uniform functions, the lower
bounds on the nonlinearity of our functions are sometimes very close to the best known
ones. The constructed functions have maximum algebraic degree and are CCZ-inequivalent
to known differentially 4-uniform power functions and to quadratic functions in some cases.
This is the first time that is mathematically proved that an infinite class of differentially
4-uniform bijections contains functions CCZ-inequivalent to known differentially 4-uniform
power functions and to quadratic functions.

Appendix:

Proof of Lemma 3 : For every a ∈ F2n , if x 6= 0 and x 6= a, Equation (2) is equivalent
to the equation:

bx2 + abx + a = 0, x, x + a ∈ F2n \ U, (14)

if x 6= 1 and x 6= a + 1, Equation (3) is equivalent to the equation:

bx2 + abx + ab + a + b = 0, x, x + a ∈ U, (15)

if x 6= 1 and x 6= a, Equation (4) is equivalent to the equation:

bx2 + b(a + 1)x + ab + a + 1 = 0, x ∈ U, x + a ∈ F2n \ U, (16)

and if x 6= 0 and x 6= a + 1, Equation (5) is equivalent to the equation:

bx2 + b(a + 1)x + a + 1 = 0, x ∈ F2n \ U, x + a ∈ U. (17)

Note that the root λ of the equation bx2+abx+a = 0, if exist, is one-to-one corresponding
to the root λ + 1 of the equation bx2 + abx + ab + a + b = 0 plus 1. Since U is stable under
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the addition by 1, equations (14) and (15) cannot have solutions simultaneously. Therefore,
the sum of the numbers of solutions of (14) and (15) is at most 2.

Similarly, the sums of the roots in the equations bx2 + b(a + 1)x + ab + a + 1 = 0 and
bx2 + b(a + 1)x + a + 1 = 0 both equal a + 1. If γ is a solution of (16), then γ + a + 1 is not
a solution of (16) because of γ + a ∈ F2n \ U ; and so does for the solution γ of (17). That
is, each equation has at most one solution. Then, the sum of the numbers of solutions of
(16) and (17) is at most 2.

1) Note that 0, 1 6∈ U since trn
1 (1) = 0. Clearly, x = 1, a + 1 do not satisfy x, x + a ∈ U ,

which indicate that Equation (3) has the same solutions as Equation (15). Recall that
the sum of the numbers of solutions of (14) and (15) is at most 2. Then, the sum
of the numbers of solutions of (2) and (3) is at most 4 since in contrast to Equation
(14), Equation (2) may have two more solutions x = 0, a.

1.1) If ab 6= 1, obviously 0, a are not solutions of (2). Thus, the sum of the numbers
of solutions of (2) and (3) is at most 2.

1.2) If a ∈ U and b(a + 1) = 1, we have again ab 6= 1 since b 6= 0. Thus, equations (2)
and (3) are equivalent to (14) and (15), respectively. By dividing ab in b(a + 1) = 1,
we have 1 + a−1 = (ab)−1 and hence trn

1 ((ab)−1) = trn
1 (1 + a−1) = trn

1 (a−1) = 1,
which implies that (14) has no solution by Lemma 1. Moreover, by b(a + 1) = 1, the
equality (15) becomes bx2 + abx + a + 1 = 0, which has no solution by Lemma 1 due
to trn

1 (b(a + 1)(ab)−2) = trn
1 ((ab)−2) = 1. Therefore, (2) and (3) have no solution.

2) Since 1 6∈ U , we have that 1 and a + 1 are not solutions of (4) and (5) respectively.
Hence, the sum of the numbers of solutions of (4) and (5) is at most 4, which is at
most 2 more than that of (16) and (17).

2.1) If b(a + 1) 6= 1 or a 6∈ U , clearly 1, a are not solutions of (4) and 0, a + 1 are
not solutions of (5). Then equations (4) and (5) have the same solutions as equations
(16) and (17). Hence, the sum of the numbers of solutions of (4) and (5) is at most
2, according to the observation above.

2.2) If ab = 1, then we have b(a + 1) 6= 1 since b 6= 0. It follows from above that
equations (4) and (5) have the same solutions as equations (16) and (17). Assume
that λ is a solution of (16), then λ ∈ U and hence trn

1 (λ−1) = 1. Therefore, (16)
has no solution, according to Lemma 2. Assume that γ is a solution of (17), then we
have that γ 6∈ U and γ + a ∈ U . It is easy to verify that γ + a is a solution of (16),
a contradiction. That is, (17) has no solution. Therefore, we deduce that both (16)
and (17) have no solution.

Proof of Lemma 12 : Define A0 = {x ∈ F2n | (trn
1 (x), trn

1 (x−1), trn
1 ((1 + x)−1)) =

(1, 0, 0)}, A1 = {x ∈ F2n | (trn
1 (x), trn

1 (x−1), trn
1 ((1 + x)−1)) = (1, 0, 1)}, A2 = {x ∈

25



F2n | (trn
1 (x), trn

1 (x−1), trn
1 ((1+x)−1)) = (1, 1, 0)} and A3 = {x ∈ F2n | (trn

1 (x), trn
1 (x−1), trn

1 ((1+
x)−1)) = (1, 1, 1)}. Obviously, |Um1 | = |A3| according to (9), and

∑4
i=0 |Ai| = 2n−1 due to

wt(trn
1 (x)) = 2n−1.

Note that
∑

x∈F2n
(−1)trn

1 (x+x−1+(x+1)−1) = 2n − 2wt(trn
1 (x + x−1 + (x + 1)−1)) =

2n − 2
(
wt(trn

1 (x)) + wt(trn
1 (x−1 + (x + 1)−1)) − 2|{x ∈ F2n | trn

1 (x) = trn
1 (x−1 + (x +

1)−1) = 1}|) = −2wt(trn
1 (x−1 + (x + 1)−1)) + 4(|A1| + |A2|). Then, 4(|A1| + |A2|) =∑

x∈F2n
(−1)trn

1 (x+x−1+(x+1)−1) + 2wt(trn
1 (x−1 + (x + 1)−1)). Recall that in the proof of

Corollary 2, we have already proven |∑x∈F2n
(−1)trn

1 (x−1+(1+x)−1)| ≤ 2n/2+1. Hence, we
have then 2n − 2n/2+1 ≤ 2wt(trn

1 (x−1 + (x + 1)−1)) ≤ 2n + 2n/2+1. Besides, by Corollary 1,
−2n/2+2 − 4 ≤ ∑

x∈F2n
(−1)trn

1 (x+x−1+(x+1)−1) ≤ 2n/2+2 + 4. Therefore,

2n−2 − 3 · 2n/2−1 − 1 ≤ |A1|+ |A2| ≤ 2n−2 + 3 · 2n/2−1 + 1

by
∑4

i=0 |Ai| = 2n−1 which gives

2n−2 − 3 · 2n/2−1 − 1 ≤ |A0|+ |A3| ≤ 2n−2 + 3 · 2n/2−1 + 1 (18)

Note that
∑

x∈F2n ,trn
1 (x)=1(−1)trn

1 (x−1) = 1
2

( ∑
x∈F2n

(−1)trn
1 (x−1)−∑

x∈F2n
(−1)trn

1 (x−1+x)
)

=

−1
2

∑
x∈F2n

(−1)trn
1 (x−1+x) and

∑
x∈F2n ,trn

1 (x)=1(−1)trn
1 (x−1) = |A0|+ |A1|−|A2|−|A3|. Then,

by Lemma 4, we have

−2n/2 ≤ |A0|+ |A1| − |A2| − |A3| ≤ 2n/2 (19)

Similarly, we have
∑

x∈F2n ,trn
1 (x)=1(−1)trn

1 ((x+1)−1) = −1
2

∑
x∈F2n

(−1)trn
1 ((x+1)−1+x) and then

−2n/2 ≤ |A0|+ |A2| − |A1| − |A3| ≤ 2n/2. (20)

Combining (18)-(20), we get 2n−3 − 5 · 2n/2−2 ≤ |A3| ≤ 2n−3 + 5 · 2n/2−2, which implies
2n−3 − 5 · 2n/2−2 ≤ |Um1 | ≤ 2n−3 + 5 · 2n/2−2. By Umax = Um0 ∪ Um1 and 2n−2 − 2n/2−1 ≤
|Umax| ≤ 2n−2 + 2n/2−1, we have 2n−3 − 7 · 2n/2−2 ≤ |Um0 | ≤ 2n−3 + 7 · 2n/2−2, which
completes the proof.
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