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1 Introduction

In this paper we will study the homogeneous weight on arbitrary finite Frobenius rings. These
weights have been introduced by Constantinescu and Heise in [7] and have received a lot of attention
in the ring-linear coding literature ever since. We refer to the introductions of any of the papers
[3, 4, 12, 14, 16, 18] for motivation and background on the homogeneous weight.

In this paper we will first present, for an arbitrary finite Frobenius ring, an expression for the
values of the (normalized) homogeneous weight that is different from those based on characters
or the Möbius function. This extends the results in [12] where we restricted ourselves to rings
that are direct products of local Frobenius rings. We will see that the homogeneous weight has
value one exactly for the elements outside the socle. Moreover, the weight on the socle of R is
closely related to the weight on R/rad(R), where rad(R) is the Jacobson radical. The Wedderburn-
Artin decomposition for R/rad(R) will then reduce the considerations to studying the homogeneous
weight on matrix rings over finite fields. In that case it is easy to compute the values based on the
rank. It will show that matrices share the same weight if and only if they have the same rank.

After having determined the values of the homogeneous weight in the described form, we will
turn to the partition of the ring induced by this weight and study its dual with respect to character-
theoretic dualization. This dualization plays a central role in the area of MacWilliams identities.
Indeed, if a partition of R (or Rn) is reflexive (i.e., coincides with its character-theoretic bidual),
then the partition enumerator of a code and the dual-partition enumerator of the dual code uniquely
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determine each other. This has been discussed in various forms in many papers, see for instance
[3, 5, 8, 18, 24, 25] as well as [11], where a general approach in the terminology of this paper was
presented.

For non-commutative rings the above notions all come in a left and right version. Furthermore,
with the left and right dual partitions are associated left and right Krawtchouk coefficients, which
determine the actual MacWilliams transformation between the partition enumerator of a code and
that of its (left or right) dual code.

We will show that for the homogeneous weight partition, the left and right dual coincide, and
so do the left and right Krawtchouk coefficients. As we will see, this is true for any invariant
partition (i.e., all partition sets are invariant under left or right multiplication by units) as long as
the ring is semisimple. But for non-semisimple rings, the particularly close relationship between
the homogeneous weight on the socle and the homogeneous weight on R/rad(R) will be crucial for
the independence of dualization and Krawtchouk coefficients from the sidedness.

2 Preliminaries

We begin with briefly recalling some properties of finite Frobenius rings. Then we move on to the
homogeneous weight and present some basic facts.

Let R be a finite ring with identity, and let R∗ be its group of units. Denote by soc(RR) the
socle of the left R-module R, and let rad(R) be the Jacobson radical of R. Moreover, denote
by R̂ := Hom(R,C∗) the group of characters of R (i.e., group homomorphisms from (R, +) to C∗).
Then R̂ is an R-R-bimodule via the left and right scalar multiplications

(r ·χ)(v) = χ(vr) and (χ·r)(v) = χ(rv) for all r ∈ R and v ∈ R. (2.1)

We summarize the crucial properties of finite Frobenius rings. Details can be found in Lam [21,
Th. (16.14)], Lamprecht [22], Hirano [15, Th. 1], and Wood [23, Th. 3.10, Prop. 5.1]. The most
crucial aspect, namely that for finite rings the right-sided statements imply the left-sided ones, has
been proven by Honold [16, Th. 1 and Th. 2].

Theorem 2.1. Let R be a finite ring. The following are equivalent.

(a) R soc(RR) ∼= R(R/rad(R)).
(b) soc(RR) is a left principal ideal, i.e., soc(RR) = Ra for some a ∈ R.
(c) RR̂ ∼= RR.

Each of the above is equivalent to the corresponding right-sided version. The ring R is called
Frobenius if any (hence all) of the above hold true. In this case there exists a character χ such that
R̂ = R·χ. Any such character is called a generating character of R and also satisfies R̂ = χ·R. Any
two generating characters χ, χ′ differ by a unit, i.e., χ′ = u·χ and χ′ = χ·u′ for some u, u′ ∈ R∗.
Furthermore, if R is Frobenius then the left and right socle coincide, and will be denoted by soc(R).

The integer residue rings ZN , finite fields, finite chain rings are Frobenius and so are finite
group rings as well as matrix ring over Frobenius rings. The class of Frobenius rings is closed under
taking direct products. For details see Wood [23, Ex. 4.4] and Lam [21, Sec. 16.B].

For the rest of this paper, let R be a finite Frobenius ring with group of units R∗, and fix a
generating character χ of R.

The following definition of the homogeneous weight is taken from Greferath and Schmidt [14].

Definition 2.2. The (left) homogeneous weight on R with average value γ ≥ 0 is a map ω : R −→ R

such that ω(0) = 0 and
(i) ω(x) = ω(y) for all x, y ∈ R such that Rx = Ry,
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(ii)
∑

y∈Rx ω(y) = γ|Rx| for all x ∈ R\{0}; in other words, the average weight over each nonzero
principal left ideal is γ.

The weight is called normalized if γ = 1.

It has been shown in [14, Th. 1.3] that for any given γ ∈ R≥0 there exists a unique homogeneous
weight on R with average value γ. Of course, if R is a field of size q, then the Hamming weight is
the homogeneous weight with average value q−1

q
. We next present the homogeneous weight for two

specific cases. Further examples can be found in [12, Sec. 3].

Example 2.3. (1) [3, Ex. 2.8] If R is a local Frobenius ring with residue field R/rad(R) of order q,
then the normalized homogeneous weight is given by ω(0) = 0 and

ω(a) =
q

q − 1
for a ∈ soc(R)\{0} and ω(a) = 1 otherwise.

(2) [2, Ex. 2] and [12, Ex. 4.5(b)] If R = Zpq, where p, q are distinct primes then the normalized
homogeneous weight is given by ω(0) = 0 and

ω(a) =





p
p−1 , for a ∈ pZpq\{0},
q
q−1 , for a ∈ qZpq\{0},

pq−p−q
(p−1)(q−1) , otherwise.

The following properties and explicit formulas will be crucial.

Remark 2.4. Let ω be the normalized homogeneous weight on R. Then

(a)
∑

y∈I ω(y) = |I| for all nonzero left ideals I of R, see [14, Cor. 1.6].
(b) Let χ be a generating character of R. Then by [16, p. 412, Th. 2]

ω(r) = 1−
1

|R∗|

∑

u∈R∗

χ(ru) = 1−
1

|R∗|

∑

u∈R∗

χ(ur) for r ∈ R.

(c) The weight ω is also right homogeneous, that is, (i) and (ii) of Definition 2.2 are true for right
ideals as well. This follows from (b), see again [16, Th. 2].

In [12], alternative expressions for the values of homogeneous weight and properties of the
induced partition were derived for products of local Frobenius rings. In this paper we will study
the homogeneous weight for arbitrary Frobenius rings.

As a first step we show that the normalized homogeneous weight is 1 for any element outside
the socle. To this end we make use of Theorem 2.1(a). Let

ψ : R soc(R) −→R (R/rad(R)) (2.2)

be an isomorphism of left R-modules. Recall that rad(R) is a two-sided ideal, hence R/rad(R) is a
ring. Even more, since R/rad(R) is a finite semisimple ring [20, Th. (4.14)], the Wedderburn-Artin
Theorem [20, Th. (3.5)] along with the fact that every finite division ring is a field provides us with
a ring isomorphism

R/rad(R) ∼= (Fq1)
m1×m1 × . . .× (Fqt)

mt×mt (2.3)

for suitable prime powers q1, . . . , qt and positive integers m1, . . . ,mt. In particular, R/rad(R) is
Frobenius.

Now we are ready to show that the homogeneous weight on R is constant outside the socle.
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Theorem 2.5. Denote by ω̃ the normalized homogeneous weight on the ring R/rad(R). Then the
normalized homogeneous weight ω on R is given by

ω(x) =

{
ω̃(ψ(x)), for x ∈ soc(R),

1, for x 6∈ soc(R).

In other words, ω(x) = 1 for all x ∈ R \ soc(R) and ω|soc(R) = ω̃ ◦ ψ.

Proof. We show that ω given above satisfies (i) and (ii) of Definition 2.2. This is obvious for (i).
For (ii) we will show the constant average weight property for arbitrary left ideals (see Re-
mark 2.4(a)), and make use of the same property for the homogeneous weight ω̃ on R/rad(R).

Thus, let I be a left ideal in R. If I is contained in soc(R), then

∑

y∈I

ω(y) =
∑

y∈I

ω̃(ψ(y)) =
∑

y∈ψ(I)

ω̃(y) = |ψ(I)| = |I|.

If I is not contained in soc(R), then I ∩ soc(R) is in soc(R), and from the previous part we obtain

∑

y∈I

ω(y) =
∑

y∈I∩soc(R)

ω(y) +
∑

y∈I\soc(R)

1 =
∣∣I ∩ soc(R)

∣∣+
∣∣I \ soc(R)

∣∣ = |I|.

Remark 2.6. Since any left homogeneous weight is also right homogeneous, we also obtain a right-
sided version of the last theorem, that is ω|soc(R) = ω̃ ◦ψr, where ψr : soc(R)R −→ (R/rad(R))R is
an isomorphism of right R-modules.

In view of the previous result, it remains to compute the values of the homogeneous weight on
the socle of R. Since these values are given by ω̃(ψ(x)), this amounts to computing the values for
semisimple Frobenius rings. This will be carried out in the next sections.

3 The Homogeneous Weight on a Matrix Ring

Let F = Fq be any field of size q, and let R := Fm×m be the matrix ring over F of order m > 1. It
is well-known that R is simple. We will present the values of the normalized homogeneous weight
on R in terms of the rank. We need to consider the principal left ideals in R (it is worth noting and
not hard to see that R is even a left principal ideal ring, i.e., all left ideals are principal). Clearly,
for any matrices A, B ∈ R

RA = RB ⇐⇒ B = UA for some U ∈ GLm(F) ⇐⇒ rowspace(A) = rowspace(B). (3.1)

As a consequence, the left principal ideals in R are in one-to-one correspondence with the subspaces
of Fm. Recall that the number of j-dimensional subspaces in Fm is given by the Gaussian coefficient

[
m

j

]
:=

[
m

j

]

q

:=

j−1∏

i=0

qm − qi

qj − qi
for j = 0, . . . ,m. (3.2)

Hence (3.1) shows that the number of left principal ideals in R is given by
∑m

j=0

[
m
j

]
q
. The

cardinality of any left principal ideal and the number of matrices of fixed rank within such an ideal
are given as follows.
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Lemma 3.1. Let A ∈ R be a matrix of rank r. Then |RA| = qrm and
∣∣{B ∈ RA | rkB = j}

∣∣ =
sj(m, r), where

sj(m, r) =

[
r

j

]
αj(q

m) =
αj(q

r)αj(q
m)

αj(qj)
and αj(x) := αq,j(x) =

j−1∏

i=0

(x− qi).

As a consequence,
∑r

j=0 sj(m, r) = qrm.

The statement is also true for j = 0 because
[
r
0

]
= 1 = α0(q

i) for all r and i. We will normally
just write αj instead of αq,j, and make the subscript q explicit only in the next sections when more
than one field size is involved.

Proof. It is easy to see that we may assume without loss of generality that

A =

(
Ir 0
0 0

)
, where Ir is the (r × r)-identity matrix.

Then the left ideal RA consists of all matrices of the form (M | 0), where M is any matrix in Fm×r.
This proves |RA| = qrm. Next, |{B ∈ RA | rkB = j}| = |{M ∈ Fm×r | rkM = j}|. This
cardinality is given by sj(m, r), see [9, Eq. (2.9)] or [19, Prop. 3.1].

Now we can determine the normalized homogeneous weight for matrices in R in terms of the
rank. We need the Cauchy binomial theorem, which states that the polynomial αr from Lemma 3.1

satisfies the identity αr(x) =
∑r

j=0(−1)jq(
j

2)
[
r
j

]
xr−j, see [10, Eq. (13)] or [19, p. 23]. Using αr(1) = 0

this implies
r∑

j=0

(−1)jq(
j

2)
[
r

j

]
= 0 for r ≥ 1. (3.3)

For the rest of this section let ω be the normalized homogeneous weight on R = Fm×m.

Theorem 3.2.

ω(A) =
(−1)r+1q(

r

2)

αr(qm)
+ 1, where r = rk (A).

Proof. We show that the map ω as defined in the theorem satisfies the properties of a homogeneous
weight. First of all, it is clear that the zero matrix satisfies ω(0) = 0. Secondly, if the matrices A, A′

generate the same left ideal they have the same rank, and thus ω(A) = ω(A′). It remains to
show (ii) of Definition 2.2. Let A ∈ R be of rank r ≥ 1. In view of Lemma 3.1 we have to show
that

∑
B∈RA ω(B) = qrm. With the aid of the same lemma we compute

∑

B∈RA

ω(B) =

r∑

j=0

sj(m, r)
( (−1)j+1q(

j

2)

αj(qm)
+ 1

)
=

r∑

j=0

(
(−1)j+1q(

j

2)
[
r

j

]
+ sj(m, r)

)

=
r∑

j=0

sj(m, r) +
r∑

j=0

(−1)j+1q(
j

2)
[
r

j

]
= qrm,

where the last step follows from (3.3) and the fact that
∑r

j=0 sj(m, r) = qrm. All of this shows
that ω is indeed the normalized homogeneous weight on R.

Theorem 3.2 shows that matrices with the same rank have the same homogeneous weight. This
is also clear from the left- and right-invariance of the homogeneous weight. As we show next, the
specific formula for ω(A) also implies the converse, that is, all matrices with the same homogeneous
weight share the same rank.
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Corollary 3.3. Let A, B ∈ R. Then ω(A) = ω(B) if and only if rk (A) = rk (B).

Proof. It remains to prove the only-if-part. Let ω(A) = ω(B) and set r := rk (A) and s := rk (B).
Assume r < s. Then

(−1)r+1 q(
r

2)

αr(qm)
= (−1)s+1 q(

s

2)

αs(qm)
,

and thus r ≡ s mod 2. Then we obtain

q(
s

2)−(
r

2) =
αs(q

m)

αr(qm)
=

s−1∏

i=r

(qm − qi) = q
∑s−1

i=r i
s−1∏

j=r

(qm−j − 1) = q
(s−1)s

2
−

(r−1)r
2

s−1∏

j=r

(qm−j − 1).

Hence we conclude that
∏s−1
j=r(q

m−j − 1) = 1. This implies, in particular, that the product involves
at most one factor. But this contradicts that r ≡ s mod2.

The previous result shows that the partition of Fm×m induced by the homogeneous weight
coincides with the partition induced by the rank. We will discuss these partitions in more detail in
the next sections and therefore introduce now the necessary notation.

A partition P of R is a collection of non-empty and disjoint sets that cover R. The sets will
be called blocks, and the number of blocks in a partition P is denoted by |P|. If P consists of
the M blocks Pi, we will write P = P1 | P2 | . . . | PM . Two partitions P and Q of R are equal if
their blocks coincide up to ordering. The partition P is called finer than the partition Q, written
P ≤ Q, if every block of P is contained in a block of Q. We denote by∼P the equivalence relation
induced by P, thus x∼Py if and only if x and y belong to the same block of P.

Definition 3.4. A partition P = P1 | P2 | . . . | PM of R is called invariant if each block of P is
invariant under left or right multiplication by units, that is, uPm = Pm = Pmu for each u ∈ R∗.

The following partition will be at the focus of the next sections.

Definition 3.5. For any finite Frobenius ring R, we denote by Phom the partition of R induced by
the homogeneous weight ω. Thus, x∼Phom

y ⇐⇒ ω(x) = ω(y) for all x, y ∈ R.

The basic properties of the homogeneous weight and the previous result now translate as follows.

Remark 3.6. (a) For any finite Frobenius ring R, the partition Phom is invariant.
(b) If R is the matrix ring Fm×m, then Phom = Prk, where Prk is the partition induced by the rank,

i.e., A∼Prk
B ⇐⇒ rk (A) = rk (B).

4 The Homogeneous Weight on General Frobenius Rings

In this section we first consider direct products of matrix rings over fields before moving on to
general Frobenius rings. For the first class of rings, the values of the homogeneous weight can
easily be derived from the previous section and a well known formula for direct product rings. The
general case then follows from Theorem 2.5.

Throughout this section, any homogeneous weight is meant to be normalized.

Theorem 4.1. Consider the ring R = R1×. . .×Rt, where Ri = (Fqi)
mi×mi. Then the homogeneous

weight ω on R is given by

ω(A1, . . . , At) = 1−

t∏

i=1

(−1)riq
(ri2 )
i

αqi,ri(q
mi

i )
, where ri = rk (Ai).
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Proof. This follows from Theorem 3.2 along with the product formula for the homogeneous weight
on a direct product of rings, as it can be found in [4, Lem. 7] or [12, Prop. 3.7].

Now Theorem 2.5 leads to the following summary of our findings.

Theorem 4.2. Let R be a finite Frobenius ring. Then there exists a ring isomorphism

φ : R/rad(R) −→ (Fq1)
m1×m1 × . . .× (Fqt)

mt×mt , (4.1)

where q1, . . . , qt are suitable prime powers and m1, . . . ,mt positive integers. Denote by πi the
projection of the product ring on the i-th component (Fqi)

mi×mi , and let ψi = πi ◦φ ◦ψ, where ψ is
the left R-module isomorphism in (2.2). Then the homogeneous weight ω on R is given by

ω(x) =





1−

t∏

i=1

(−1)riq
(ri2 )
i

αqi,ri(q
mi

i )
, if x ∈ soc(R) and ri = rk (ψi(x)) for i = 1, . . . , t,

1, if x 6∈ soc(R).

As a consequence, R \ soc(R) is a block of the partition Phom.

The result allows us to characterize the rings that contain nonzero elements with zero homoge-
neous weight.

Corollary 4.3. Let R be a finite Frobenius ring. Then R contains a nonzero element with zero
homogeneous weight if and only if F2 is a factor of multiplicity 2 in the Wedderburn-Artin decom-
position of R/rad(R). In other words, there exists some x ∈ R\{0} such that ω(x) = 0 if and only
if (qi, mi) = (2, 1) for at least two values of i ∈ {1, . . . , t} in (4.1).

Proof. Note that ω(x) = 0 iff
t∏

i=1

(−1)riq
(ri2 )
i

αqi,ri(q
mi

i )
(4.2)

is 1, where ri = rk (ψi(x)) as in the theorem.
“⇐” Assume (q1,m1) = (q2,m2) = (2, 1). Let x ∈ soc(R)\{0} such that ψi(x) = 0 iff i > 2. Such x
certainly exists due to the surjectivity of φ. Since α2,1(2) = 1, the product in (4.2) is 1, as desired.
“⇒” Assume there exists x 6= 0 such that the product in (4.2) is 1. Fix i such that mi ≥ 2. Then
if ri > 0, the expression αqi,ri(q

mi

i ) in the denominator of (4.2) contains the factor (qmi

i − 1). Since
this factor is relatively prime to the numerator of (4.2), this contradicts our assumption that the
product be 1, and we conclude ri = 0 whenever mi ≥ 2. Since x 6= 0, this implies that we must
have at least one factor where mi = ri = 1. If mi = ri = 1, then αqi,ri(q

mi

i ) = qi−1, and since (4.2)
is 1, we conclude qi = 2. But then the factor (−1)ri forces that there be at least two instances
where mi = ri = 1 and qi = 2. This concludes the proof.

Example 4.4. Suppose R = R1 × . . . × Rt, where Ri is a local Frobenius ring for all i = 1, . . . , t.
Then R/rad(R) ∼=

∏t
i=1Ri/rad(Ri), where each component Ri/rad(Ri) is the residue field of Ri.

So, m1 = . . . = mt = 1 in the situation of Theorem 4.2. Specify (4.1) to

φ : R/rad(R) −→ (Fq1 × . . .× Fq1)× . . .× (Fqs × . . . × Fqs),

where q1, . . . , qs are distinct, and the field Fqi appears ni times in the product. Then we obtain

for x ∈ soc(R) the formula ω(x) = 1 −
∏s
i=1

(
−1
qi−1

)wt(ai)
, where (φ ◦ ψ)(x) = (a1, . . . , as) and

ai = (ai,1, . . . , ai,ni
) and where wt denotes the Hamming weight on each component Fqi × . . .×Fqi.

This recovers [12, Th. 3.9].
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We close this section with two examples where we determine the homogeneous weight partition.
They will be revisited in the next section.

Example 4.5. Let F = Fq and consider the ring R = F2×2 × F2×2. Theorem 4.1 provides us with

ω(A1, A2) = 1−

2∏

i=1

(−1)riq(
ri
2 )

αri(q
2)

, where ri = rk (Ai). (4.3)

Let Phom be the induced homogeneous weight partition of R. Moreover, let Prk = P0 |P1 |P2

be the rank partition of F2×2, thus Pi = {A ∈ F2×2 | rk (A) = i}. Define Q := (Prk)
2
sym

to be the symmetrized product partition of R induced by Prk, that is, its blocks are given by
the pairs of matrices with the same ranks up to ordering (see also [11, Def. 3.2] for general
symmetrized product partitions). To be precise, we index the blocks of Q by the multisets
{{0, 0}}, {{0, 1}}, {{0, 2}}, {{1, 1}}, {{1, 2}}, {{2, 2}} so that Q{{i,j}} consists of all matrix pairs with
one matrix having rank i and the other one having rank j, regardless of the order.

We show now that Phom = Q for q > 2, while Phom > Q for q = 2. It is clear from (4.3) that
matrix pairs in the same block of Q have the same homogeneous weight. In other words Q ≤ Phom.
The values of the homogeneous weight on the blocks of Q are given by (in the above ordering of
the multisets)

0, 1−
−1

q2 − 1
, 1−

1

(q2 − 1)(q − 1)
, 1−

1

(q2 − 1)2
, 1−

−1

(q2 − 1)2(q − 1)
, 1−

1

(q2 − 1)2(q − 1)2
.

For q > 2 these values are obviously distinct, and thus Phom = Q. In other words, the ho-
mogeneous weight partition of R is given by the symmetrized rank partition. For q = 2, the
matrix pairs in Q{{1,1}} ∪Q{{2,2}} all have the same homogeneous weight, 8

9 , and we obtain Phom =
Q{{0,0}} |Q{{0,1}} |Q{{0,2}} |Q{{1,2}} |Q{{1,1}} ∪Q{{2,2}}. Hence Q < Phom.

Example 4.6. Let R = F2×2 × F where F = Fq. Then the homogeneous weight of (A, a) ∈ R is
given by

ω(A, a) = 1−
(−1)r1q(

r1
2 )(−1)r2

αr1(q
2)αr2(q)

, where r1 = rk (A) and r2 = wt(a) (4.4)

(and where wt is the Hamming weight, which equals the rank). Thus pairs with the same rank
and weight have the same homogeneous weight. Let Prk again be the rank partition of F2×2 and H
be the Hamming weight partition of F. Define Q as the product partition Prk × H (see also [11,
Def. 3.1] for general product partitions). Then Q consists of the blocks

P(r1,r2) := {(A, a) | rk (A) = r1, wt(a) = r2} for all (r1, r2) ∈ {0, 1, 2} × {0, 1}.

As in previous example, Q ≤ Phom due to(4.4). But different from the previous example, we now
observe that the partition Phom is strictly coarser than Q for any q. Indeed, all pairs in P(1,1)∪P(2,0)

have homogeneous weight 1− 1
(q2−1)(q−1)

. Checking all values of ω(A, a) in (4.4), one arrives at the
partition

Phom =

{
P(0,0)

∣∣P(0,1)

∣∣P(1,0)

∣∣P(2,1)

∣∣P(1,1) ∪ P(2,0), if q > 2,

P(0,0)

∣∣P(0,1)

∣∣P(1,0) ∪ P(2,1)

∣∣P(1,1) ∪ P(2,0), if q = 2.
(4.5)

5 The Dual Partition of Phom

In this section we will investigate the character-theoretic dual of the partition Phom. This dualiza-
tion is at the heart of MacWilliams identities for the appropriate partition enumerators of codes and
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their left or right dual. The complex numbers
∑

a∈Pm
χ(ab) and

∑
a∈Pm

χ(ba), defined below, are
the left and right Krawtchouk coefficients and determine the MacWilliams transformation between
the partition enumerators. See the introduction for further details and literature on this topic. We
follow the notation from [11], where a general approach in the terminology of this paper has been
presented.

In this section we show that the left and right Krawtchouk coefficients coincide for the homo-
geneous weight partition, and therefore the left and right dual partitions of Phom coincide as well.
We will also provide an example showing that this is not true in general for invariant partitions.

As before, let R be a finite Frobenius ring and fix a generating character χ of R.

Definition 5.1 ([11, Def. 2.1, Def. 4.1]). Let P = P1 | . . . |PM be a partition of R. The left and
right χ-dual partition of P, denoted by P̂ [χ,l] and P̂ [χ,r], are defined by the equivalence relations

b∼
P̂ [χ,l]b

′ :⇐⇒
∑

a∈Pm

χ(ab) =
∑

a∈Pm

χ(ab′) for all m = 1, . . . ,M (5.1)

and
b∼P̂ [χ,r]b

′ :⇐⇒
∑

a∈Pm

χ(ba) =
∑

a∈Pm

χ(b′a) for all m = 1, . . . ,M. (5.2)

P is called χ-self-dual if P = P̂
[χ,l]

and reflexive if P =
̂ [χ,r]

P̂
[χ,l]

. The sums
∑

a∈Pm
χ(ab) (resp.∑

a∈Pm
χ(ba)) for b ∈ R, m = 1, . . . ,M , are called the left χ-Krawtchouk coefficients (resp. right

χ-Krawtchouk coefficients).

It has been shown in [1, Prop. 4.4] that χ-self-duality does not depend on the sidedness of the

dual partition, that is, P = P̂
[χ,l]

iff P = P̂
[χ,r]

. Moreover, reflexivity does not depend on the order
of left and right duals taken and neither does it depend on the choice of χ. The dual partitions
themselves do depend on the choice of χ in general. However, we have the following positive result.

Remark 5.2. Let P = P1 | . . . | PM be an invariant partition; see Definition 3.4. Then the left
(resp. right) Krawtchouk coefficients do not depend on the choice of χ, and thus neither do the left
and right dual partition. This can be seen as follows. Let χ, χ′ be two generating characters of R.
Then χ′ = u·χ = χ·v for some units u, v ∈ R∗ (see Theorem 2.1). Using (2.1) we obtain for any
b ∈ R ∑

a∈Pm

χ′(ab) =
∑

a∈Pm

χ(vab) =
∑

a′∈vPm

χ(a′b) =
∑

a∈Pm

χ(ab). (5.3)

Corollary 5.3 (see also [12, Rem. 3.3]). For the homogeneous weight partition Phom of R, the left
Krawtchouk coefficients and the left dual partition do not depend on the choice of the generating

character χ. The same is true for the right side. We will therefore simply write P̂hom
l

and P̂hom
r

for these dual partitions.

The goal of this section is to show that the left Krawtchouk coefficients coincide with the right

Krawtchouk coefficients and thus P̂hom

l

= P̂hom

r

. Before addressing this question, we briefly sketch
an example showing that this is not the case for general invariant partitions.

Example 5.4. Consider the ring

R :=








a 0 0 0
0 a b 0
0 0 c 0
d 0 0 c




∣∣∣∣∣∣∣∣
a, b, c, d ∈ F2
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(see also [23, Ex. 1.4(iii)]). The ring is Frobenius, and a generating character is given by χ, defined
by mapping the above matrix to (−1)a+b+c+d. Consider the sets P0 = {0}, P1 = R∗, P2 =
R∗A1R

∗ ∪ {A2}, and P3 = R∗B1R
∗ ∪ {B2, B3}, where

A1 =




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1


, A2 =




0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0


, B1 =




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


, B2 =




0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0


, B3 =




0 0 0 0
0 0 1 0
0 0 0 0
1 0 0 0


.

It is easy to check that P = P0 | P1 | P2 | P3 is an invariant partition of R. However, P̂
l

6= P̂
r

,
which takes a bit more effort to verify. It should be noted that the ring R is not semisimple. In
Corollary 5.8 below we will see that for semisimple rings the left and right dual partitions of an
invariant partition always coincide.

We now turn to the homogeneous weight partition. Wen dealing with reflexivity we will make
use of the following reflexivity criterion from [11, Th. 2.4] (see also [17, Fact V.2] and [13, Th. 10.1]).

Proposition 5.5. For any partition P of R we have |P| ≤ |P̂
[χ,l]

| with equality if and only if P is
reflexive. The same is true for the right dual partition.

The following concept will be helpful.

Definition 5.6. Let R be a finite Frobenius ring. A character χ of R is called symmetric if
χ(ab) = χ(ba) for all a, b ∈ R.

For semisimple Frobenius rings symmetric generating characters exist.

Theorem 5.7. Let R be a semisimple finite Frobenius ring. Then there exists a symmetric gener-
ating character of R.

Proof. Note first that if φ : R −→ S is a ring isomorphism and χ is a symmetric generating
character of S, then χ ◦ φ is a symmetric generating character of R. Symmetry is clear and the
generating property follows from the fact that a character is generating if and only if its kernel does
not contain any nonzero left or right ideals [6, Cor. 3.6]. Thus we may use the Wedderburn-Artin
Theorem [20, Th. (3.5)] and assume that R is a product of matrix rings over finite fields.
1) Let us first assume that R = Fm×m for some field F. Let χ̃ be a generating character of F, and
denote by tr(A) the trace of the matrix A ∈ Fm×m. For A ∈ R define χ(A) := χ̃(tr(A)). Then
it is clear that χ is a character of R which is symmetric due to the commutativity of the trace.
Thus it remains to show that χ is a generating character. In order to do so, suppose χ·M is the
trivial character on R for some matrix M ∈ R. We have to show that M = 0; see Theorem 2.1.
By assumption and (2.1) we have χ̃(tr(MA)) = 1 for all A ∈ R. Using for A the matrices αEj,i,
where α ∈ F and Ej,i is the matrix with entry 1 at position (j, i) and zeros elsewhere, we arrive at
χ̃(Mijα) = 1 for all α ∈ F. Hence χ̃·Mij is the trivial character on F (see (2.1)), and thus Mij = 0
because χ̃ is generating. Since this is true for all entries Mij, we conclude M = 0 and thus χ is
generating.
2) Let now R = (Fq1)

m1×m1 × . . . × (Fqt)
mt×mt . For each j let χj be a generating character on

(Fqj)
mj×mj . It is easy to see that χ, defined as χ(A1, . . . , At) :=

∏t
j=1 χj(Aj) for (A1, . . . , At) ∈ R,

is a generating character of R. Using χj as in part 1), we conclude χ(AB
)
= χ(BA) for all

A = (A1, . . . , At) and B = (B1, . . . , Bt) ∈ R.

Corollary 5.8. Let R be a semisimple finite Frobenius ring, and let P be an invariant partition

of R. Then the left and right Krawtchouk coefficients of P coincide, and thus P̂
l

= P̂
r

. In

particular, P̂hom

l

= P̂hom

r

.
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Proof. This follows from Theorem 5.7 and Definition 5.1.

The methods above also provide us with the self-duality of Phom on matrix rings.

Theorem 5.9. The homogeneous weight partition on Fm×m is self-dual, that is, Phom = P̂hom

l

.

Proof. By virtue of Theorem 5.7 there exists a symmetric generating character, say χ. From
Corollary 3.3 we know that Phom = P0 | . . . |Pm, where Pj = {A ∈ R | rk (A) = j}. Let now
B,B′ ∈ Pr for some r; hence B∼Phom

B′. Then B′ = UBV for some U, V ∈ GLm(F) and thus
∑

A∈Pj

χ(AB′) =
∑

A∈Pj

χ(AUBV ) =
∑

A∈Pj

χ(V AUB) =
∑

A∈Pj

χ(AB),

where the second step follows from the symmetry of χ and the last one from the invariance of Phom.

This shows that B∼
P̂hom

lB′ and thus the partition Phom is finer than or equal to P̂hom

l

. This means

|Phom| ≥ |P̂hom

l

|, and now Proposition 5.5 establishes Phom = P̂hom

l

.

We wish to add that self-duality of the rank partition on Fm×m has been shown earlier in the
context of abelian association schemes in [5, Ex. 4.66] with a suitable identification between the
primal and dual scheme involved.

The examples from Section 4 illustrate that the homogeneous weight partition on a semisimple
Frobenius ring is in general not self-dual and not even reflexive.

Example 5.10. Consider the ring R = F2×2 × F2×2 from Example 4.5. Let Prk = P0 |P1 |P2 be
the rank partition of F2×2, which, as we know, coincides with the homogeneous weight partition
on F2×2. We have seen already that if q = |F| > 2, then the homogeneous weight partition Phom

of R coincides with the symmetrized product partition of Prk, i.e., Phom = (Prk)
2
sym, while for q = 2

Phom is strictly coarser than (Prk)
2
sym. For the dual partition we have the following results.

(a) If q > 2 then Phom is self-dual. This follows from the fact that the partition Prk is self-dual (see
Theorem 5.9), and thus the same is true for (Prk)

2
sym = Phom, see [11, Th. 3.3(b)].

(b) If q = 2, one can verify (using a computer algebra system), that the dual of Phom coincides with
(Prk)

2
sym. Hence Phom is not reflexive due to Proposition 5.5.

Example 5.11. Consider the ring R = F2×2 × F from Example 4.6. The homogeneous partition
has been determined in (4.5). Recall the partition Q = P(0,0) |P(0,1) |P(1,0) |P(1,1) |P(2,0) |P(2,1),
which is the product of the rank partitions on F2×2 and F. We saw already that Q < Phom for
each q. As for the dual partition, we have the following results.

(a) Let q > 2. Then P̂hom = Q. Thus, P̂hom < Phom and Phom is not reflexive. In order to establish

the identity P̂hom = Q one first observes that the inequality Q < Phom along with Q = Q̂
implies Q ≤ P̂hom, see also [11, Rem. 2.2(c)]. For the converse, that is P̂hom ≤ Q, one has to
show that for any two elements (A, a), (A′, a′) in different blocks of Q there exists a block P
of Phom such that

∑

(B,b)∈P

χ
(
(A, a) · (B, b)

)
6=

∑

(B,b)∈P

χ
(
(A′, a′) · (B, b)

)
,

and where χ is a generating character of R. This can be verified by making use of the
Krawtchouk coefficients of the rank partition of Fm×m as they have been derived by Delsarte [9,
Eq. (A10)]. They tells us that for any A ∈ Fm×m with rank i

∑

rk(B)=k

χ̃(tr(BA)) =
m∑

j=0

(−1)k−jqjm+(k−j

2 )
[
m− j

m− k

][
m− i

j

]
,

where χ̃ is a generating character of F.
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(b) Let q = 2. Then P̂hom = P(0,0) |P(0,1) ∪ P(1,1) |P(1,0) ∪ P(2,0) |P(2,1). This is derived in a similar

manner as in (a). Hence we see that |Phom| = 4 = |P̂hom| and therefore Phom is reflexive (but
not self-dual).

The last example is particularly interesting when compared to the situation for finite Frobenius
rings that are direct products of fields, say R = (Fq1×. . .×Fq1)×. . .×(Fqt×. . .×Fqt) for distinct qi.
In this case it has been shown in [12, Th. 4.4 and Th. 4.7] that the dual of the homogeneous weight
partition of R is given by the product of the Hamming partitions on the components Fqi × . . .×Fqi.

Moreover, Phom is reflexive if and only if it is self-dual. This contrasts Example 5.11(b) where P̂hom

is not a product partition, yet Phom is reflexive.

The above examples show that it does not seem easy to characterize the rings for which the
homogeneous weight partition is reflexive. We leave this for future research.

We close the paper with proving that for any finite Frobenius ring, the left and right Krawtchouk

coefficients of Phom coincide, and thus P̂hom

l

= P̂hom

r

. Recall that general Frobenius rings do not
necessarily have a symmetric character, and the left dual of a partition does in general not agree
with the right dual one – even if the partition is invariant; see Example 5.4.

The crucial fact that makes the homogeneous weight partition stand out stems from Theorem 2.5
and Remark 2.6. Those results not only allow us to reduce the partition to the (semisimple) ring
R/rad(R), but also ensure that the reduction does not depend of the sidedness of the module
isomorphism between soc(R) and R/rad(R).

Theorem 5.12. Let R be any finite Frobenius ring, and let Phom = P0 | P1 | . . . | PM be the
homogeneous weight partition. Then for each generating character χ of R we have

∑

a∈Pm

χ(ab) =
∑

a∈Pm

χ(ba) for all b ∈ R and m = 0, . . . ,M. (5.4)

As a consequence, P̂hom
l

= P̂hom
r

.

Proof. It suffices to show (5.4). Let S := R/rad(R) and π : R −→ S be the canonical projection.
Since R is Frobenius, we have right and left R-module isomorphisms

ψr : soc(R)R −→ SR, ψl : R soc(R) −→RS.

Recall from Theorem 4.2 that R \ soc(R) is a block of Phom. Thus we may assume that the block
P0 of Phom is P0 = R \ soc(R). Then P ′ := P1 | . . . |PM is a partition of soc(R). Denote by ω, ω̃
the normalized homogeneous weights on R and S, respectively. Theorem 2.5 and Remark 2.6 show
that ω̃(ψl(x)) = ω(x) = ω̃(ψr(x)) for all x ∈ soc(R). Thus

ψr(Pm) = ψl(Pm) for all m = 1, . . . ,M. (5.5)

Moreover, the partition Q := Q1 | . . . | QM , where Qm := ψr(Pm), is the homogeneous weight
partition of the ring S.

Let χ be a generating character of R. Then χ̃l := χ◦ψ−1
l and χ̃r := χ◦ψ−1

r are both generating
characters of S. This follows from the fact that a character is generating if and only if its kernel
does not contain any nonzero left or right ideals [6, Cor. 3.6].

Let now b ∈ R. If we can show that
∑

a∈Pm

χ(ab) =
∑

a∈Pm

χ(ba) for all m = 1, . . . ,M, (5.6)

then the remaining identity for m = 0, and hence (5.4), follows from the orthogonality relations∑
a∈R χ(ab) = |R|δb,0 =

∑
a∈R χ(ba) (with the Kronecker symbol δ). Before we start the computa-

tion we collect some facts.
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– By the very definition of generating characters (Theorem 2.1) together with Theorem 5.7 there
exist units u, v ∈ S∗ such that v ·χ̃l = χ̃r ·u, and such that this is a symmetric character of S.

– ψr(ab) = ψr(a)π(b) and ψl(ba) = π(b)ψl(a) for all b ∈ R and a ∈ soc(R). This is clear from the
simultaneous ring and bimodule structure of S.

Making use of these properties along with (2.1) and the invariance of the Krawtchouk sums from
the chosen character, see (5.3), we compute for any m ∈ {1, . . . ,M}

∑

a∈Pm

χ(ab) =
∑

a∈Pm

χ̃r
(
ψr(ab)

)
=

∑

a∈Pm

χ̃r
(
ψr(a)π(b)

)
=

∑

ã∈ψr(Pm)

χ̃r
(
ãπ(b)

)

=
∑

ã∈ψr(Pm)

(χ̃r ·u)
(
ãπ(b)

)
=

∑

ã∈ψl(Pm)

(v ·χ̃l)
(
ãπ(b)

)
=

∑

ã∈ψl(Pm)

(v ·χ̃l)
(
π(b)ã

)

=
∑

ã∈ψl(Pm)

χ̃l
(
π(b)ã

)
=

∑

a∈Pm

χ̃l
(
ψl(ba)

)
=

∑

a∈Pm

χ(ba).

This concludes the proof.

As already mentioned earlier, we leave it to future research to characterize the rings for which
the homogeneous weight partition Phom is reflexive or even self-dual.
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