Skip to main content
Log in

Entanglement-assisted quantum codes from arbitrary binary linear codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

It is possible to construct an entanglement-assisted quantum error-correcting (EAQEC, for short) code from any classical linear code. However, the parameter of ebits \(c\) is usually calculated by computer search. In this work, we can construct a family of \([[2n-k, k, \ge d; c]]\) EAQEC codes from arbitrary binary \([n, k, d]\) linear codes, where the parameter of ebits \(c=2n-2k\) can be easily generated algebraically and not by computational search. Moreover, the constructed EAQEC codes are maximal-entanglement EAQEC codes. We also present a different method of constructing entanglement-assisted accumulator codes. Finally, we prove that asymptotically good EAQEC codes exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ashikhmin A., Litsyn S., Tsfasman M.A.: Asymptotically good quantum codes. Phys. Rev. A 63, 032311 (2001).

  2. Bierbrauer J., Edel Y.: Quantum twisted codes. J. Comb. Des. 8, 174–188 (2000).

  3. Bowen G.: Entanglement required in achieving entanglement-assisted channel capacities. Phys. Rev. A 66, 052313 (2002).

  4. Brun T.A., Devetak I., Hsieh M.H.: Correcting quantum errors with entanglement. Science 314, 436–439 (2006).

  5. Calderbank A.R., Rains E.M., Shor P.W., Sloane N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44, 1369–1387 (1998).

  6. Chen H.: Some good quantum error-correcting codes from algebraic-geometric codes. IEEE Trans. Inf. Theory 47, 2059–2061 (2001).

  7. Chen G., Li R.: Ternary self-orthogonal codes of dual distance three and ternary quantum codes of distance three. Des. Codes Cryptogr. 69, 53–63 (2013).

  8. Fujiwara Y., Clark D., Vandendriessche P., Boeck M.D., Tonchev V.D.: Entanglement-assisted quantum low-density parity-check codes. Phys. Rev. A 82, 042338 (2010).

  9. Grassl M.: Bounds on the minimum distance of linear codes and quantum codes. http://www.codetables.de (2012). Accessed 22 July 2014.

  10. Grassl M., Geiselmann W., Beth T.: Quantum Reed–Solomon codes. In: Lecture Notes in Computer Science, vol. 1719, pp. 231–244. Springer, Heidelberg (1996).

  11. Guo L., Li R.: Linear plotkin bound for entanglement-assisted quantum codes. Phys. Rev. A 87, 032309 (2013).

  12. Hsieh M.H., Brun T.A., Devetak I.: Entanglement-assisted quantum quasi-cyclic low-density parity-check codes. Phys. Rev. A 79, 032340 (2009).

  13. Hsieh M.H., Devetak I., Brun T.A.: General entanglement-assisted quantum error-correcting codes. Phys. Rev. A 76, 062313 (2007).

  14. Hsieh M.H., Yen W.T., Hsu L.Y.: High performance entanglement-assisted quantum LDPC codes need little entanglement. IEEE Trans. Inf. Theory 57, 1761–1769 (2011).

  15. Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003).

  16. Ketkar A., Klappenecker A., Kumar S., Sarvepalli P.K.: Nonbinary quantum stabiliter codes over finite fields. IEEE Trans. Inf. Theory 52, 4892–4914 (2006).

  17. Lai C.Y., Brun T.A.: Entanglement-assisted quantum error-correcting codes with imperfect ebits. Phys. Rev. A 86, 032319 (2012).

  18. Lai C.Y., Brun T.A.: Entanglement increases the error-correcting ability of quantum error-correcting codes. Phys. Rev. A 88, 012320 (2013).

  19. Lai C.Y., Brun T.A., Wilde M.M.: Duality in entanglement-assisted quantum error correction. IEEE Trans. Inf. Theory 59, 4020–4024 (2013).

  20. Lai C.Y., Brun T.A., Wilde M.M.: Dualities and identities for entanglement-assisted quantum codes. Quantum Inf. Process. 13, 957–990 (2014).

  21. MacWilliams F.J., Sloane N.J.A.: The Theory of Error Correcting Codes. North-Holland, Amsterdam (1977).

  22. Massey J.L.: Linear codes with complementary duals. Discret. Math. 106(107), 337–342 (1992).

  23. Qian J., Zhang L.: Nonbinary quantum codes derived from group character codes. Int. J. Quantum Inf. 10, 1250042 (2012).

  24. Qian J., Zhang L.: New optimal subsystem codes. Discret. Math. 313, 2451–2455 (2013).

  25. Shin J., Heo J., Brun T.A.: Entanglement-assisted codeword stabilized quantum codes. Phys. Rev. A 84, 062321 (2011).

  26. Shor P.W.: Scheme for reducing decoherence in quantum memory. Phys. Rev. A 52, 2493–2496 (1995).

  27. Stichtenoth H.: Transitive and self-dual codes attaining the Tsfasman–Vladut–Zink bound. IEEE Trans. Inf. Theory 52, 2218–2224 (2006).

  28. Wilde M.M., Brun T.A.: Optimal entanglement formulas for entanglement-assisted quantum coding. Phys. Rev. A 77, 064302 (2008).

Download references

Acknowledgments

We are indebted to the anonymous referees for their valuable comments and suggestions that helped to improve significantly the quality of this paper. This work was supported by the National Science Foundation of China (11126029, 11247001, 61170059, 61170172, 61272153 and 61340003); the Anhui Provincial Natural Science Foundation (1408085MA05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfa Qian.

Additional information

Communicated by J. Bierbrauer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, J., Zhang, L. Entanglement-assisted quantum codes from arbitrary binary linear codes. Des. Codes Cryptogr. 77, 193–202 (2015). https://doi.org/10.1007/s10623-014-9997-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-014-9997-6

Keywords

Mathematics Subject Classification

Navigation