
Improved Indifferentiability Security Bound for the JH Mode

Dustin Moody

National Institute of

Standards and Technology

Gaithersburg, MD, USA

dustin.moody@nist.gov

Souradyuti Paul

National Institute of

Standards and Technology

Gaithersburg, MD, USA

&

K.U.Leuven, Belgium

souradyuti.paul@nist.gov

Daniel Smith-Tone

National Institute of

Standards and Technology

Gaithersburg, MD, USA

daniel.smith@nist.gov

Abstract

Indifferentiability security of a hash mode of operation guarantees the mode’s resistance against all (meaningful)
generic attacks. It is also useful to establish the security of protocols that use hash functions as random functions.
The JH hash function is one of the five finalists in the ongoing NIST SHA-3 hash function competition. Despite
several years of analysis, the indifferentiability security of the JH mode (with n-bit digest and 2n-bit permutation)
has remained remarkably low, only at n/3 bits (FSE 2010), while the other four finalist modes – with comparable
parameter values – offer a security guarantee of n/2 bits. In this paper, we improve the indifferentiability security
bound for the JH mode to n/2 bits (e.g. from 171 to 256 bits when n = 512). To put this into perspective, our result
guarantees the absence of attacks on both JH-256 and JH-512 hash functions with time less than approximately
2256 computations of the underlying 1024-bit permutation, under the assumption that the basic permutation is
structurally strong. Our bounds are optimal for JH-256, and the best, so far, for JH-512. We obtain this improved
bound by establishing an isomorphism of certain query-response graphs through a careful design of the simulators
and the bad events. Our experimental data strongly supports the theoretically obtained results.

1 Introduction

Generic Attacks. In a generic attack, an adversary attempts to break a property of the target crypto-algorithm
assuming that one or more of its smaller components are ideal objects, such as random oracles, ideal permutations, or
ideal ciphers. For example, suppose that the target crypto-algorithm is a hash function H : {0, 1}∗ → {0, 1}n. Assume
that for a given input M ∈ {0, 1}∗, H invokes an ideal object, say a random oracle ro : {0, 1}m → {0, 1}n, one or
multiple times, to compute H(M). Informally, a generic attack breaks a property of the hash function H utilizing less
resources than would be required to break the same property of the big random oracle RO : {0, 1}∗ → {0, 1}n.

Generic attacks against hash functions are plentiful in the literature. See, for example, Joux’s multi-collision
attack [13], the Kelsey-Schneier expandable-message attack [15] and the Kelsey-Kohno herding attack [14], all on the
popular Merkle-Damgärd hash mode. Generic attacks have also been reported on hash modes other than the plain
Merkle-Damgärd mode. A few of these are the 2nd pre-image attacks on the dithered variants of the Merkle-Damgärd
construction [1], a pre-image attack on the JH mode [8], 1st/2nd pre-image and multi-collision attacks on the Sponge
construction when the state-size is not sufficiently large [7], collision attacks on some concatenated hash functions [13],
multi-collisions in iterated concatenated and expanded hash functions [12], and multi-collisions on some generalized
sequential hash functions [18].

In each of the above examples, a common assumption was that the underlying basic primitive of the hash function
is an ideal object. Therefore, all of these attacks fit the definition of a generic attack. Generic attacks have changed
the outlook on the security of a cryptographic hash function over the last few years. One naturally asks how to design
a hash mode secure against all generic attacks.

Indifferentiability Security. The indifferentiability security framework was introduced by Maurer et al.[17] in
2004, and was first applied to analyze hash modes of operation by Coron et al.[10] in 2005. A hash mode proven secure
in this framework is able to resist all generic attacks. More technically, the indifferentiability framework measures the
extent to which a hash function behaves as a random oracle under the assumption that the underlying small compres-
sion function is an ideal object. The class of indifferentiability attacks includes more attacks [2, 8, 9] than just useful
generic attacks as above. Thus in some sense, an indifferentiable hash function can be viewed as eliminating potential

1

future attacks. We note the security of many cryptographic protocols rely on the indifferentiability security of the
underlying hash functions that the protocols use as random oracles. In such a case, security of the hash functions
against selected specialized attacks – such as collision, 1st/2nd pre-image attacks – are inadequate to guarantee the
security of the overlying protocol. As a result, it is now common to derive indifferentiability bounds for new proposed
modes. Some limitations of the indifferentiability framework have recently been discovered in [11] and [19]. They
offer a deep insight into the framework; nevertheless, the observations are not known to affect the security of the
indifferentiable hash functions in any meaningful way.

Previous analysis of the JH Mode. The JH hash function is one of the five finalist algorithms in the ongoing
NIST SHA-3 hash function competition. The hash function uses an iterative mode which is novel in the sense that
it is based on a permutation [20]. Several popular hash functions – such as the SHA-1/2 – are constructed instead
using a blockcipher. Since its publication in 2007, the JH mode of operation has undergone an extensive security
analysis. The first published analysis of the JH mode was done by Bhattacharyya, Mandal and Nandi, who showed
that the indifferentiability security of the basic version of the JH mode up to n/3 bits [8];1 they have also shown a
generic pre-image attack on the JH mode with (information theoretic) work which is slightly less than n bits. A year
later, in [16], it was shown that the JH mode achieves the optimal collision resistance of up to n/2 bits. Very recently
Andreeva, Mennink and Preneel have improved the 1st and 2nd pre-image resistance of the JH mode from n/3 to n/2
bits [5]. However, the improvement of the indifferentiability security of the JH mode beyond n/3 bits has remained
elusive. Table 1 gives an overview of the main results on the JH mode.

Our Contribution. The usage of an ideal permutation, instead of a random oracle, in the JH mode allows the
adversary to use reverse queries in addition to forward queries. One of the main difficulties in our improved security
analysis of the JH mode is how to handle these reverse queries. This additional privilege of the adversary makes
challenging the construction of an efficient simulator, which is able to withstand all indifferentiable adversaries up
to (approximately) 2n/2 queries. Another major challenge, which turns out to be quite hard, is to estimate the
probability of the events when a current query submitted by an arbitrary adversary matches an old but unknown
query. A somewhat easier task is to show that the probability of a node-collision on the graph constructed by an

efficient simulator, is at most σ2

2n , where σ is the total number of submitted queries. We overcome these hurdles by
carefully designing a set of 22 bad events. Our construction is such that the absence of the bad events, (1) eliminates
the possibility of a reverse query being attached to the simulator graph, (2) allows the graph to grow only linearly
in the number of submitted queries, and most importantly (3) ensures the isomorphism of the simulator graphs in
two different games. Using this isomorphism result and the linear bound on the number of nodes in the isomorphic
graphs, we are able to improve the indifferentiability security bound of JH to n/2 bits. Another feature of our work,
which may be of independent interest, is that the proof of our main theorem Theorem 4.1 requires only three games.
Compare this with the usual practice of tackling such problems using a sequence of a large number of games. The
smaller number of games makes third-party verification of the proof a great deal easier.

Our indifferentiability bound guarantees the absence of generic attacks on the JH hash function based on 2n-bit
permutation with work less than 2n/2. When the digest-size n = 256 and 512 bits, the hash mode is resistance to
all generic attacks up to (approximately) 2256 computations of the underlying 1024-bit permutation. This bound is
optimal for JH-256 and the best known for JH-512. Furthermore, we have performed a series of experiments with the
JH mode using our bad events. Our experiments verify the theoretically obtained results. We caution the reader that
our result on the JH mode says nothing about the security of the underlying 1024-bit permutation, which is assumed
to be free from all structural weaknesses throughout the paper.

Table 1: The resistance of the JH mode against several attacks. Each number is in bits. The asterisk indicates the
optimality of bound.

Mode of Message Permutation First Second Collision Indiff. Indiff.
operation block-length size pre-image pre-image resistance (old) (new)

JH-n n 2n n/2 [4] n/2 [4] n/2∗ [16] n/3 [8] n/2n/2n/2
JH-512 512 1024 256 256 256∗ 171 256256256
JH-256 512 1024 256∗ 256∗ 128∗ 171 256256256∗

Notation and Convention. Throughout the paper we let n be a fixed integer. We shall use the little-endian bit-
ordering system. The symbol |x| denotes the bit-length of the bit-string x, or sometimes the size of the set x. For

1The basic version uses a 2n-bit permutation and n-bit digest. The chopped versions use a smaller digest.

2

concatenation of strings, we use a||b, or just ab if the meaning is clear. Let x
parse→ x1||x2 denote parsing x into x1

and x2 such that |x1| = n and |x2| = |x| − n. Let SX denote the sample space of the discrete random variable X.
The relation A ∼ B is satisfied if and only if Pr

[
A = X

]
= Pr

[
B = X

]
for all X ∈ S, where S = SA = SB . Let

Dom(T) = {i | T [i] 6=⊥} and Rng(T) = {T [i] | T [i] 6=⊥}. We write AB to denote an Algorithm A with oracle access
to B. Let [c, d] be the set of integers between c and d inclusive, and a[x, y] the bit-string between the x-th and y-th
bit-positions of a. Finally, U [0, N] is the uniform distribution over the integers between 0 and N .

2 Indifferentiability Framework for JH

2.1 Description of the JH Mode

Distinguisher

H RO S/S-1

Option 1 Option 2

/  -1

Figure 1: Indifferentiability
framework for a hash function
based on an ideal permutation.
An arrow indicates the direction
in which a query is submitted.

A

JH

Game(JH, ,

)

A

RO S/S-1

A

JH1 S1/S1
-1

G1 Game(RO, S, S-1) 

/  -1

/  -1

  -1

Figure 2: Schematic diagrams of the security games used in the in-
differentiability framework for JH. The arrows show the directions
in which the queries are submitted.

Suppose n ≥ 1. Let π : {0, 1}2n → {0, 1}2n be a 2n-bit ideal permutation used to build the JH hash function
JHπ : {0, 1}∗ → {0, 1}n. The diagram and the description of the JH transform are given in Figures 4(ii) and 3(a).

The notation M
pad→ m1 · · ·mk−1mk is interpreted as follows: Using an injective function pad : {0, 1}∗ → ∪i≥1{0, 1}ni,

the message M is mapped into a string m1 · · ·mk−1mk such that k =
⌈
|M |
n

⌉
+ 1, |mi| = n for 1 ≤ i ≤ k. In addition

to the injectivity of pad(·), we will also require that there exists a function dePad(·) that can efficiently compute M ,
given pad(M). Formally, the function dePad : ∪i≥1 {0, 1}in → {⊥} ∪ {0, 1}∗ computes dePad(pad(M)) = M , for all
M ∈ {0, 1}∗, and otherwise dePad(·) returns ⊥. We note that the padding rules of all practical hash functions have
the above properties. For more details, the reader is referred to the original specification written by the JH designer
[20].

2.2 Introduction to the Indifferentiability Framework

We will frequently refer to the use of a random oracle, as defined in Appendix A. We introduce the indifferentiability
framework and briefly discuss its significance. The definition we give is a slightly modified version of the original
definition provided in [10, 17].

Definition 2.1 (Indifferentiability framework) [10] An interactive Turing machine (ITM) T with oracle access
to an ideal primitive F is said to be (tA, tS , σ, ε)-indifferentiable from an ideal primitive G if there exists a simulator
S such that, for any distinguisher A, the following equation is satisfied:∣∣∣Pr[AT,F = 1]− Pr[AG,S = 1]

∣∣∣ ≤ ε.
The simulator S is an ITM which has oracle access to G and runs in time at most tS. The distinguisher A runs in time
at most tA. The number of queries used by A is at most σ. Here ε is a negligible function in the security parameter
of T .

We define AdvG,ST,F = maxA
∣∣Pr[AT,F = 1]− Pr[AG,S = 1]

∣∣, so that by definition AdvG,ST,F ≤ ε. The significance of the
framework is as follows. Suppose, an ideal primitive G (e.g. a variable-input-length random oracle) is indifferentiable
from an algorithm T based on another ideal primitive F (e.g. a fixed-input-length random oracle). In such a case, any
cryptographic system P based on G is as secure as P based on TF (i.e., G replaces TF in P). For a more detailed
explanation, we refer the reader to [17].

Pictorial Description of Definition 2.1 (Figure 1). In the figure, the five entities involved in Definition 2.1 are
shown: T , F , G and S have been replaced by a hash mode H, an ideal permutation π/π−1, a random oracle RO, and

3

a pair of simulators S/S−1. For the purposes of our paper, H is the JH hash mode based on the ideal permutation
π. In this setting, Definition 2.1 addresses the degree to which any computationally bounded adversary is unable to
distinguish between Option 1 and Option 2.

2.3 JH Indifferentiability

To study the indifferentiability security of the JH mode, we use the ideal permutation π/π−1 : {0, 1}2n → {0, 1}2n as
the basic primitive of JH. To obtain the indifferentiability security bound, we follow the usual game-playing techniques
[3, 6]. The schematic diagrams of the two cryptographic systems Option 1 and Option 2 (of Figure 1) are Game(JH,
π, π−1) and Game(RO, S, S−1) illustrated in Figure 2. The other game G1 is an intermediate step, allowing us to
more easily compare the games. The pseudocode for each game is provided in Section 3. Informally, a game takes an
adversarial query as input and produces an output. A simple example is the description of Game(JH, π, π−1) which
is provided in Figure 3(a).

A game is a stateful probabilistic algorithm that takes an adversary-generated query as input, updates the current
state, and produces an output to the adversary. Let (xiyi) denote the i-th query and response pair from the game G,
when it interacts with the adversary A. The view of the game G after j queries with respect to the adversary A, is
the sequence {(x1y1), . . . , (xjyj)}. The notion of equivalence of games will play a central role in the security reduction
processes in the coming sections. To put it loosely, two games are equivalent if their input-output distributions are
identical. For simplicity, we will only deal with games that expose identical interfaces to their adversaries. The
definition of equivalence of games is provided in Appendix B.

3 Description of the Security Games for JH

In this section, we elaborate on the games Game(JH, π, π−1), G1, and Game(RO, S, S−1) that are schematically
presented in Figure 2. The pseudocode for all the games is given in Figures 3 and 5.

The functionalities JH, JH1, and RO are mappings from {0, 1}∗ to {0, 1}n. The function S is a mapping from
{0, 1}2n to {0, 1}2n. Also, π, π−1, S1, and S1−1 are all permutations on {0, 1}2n, while S−1 is a function from {0, 1}2n
to {0, 1}2n ∪ {“INVALID”}. We call any query submitted to JH, JH1, or RO an l-query, short for long query.
Likewise, we refer to queries to S or S1 as s-queries, (for short query). An s−1-query is a query submitted to S−1 or
S1−1.

The games will use several global and local variables. The global variables Dl and Ds are two tables used to store
query-response pairs: Dl for l-queries and responses, and Ds for s/s−1-queries and responses. The table Dπ contains
all π/π−1-queries and responses. The tables Dl, Ds and Dπ, and all local variables are initialized with ⊥. The graphs
Tπ and Ts – built using elements of Dπ and Ds – are also global variables which initially contain only a root node
(IV, IV ′). The local variables are re-initialized every new invocation of the game, while the global data structures
maintain their states across queries.

The queries can also be divided into three types according to their location in the tables: (1) a current query
denotes the query in question, which should be evident from context; (2) an old query is one which is already present
in the database Dl, Ds or Dπ; (3) a fresh query is when the current query is not present in any of the databases Dl,
Ds or Dπ. We assume that identical queries are not submitted by the adversary more than once.

Description of Game(JH, π, π−1) (Figure 3(a)). Following the definition provided in Section 2.3, the game
Game(JH, π, π−1) implements the JH hash function using the permutations π and π−1. The ideal permutation π/π−1

have been implemented through lazy sampling. The query-response pairs for π/π−1 are stored in the table Dπ.

Description of Game(RO, S, S−1) (Figure 3(b)). The functions S and S−1 of this game are the simulators of the
indifferentiability framework for JH. Construction of effective simulators is the most important part of the analysis of
indifferentiability security for a hash mode of operation. The purpose of the simulator-pair S/S−1 is two-fold: (1) to
output values that are indistinguishable from the output from the ideal permutation π/π−1, and (2) to respond in such
a way that JHπ(M) and RO(M) are identically distributed. It will easily follow that as long as the simulator-pair
S/S−1 is able to output values satisfying the above conditions, no adversary can distinguish between Game(JH, π,
π−1) and Game(RO, S, S−1). Our design strategy for S/S−1 is fairly intuitive and simple.
FullGraph. This routine updates the graph Ts using the elements in Ds in such a way that each path originating
from the root (IV, IV ′) represents the execution of JHS(·) on a prefix of some message. Additionally and more
importantly, the graph Ts contains all possible paths derived from the elements in Ds; hence the name FullGraph.
See Figure 4 for the pictorial description of how several components of the graph Ts are built. For example, suppose

M
pad→ m1m2 · · ·mk. Then the path IV IV ′

m1→ y1y
′
1
m2→ y2y

′
2 represents the first two-block execution of JHS(M) where,

y1y
′
1 = S(IV ||IV ′ ⊕ 0||m1)⊕m1||0 and y2y

′
2 = S(y1||y′1 ⊕ 0||m2)⊕m2||0.

4

JH(M)

01. M
pad→ m1m2 . . .mk−1mk;

02. y0 = IV , y′0 = IV ′;
03. for(i = 1, 2, . . . k)

yiy
′
i = π

(
yi−1||(y′i−1 ⊕mi)

)
⊕mi||0;

04. return yk;

π(x)
11. if x /∈ Dom(Dπ) then

Dπ[x]
$← {0, 1}2n \Rng(Dπ);

12. return Dπ[x];
π−1(y)
21. if y /∈ Rng(Dπ) then

D−1π [y]
$← {0, 1}2n \Dom(Dπ);

22. return D−1π [y];

(a) Game(JH, π, π−1): Global variable is the table Dπ .

RO(M)
001. if M ∈ Dom(Dl) then

return Dl[M];

002. h
$← {0, 1}n; Dl[M] = h;

003. return h;

MessageRecon(x, Ts)

201. x
parse→ yy′;

202. if FindNode(y) = 0 then return M = ∅;
203. M′ = FindBranch(y);
204. M = {dePad(Xz) | Xz′ ∈M′, z = z′ ⊕ y′};
205. return M;

S(x)

101. r
$← {0, 1}2n;

102. M = MessageRecon(x, Ts);
103. if |M| = 1 then r[0, n− 1] = Dl[M]⊕ z;
104. Ds[x] = r;
105. FullGraph(Ds);
106. return r;

S−1(r)
300. If ∃x1, x2 ∈ Dom(Ds) s.t. Ds[x1] = Ds[x2] = r
301. then return “Invalid”;
302. If r ∈ Rng(Ds) then return D−1s [r];

303. If r /∈ Rng(Ds) then x
$← {0, 1}2n;

304. If x /∈ Dom(Ds) then Ds[x] = r;
305. return x;

(b) Game(RO, S, S−1): Global variables are the tables Dl and Ds, and the graph Ts.

Figure 3: The main games Game(JH, π, π−1) and Game(RO, S, S−1)

5

MessageRecon(x, Ts). The purpose of this routine is to reconstruct all messages M such that the final input to S in
JHS(M) is the current s-query x. Hence JHS(M) = S(x)[0, n − 1] ⊕ z, where z is the final message-block of M after
padding. The subroutine uses Ts to find all such M , by first calling the subroutine FindNode(y = x[0, n− 1]) to check
whether there exist nodes in Ts with left-coordinate y. If present, then the subroutine FindBranch(y) collects all paths
between the root (IV, IV ′) and the nodes yz′. A set M is returned, containing all the sequences of arrows on those
paths – denoted by X – concatenated with z = z′ ⊕ x[n, 2n− 1]. Notice that dePad(X||z) = M . If no such M 6=⊥ is
found, then the subroutine returns the empty set.

For an s-query x, S assigns a uniformly sampled 2n-bit value to r. The subroutine MessageRecon(x, Ts) is then
invoked, which returns a set of messages M. If |M| = 1 then r[0, n − 1] is assigned the n-bit string RO(M) ⊕ z,
where M ∈ M and M

pad→ m1m2 · · ·mk = X||z. Finally, Ds and Ts are updated, and the value of r is returned. In
Appendix C, we show that the worst-case running time of the S on the i-th query is O(i4).

For an s−1-query r, if there exist x1 6= x2 such that Ds[x1] = Ds[x2] = r, then a special string “INVALID” is
returned. If instead there exists a unique x ∈ Dom(Ds) such that Ds[x] = r then x is returned. The last possible case
is if r /∈ Rng(Ds), and then x is assigned a 2n-bit integer chosen according to the uniform distribution U [0, 22n − 1].
If x /∈ Dom(Ds) then Ds[x] is assigned r. Finally x is returned.

RO works as follows. Given an l-query M , RO first checks whether M has already been queried by S. In such a
case, M already belongs to Dom(Dl) and the RO returns Dl[M]. Otherwise, Dl[M] is assigned a uniformly sampled
n-bit value, which is eventually returned.

IVIV’

 y1 y1’

m1

m2

m3

 y2 y2’

 y3y3’

ma

 ya ya’

(i)



m1







m2



mk

IV’

IV

Hash

output

y’1 y’’1

y1

y’2

y2

(ii)

S/ S/ S/

Figure 4: All arrows and dots are n bits each. (i) The directed graph Ts (or Tπ) which is updated by the subroutine
FullGraph of Game(RO, S, S−1)(or PartialGraph of G1) (see Figures 3(b) and 5). Example: The edge (y1y

′
1,m2, y2y

′
2)

is composed of the head node y1y
′
1, the arrow m2, and the tail node y2y

′
2. The left and right coordinates of a node

(yay
′
a) is ya and y′a. (ii) JH mode with M

pad→ m1m2 · · ·mk. The shaded region shows the generation of the edge
(y1y

′
1,m2, y2y

′
2) in Ts using S (or in Tπ using π);

Description of G1 (Fig. 5). The description of the game G1 apparently looks a bit artificial in the sense that it was
constructed as a hybridization of the games Game(JH, π, π−1) and Game(RO, S, S−1). The purpose of this game
is to be a transit point from Game(JH, π, π−1) to Game(RO, S, S−1) so that their difference in execution can be
understood.

First, in the description of this game, we omit the statements where the variable BAD is set, since they do not
impact the output and the global data structures. The variable BAD is set when certain events occur in the global
data structures. Those events will be discussed, when we compute

∣∣Pr
[
AG1 ⇒ 1

]
− Pr

[
ARO,S,S−1 ⇒ 1

]∣∣ in Section 5.
Now we describe the subroutines used by this game.
PartialGraph(x, r): The subroutine builds the graph Tπ in such a way that each directed path originating from the
root (IV, IV ′) represents the execution of JHπ(·) on a prefix of some message (depicted in Figure 4). Rather than
building all possible paths using the fresh pair (x, r) and the old pairs in Dπ, the PartialGraph augments the Tπ in at
most one phase; hence the name PartialGraph. The details are as follows.

First, the subroutine CreateCoset(yc = x[0, n − 1]) is invoked, that returns a set Coset containing all nodes in Tπ
whose left-coordinate is yc. The size of Coset determines the number of fresh nodes to be added to Tπ in the the
current iteration. Using the members of Coset and the new pair (x, r), new edges are constructed, stored in EdgeNew,
and added to Tπ using the subroutine AddEdge.

6

Figure 5: Game G1: Global variables are the tables Dl, Ds and Dπ, and the graphs Tπ and Ts.

JH1(M)

001. M
pad→ m1m2 · · ·mk−1mk;

002. y0 = IV , y′0 = IV ′;
003. for(i = 1, · · · , k − 1){
004. y′′i−1 = y′i−1 ⊕mi;
005. r = π(yi−1y

′′
i−1);

006. yiy
′
i = r ⊕mi||0;

007. if yi−1y
′′
i−1 is fresh then

PartialGraph(yi−1y
′′
i−1, r);}

008. y′′k−1 = y′k−1 ⊕mk;
009. If M ∈ Dom(Dl) then

if Type3 then BAD := True;
010. r = π(yk−1y

′′
k−1);

011. if Type0-b then BAD =True;
012. if yk−1y

′′
k−1 is fresh then

PartialGraph(yk−1y
′′
k−1, r);

013. Dl[M] = r[0, n− 1]⊕mk;
014. return Dl[M];

MessageRecon(x, Ts)

201. x
parse→ yy′;

202. if FindNode(y) = 0 then return M = ∅;
203. M′ = FindBranch(y);
204. M = {dePad(Xz) | Xz′ ∈M′, z = z′ ⊕ y′};
205. return M;
π(x)
301. if x /∈ Dom(Dπ) then

Dπ[x]
$← {0, 1}2n \Rng(Dπ);

302. return Dπ[x];

S1(x)
100. if Type2 then BAD =True;
101. r = π(x);
102. if Type0-a then BAD =True;
103. M=MessageRecon(x, Ts);
104. if |M| = 1 ∧M /∈ Dom(Dl) then

Dl[M] = r[0, n− 1]⊕ z;
105. Ds[x] = r;
106. if x is fresh then PartialGraph(x, r);
107. return r;
PartialGraph(x, r)

401. x
parse→ ycy

′′
c ; r

parse→ y∗y′;
402. Coset = CreateCoset(yc);
403. EdgeNew = {(ycy′c,m, yy′) |

ycy
′
c ∈ Coset,m = y′′c ⊕ y′c, y = y∗ ⊕m};

404. for (ycy
′
c,m, yy

′) ∈ EdgeNew {AddEdge(ycy′c,m, yy′);
405. if Type1-a ∨Type1-b then BAD=True;}
S1−1(r)
601. if Type4 then BAD =True;
602. x = π−1(r);
603. if Type0-c then BAD =True;
604. if Type1-c then BAD =True;
605. Ds[x] = r;
606. return x;
π−1(r)
501. if r /∈ Rng(Dπ) then

D−1π [r]
$← {0, 1}2n \Dom(Dπ);

502. return D−1π [r];

MessageRecon(x, Ts): The graph Ts is the maximally connected subgraph (of Tπ) with the root-node (IV, IV ′),
generated by the s/s−1-queries and responses stored in Ds; x is the current s-query. This subroutine has been
described already in game Game(RO, S, S−1).

For an s-query x, r is assigned the value of π(x). The ideal permutation π is implemented through lazy sampling.
Then the subroutine MessageRecon is called with (x, Ts) that returns a set of messagesM. If |M| = 1, and if M ∈M
is not a previous l-query then Dl[M] is assigned the value of r[0, n− 1]⊕ z, where M

pad→ Xz. Then Ds is updated. If
x is fresh then the routine PartialGraph is invoked on (x, r) to update the graph Tπ. Finally, r is returned.

For an s−1 query r, x is assigned the value of π−1(r). Finally, Ds[x] is updated and x is returned.
If an l-query M has already been queried by S1, then Dl[M] is returned. Otherwise, JH1 mimics JH, in addition

to updating the graph Ts whenever a fresh intermediate input is generated. Afterwards, the Dl[M] is assigned the
value of r[0, n− 1]⊕mk. Finally, Dl[M] is returned.

With the above description of the games at our disposal, now we are well equipped to state and prove an easy but
important result.

Proposition 3.1 For any distinguishing adversary A, Game(RO, S, S−1) ≡ G1.

Proof. From the description of S1, and S1−1, we observe that, for all x ∈ {0, 1}2n, S1(x) = π(x), and S1−1(x) =
π−1(x). Likewise, from the descriptions of JH1 and JH, for all M ∈ {0, 1}∗, JH1(M) = JH(M). 2

The events Type0, Type1, Type2, Type3, and Type4 of G1 are still not defined. These events finally tell apart the
game G1 from the game Game(RO, S, S−1). We describe them in the following sections.

4 Definition of the events: BADi, GOODi and a few more

Round of a Game. A round of a game is defined based on the type of the submitted query.

7

For an s-query: For the game G1, a round spans the lines 100 through 106 (Fig. 5). For the game Game(RO, S,
S−1), a round spans the lines 101 through 106 (Fig. 3(b)).
For an s−1-query: For the game G1, a round spans the lines 601 through 606. For Game(RO, S, S−1) a round spans
the lines 300 through 305.

For an l-query: Let M
pad→ m1m2 · · ·mk. For the game G1, the lines 004 through 007 form a round for the message-

blocks m1, m2, · · · and mk−1. For the last block, mk, the round is between the lines 008 and 014. For the Game(RO,
S, S−1), it is not specified how the random oracle RO(·) processes the individual message-blocks mj (1 ≤ j ≤ k)
internally. We assume that it processes the message-blocks sequentially and the time taken to process each block is
equal.
The sum of the numbers of message-blocks, s-queries and s−1-queries before the i+ 1st round is i.
Events GOODi and BADi. BADi denotes the event when the variable BAD is set during round i of G1. The event
BADi∗ occurs when Type0, Type2, Type3 or Type4 events occur in the i-th round. Let the symbol GOODi denote
the event ¬

∨i
j=1 BADi. The event GOODi− 1

2
is defined as GOODi−1 ∧ ¬BADi∗ . For brevity, GOOD(i+1)− 1

2
will be

denoted by GOODi+ 1
2
. The symbol GOOD0 denotes the event when no queries are submitted.

From a high level, the intuition behind the construction of the BADi event is straight-forward: we will show that
if BADi does not occur, and if GOODi−1 did occur, then the views of G1 and Game(RO,S,S−1) (after i rounds) are
identically distributed for any attacker A. Using the above fact the following theorem can be established.

Theorem 4.1 (Computational Paradigm) Let A be an indifferentiability adversary interacting with the games G1

and Game(RO,S,S−1). If A is limited by σ queries, then∣∣∣Pr
[
AG1 ⇒ 1

]
− Pr

[
ARO,S,S−1

⇒ 1
]∣∣∣ ≤ Pr

[
¬GOODσ− 1

2

]
≤

σ∑
i=1

Pr
[
BADi | GOODi−1

]
.

Proof. We postpone the proof until Section 4.3. 2

In the next few subsections, we concretely define the Type0, Type1, Type2, Type3 and Type4 events of the game G1

(see Figure 5).

4.1 Events Type0 and Type1: current π/π−1-query is fresh (total 6 cases)

4.1.1 Event Type0: Distance of random permutation from the uniform (3 cases)

Type0 event occurs when the output of a fresh π/π−1-query is distinguishable from the uniform distribution U [0, 22n−1].
A Type0 event can be of three types: event Type0-a occurs when a fresh π-query is an s-query; event Type0-b occurs
when a fresh π-query is the final π-query of an l-query; event Type0-c occurs when an s−1-query is a fresh π−1-query.

4.1.2 Event Type1: Collision on Tπ (3 cases)



Fresh

 y* y’

=
y

y’c

yc

Node-collision

(n bits)





Old


m



Fresh

 y* y’

=
y

y’c

yc


m

old



Old

=



Fresh

Forward-query-collision

(n bits)
Reverse-query-collision

(n bits)

Type1-a Type1-b Type1-c

y’’ y’’

Figure 6: Type1 events of game G1 defined inFigure 5. All arrows are n bits each. Red arrow denotes fresh n bits of
output from the ideal permutation π/π−1. The symbol “=” denotes n-bit equality.

Let (x, r) be a fresh pair of π-query and response generated at round i. Observe that such a fresh pair always
invokes the subroutine PartialGraph. Type1 events – that are due to π-query and its response – are shown in Figure 6.
We divide this type into two subcases. Suppose (ycy

′
c,m, yy

′) is a new edge generated from a new π-query/response
(x, r).
• Event Type1-a (Figure 6(Type1-a)): This event occurs if y collides with the least-significant n bits (or the left-
coordinate) of a node already in Tπ.

8

• Event Type1-b (Figure 6(Type1-b)): This event occurs if y collides with the least-significant n bits of a query
already in Dπ.

Type1 event, which is due to a fresh π−1-query and its response is denoted by Type1-c.
• Event Type1-c (Figure 6(Type1-c)): This event occurs, if the least-significant n bits of output of a π−1-query
matches with the left-coordinate of a node already in Ts.

4.2 Events Type2, 3 and 4: current π/π−1-query is old (total 16 cases)

Before we define this event, we first classify all the old query-response pairs for the oracles π/π−1 stored in Dπ, ac-
cording to its known and unknown parts. The known part of a query-response pair is the part that is present in the
view of the game G1, while the unknown part is not present in the view. We observe that there are seven types of such
a pair, and we denote them by Q0, Q1, Q2, Q3, Q4, Q5 and Q6 in Figure 7(a)(i) and (ii); the head and tail nodes in
each type denote the input and output, each of size 2n bits. Two-sided arrowhead indicates that the corresponding
input-output pair is generated from either a π-query or a π−1-query. The red and green circles denote the unknown
and the known parts of size n bits each. The queries of type Q0 are the old s/s−1-queries already present in the table
Dπ (i.e., the π/π−1-queries submitted to the simulators S1/S1−1); since this query-response is present in the view,
it has no red circles. The remaining six types are generated due to the intermediate π calls during the processing of
l-queries; these queries have at least one red circle. The Q5 type can be further divided into two subtypes Q5-1 and
Q5-2 according to its position in the graph Tπ (see Figure 9 of Appendix E.1): if all the query-response pairs preceding
the Q5 query are of type Q0 then it is Q5-1, otherwise it is type Q5-2.

4.2.1 Event Type2: current s-query is old (total 7 cases)

This event is presented in Fig. 7(a). A Type2 event occurs when one of the following conditions occurs. There are
three subcases Type2-1,-2 and-3 (see Fig. 7(a)(ii)).
Type2-1: If the current s-query is equal to an old query which is one of the types Q1, Q2, Q3 and Q4.
Type2-2: This event occurs in relation to an old query of type Q5. This case is divided into two subcases as described
in Figure 9 of Appendix E.1. (i) If the current s-query is equal to an old query of type Q5-1 and the most significant
n bits of output are distinguishable from the uniform distribution U [0, 2n − 1]. (ii) If the current s-query is equal to
an old query of type Q5-2.
Type2-3: If the current s-query is equal to an old query of type Q6 and the 2n bits output are distinguishable from
the uniform distribution U [0, 22n − 1].

4.2.2 Event Type3: current l-query forms a red branch (total 3 cases)

A red branch. Let M be the current l-query such that M
pad→ m1m2 · · ·mk was already present as a branch in Tπ,

but not in Ts (see Fig. 7(b)(i) to (iii)); such a branch is called a red branch since it has at least n bits of unknown part.
We divide a red branch into three types, according to the final π-query – denoted by yk−1y

′′
k−1 –in the computation

of JHπ(M). The three types of a red branch are below: (i) yk−1y
′′
k−1 is one of types Q1, Q2 and Q5; (ii) yk−1y

′′
k−1 is

one of types Q3, Q4 and Q6; (iii) yk−1y
′′
k−1 is of type Q0, and one of the intermediate query-response pairs on the red

branch is not of type Q0.
Event Type3-1/-2/-3. There are three types of a Type3 event: (Type3-1) If the current π-query is the final π-query
of a red branch of type (i).2 (Type3-2) If the current π-query is the final π-query of a red branch of type (ii), as well
as the most significant n bits of output being distinguishable from the uniform distribution U [0, 2n − 1]. (Type3-3) If
the current π-query is the final π-query of a red branch of type(iii).

4.2.3 Event Type4: current s−1-query is old (total 6 cases)

This event is shown in Figure 7(c). The Type4 event occurs, if the current s−1-query is equal to an old query of type
Q1, Q2, Q3, Q4, Q5, or Q6.

4.3 Proof of Theorem 4.1

With the help of the events described in Sections 4.1.2, 4.2.1, 4.2.2 and 4.2.3 we are equipped to prove Theorem 4.1.
Recall we need to show two things:∣∣∣Pr

[
AG1 ⇒ 1

]
− Pr

[
ARO,S,S−1

⇒ 1
]∣∣∣ ≤ Pr

[
¬GOODσ− 1

2

]
, (1)

2Observe that this case implies a node-collision in Tπ , since the yk−1y
′′
k−1 is the final π-query for two distinct l-queries, the current M

and also an old one. Therefore, if Type1 event did not occur in the previous rounds, this event is impossible in the current round.

9

Q4Q1 Q3 Q5Q2 Q6Q0

Current

Type2

~
U[0,2

2n
-1]

=
Current

(1) (3)(2)

(i) (ii)

(a) (i) and (ii): Q0, Q1, Q2, Q3, Q4, Q5 and Q6 denote seven types of π/π−1-query and
response; Type Q5 has further been divided into Q5-1 and Q5-2 in Figure 9 of Appendix E.1.
The corresponding Type2 events are also shown.

A
 p

a
th

 o
n

 T
π

 r
e

p
re

s
e

n
ti
n

g
 a

n
 l
-q

u
e

ry

(ii)

~
U[0,2

2n
-1]

(iii)

Q3/Q4/Q6

=

Q1/Q2/Q5

(i)

Q0

Q0

Q0

Q0

Q0

(iv)

Type3

A
 p

a
th

 o
n

 T
s
 r

e
p

re
s
e

n
ti
n

g
 a

n
 l
-q

u
e

ry

Q4Q3Q2Q1 Q5 Q6

yk-1y’’k-1
yk-1y’’k-1

yk-1y’’k-1

(b) Different types of a branch in the graph Tπ . (i), (ii) and (iii) are called red branches since
they exist in Tπ , but not in Ts; the corresponding Type3 events associated with red branches
are described in Sect. 4.2.2. (iv) A green branch is a branch in the graph Ts. The final input
to π is denoted by yk−1y

′′
k−1 in all cases.

Q4Q1 Q3 Q5Q2 Q6
Q0

Current

=

(c) Type4 events of game G1.

Figure 7: Pictorial description of Type2, Type3 and Type4 events of the game G1 (Figure 5). Green circle, or green
arrow denotes n bits of information present in the view of the game. Red circle or red arrow denotes n bits of information
not present in the view. Black arrow is not used to denote any information; it denotes the transition from input to
output. The symbol “=” and “==” denote events representing n-bit and 2n-bit equality respectively.

10

Pr
[
¬GOODσ− 1

2

]
≤

σ∑
i=1

Pr
[
BADi | GOODi−1

]
. (2)

The proof of (2) is straight-forward. To prove (1), we proceed in the following way. Observe∣∣∣Pr
[
AG1 ⇒ 1

]
− Pr

[
ARO,S,S−1

⇒ 1
]∣∣∣

=
∣∣∣(Pr

[
AG1 ⇒ 1 | GOODσ− 1

2

]
− Pr

[
ARO,S,S−1

⇒ 1 | GOODσ− 1
2

])
· Pr
[
GOODσ− 1

2

]
+
(

Pr
[
AG1 ⇒ 1 | ¬GOODσ− 1

2

]
− Pr

[
ARO,S,S−1

⇒ 1 | ¬GOODσ− 1
2

])
· Pr
[
¬GOODσ− 1

2

]∣∣∣. (3)

If we can show that

Pr
[
AG1 ⇒ 1 | GOODσ− 1

2

]
= Pr

[
ARO,S,S−1

⇒ 1 | GOODσ− 1
2

]
, (4)

then (3) reduces to (1), since
∣∣∣Pr
[
AG1 ⇒ 1 | ¬GOODσ− 1

2

]
− Pr

[
ARO,S,S−1 ⇒ 1 | ¬GOODσ− 1

2

]∣∣∣ ≤ 1. As a result, we

focus on establishing (4).
Let V i1 and V i2 denote the views of the games G1 and Game(RO,S,S−1) respectively, after i queries have been

processed. To prove (4), it suffices to show that given GOODσ− 1
2
, the views V σ1 and V σ2 are identically distributed.

We do this by induction on the number of queries i = σ. When i = 0, then no query has been made; therefore the
views are identical. We now assume the induction hypothesis holds, where the hypothesis is given GOODi− 1

2
, then V i1

and V i2 are identically distributed. We have to show that if GOODi+ 1
2

occurred, then V i+1
1 and V i+1

2 are identically
distributed. We do so by examining all possible cases based on a set of conditions for the game G1. As the details are
quite technical, we move the 17 cases to the Appendix D. The main idea is that if no bad events have occurred, then
the graphs Ts are isomorphic, as indicated in the following lemma. From the isomorphism, the identical distribution
of the views is an easy consequence. The proof of the lemma is given in Appendix D.1.

Lemma 4.2 (Graph Isomorphism Lemma) Given GOODi and V i1 = V i2 , the graphs Ts for the games G1 and
Game(RO,S,S−1) are isomorphic after i rounds.

5 Estimation of
∣∣∣Pr[AG1 ⇒ 1

]
− Pr

[
ARO,S,S−1 ⇒ 1

]∣∣∣
We individually compute the probabilities of each of the events described in Sections 4.1 and 4.2. We need the help of
the following lemma to provide a rigorous analysis for the upper-bounds we compute in this section.

Lemma 5.1 (Correction Factor) Let ε be a negligible function in the security parameter n > 0. If the advantage
of an indifferentiable adversary A for the games G1 and Game(RO,S), limited by σ queries, is bounded by ε, then

Pr
[
GOODi

]
≥ 1

C

for some constant C > 0, for all 0 ≤ i ≤ σ.

Proof. Since ε < 1 for all n > 0, Pr
[
A sets BAD in G1

]
≤ ε ≤ 1 − 1

C for some constant C > 0. Noting that

Pr
[
GOODi

]
is a decreasing function in i, the result follows. 2

The Type1-a event guarantees that if Tπ is GOODi−1, then it has O(i) nodes. Assuming i ≤ 2n/2, from Figure 6
we obtain,

Pr
[
Type1i | GOODi−1

]
≤ 3i/(2n − i),

= O
(i

2n

)
, (5)

since for i ≤ 2n/2, then (2n − i) ≥ 1
22n.

Using the definition of Type2, Type3, Type4, and Type0 events in Section 4, it is straightforward to deduce:

Pr
[
Type2i | GOODi−1

]
= O

(i

2n

)
,

11

Pr
[
Type3i | GOODi−1

]
= O

(1

2n

)
,

Pr
[
Type4i | GOODi−1

]
= O

(i

2n

)
,

and for i ≤ 2n/2

Pr
[
Type0i | GOODi−1

]
≤ 1/(22n − i) = O

(1

22n

)
.

Note that the constant C from Lemma 5.1 is absorbed by the O notation.
We conclude by combining the above bounds into the following inequality which holds for 1 ≤ i ≤ σ:

Pr
[
BADi | GOODi−1

]
≤ Pr

[
Type0i | GOODi−1

]
+ Pr

[
Type1i | GOODi−1

]
+ Pr

[
Type2i | GOODi−1

]
+ Pr

[
Type3i | GOODi−1

]
+ Pr

[
Type4i | GOODi−1

]
= O

(i

2n

)
. (6)

Therefore, by Theorem 4.1, for all A,∣∣∣Pr
[
AG1 ⇒ 1

]
− Pr

[
AGame(RO, S, S−1) ⇒ 1

]∣∣∣ ≤ σ∑
i=1

Pr
[
BADi | GOODi−1

]
≤

σ∑
i=1

O
(i

2n

)
= O

(σ2

2n

)
. (7)

Using (7) and that the advantage ε is less than 1, we see that the adversary must use at least 2n/2 queries to distinguish
between the games G1 and Game(RO, S, S−1) (or between the games Game(JH, π, π−1) and Game(RO, S, S−1), since
G1 ≡ Game(JH, π, π−1) by Proposition 3.1). This yields the indifferentiability bound of n/2 bits for the JH mode.

6 Experimental Results

We performed a series of experiments verifying our theoretical framework. Our simple C implementation of the game
G1 simulated the ideal permutation, π, with randomness supplied by cstdlib>rand(), by maintaining a database of
input/output pairs, assuring that π is a permutation. The experiments were performed allowing varying proportions
of reverse queries to determine the optimal adversarial strategy.

For each of these experiments, we collected data providing accurate estimates for the values of the probabilities of
Type1 events, Pr

[
Type1i | GOODi−1

]
, described in Section 4. Our experiments included as a parameter the proportion

of reverse queries, R, allowed in the hopes that if an optimal adversarial strategy including reverse queries uses a positive
proportion of reverse queries that we may discover a spike in performance near this proportion. Compiling these data
we conclude that, as one would expect, when the proportion, R, approaches zero, the Type1-a event becomes dominant;
whereas, when R approaches 1, the Type1-c event dominates.

In addition to these event probabilities, we calculated security bounds for several values of n and R. The compu-
tation was achieved by randomly generating a large number of graphs, Ts, and determining the number of queries, σ,
required to cause

∑σ
i=1 Pr

[
Type1i | GOODi−1

]
≥ 0.5.

We did not consider the Type0, Type2, Type3, and Type4 events, since, their probabilities are dominated by that
of the Type1 events, for any efficient adversary. We found that choosing the values at which to place the 1st query
uniformly at random from among all possible nodes was the most advantageous strategy for an adversary.

The results of the experiments following this method are summarized in Figure 10 of Appendix E.2. The data
support the theoretically obtained bound of σ = Ω(2n/2) (see (7)). Some of the values in the graph are slightly lower
than 1/2, due to the effect of constants. We expect the data to asymptotically approach 1/2.

The data indicate that the optimal adversarial strategy for game G1 does not include the use of reverse queries.
For each fixed R < 1, however, we observe that the data asymptotically approach 1/2. Although it is the case that
for R = 1, σ has an expected value of 2n−1, the data support out result that, for our definition of Type1 bad events
and any fixed value of R < 1, σ = Θ(2n/2).

12

7 Conclusion and Open Problems

JH hash function is one of the finalist algorithms in the NIST SHA-3 hash function competition. In this paper we
improve the indifferentiability security bound of the JH hash mode of operation from n/3 bits to n/2 bits, when it is
used with a 2n-bit permutation; this bound is optimal for JH-256, and the best, so far, for JH-512. Our experimental
results strongly indicate that the bound could be further improved, and it is likely to be close to n bits.

Our work leaves room for more research into the JH mode. It is somewhat remarkable that despite the absence of
generic attacks with work-factor significantly lower than n bits, the proven 1st/2nd pre-image and indifferentiability
bounds for the JH mode are only up to n/2 bits. In future work we plan to use the proof technique from this paper
to narrow the exponential gap between the upper and lower bounds of JH’s indifferentiability security. Also, the
complexity for the simulator could be improved.

Acknowledgment

We would like to thank Donghoon Chang, Lily Chen, Yi-Kai Liu, Mridul Nandi, Tom Shrimpton, Meltem Sönmez
Turan, and the Keccak team for their suggestions and remarks which helped a lot to improve the quality of the
paper.

References

[1] Elena Andreeva, Charles Bouillaguet, Pierre-Alain Fouque, Jonathan J. Hoch, John Kelsey, Adi Shamir, and Sébastien
Zimmer. Second preimage attacks on dithered hash functions. In Nigel P. Smart, editor, EUROCRYPT, volume 4965 of
Lecture Notes in Computer Science, pages 270–288. Springer, 2008. (Cited on page 1.)

[2] Elena Andreeva, Atul Luykx, and Bart Mennink. Provable Security of BLAKE with Non-Ideal Compression Function. 3rd
SHA-3 Candidate Conference, 2012. (Cited on page 1.)

[3] Elena Andreeva, Bart Mennink, and Bart Preneel. On the Indifferentiability of the Grøstl Hash Function. In Juan A.
Garay and Roberto De Prisco, editors, SCN, volume 6280 of Lecture Notes in Computer Science, pages 88–105. Springer,
2010. (Cited on page 4.)

[4] Elena Andreeva, Bart Mennink, and Bart Preneel. Security Reductions of the Second Round SHA-3 Candidates. In Mike
Burmester, Gene Tsudik, Spyros S. Magliveras, and Ivana Ilic, editors, ISC, volume 6531 of Lecture Notes in Computer
Science, pages 39–53. Springer, 2010. (Cited on page 2.)

[5] Elena Andreeva, Bart Mennink, Bart Preneel, and Marjan S̆krbot. Security Analysis and Comparison of the SHA-3 Finalists
BLAKE, Grøstl, JH, Keccak, and Skein. 3rd SHA-3 Candidate Conference, 2012. (Cited on page 2.)

[6] Mihir Bellare and Thomas Ristenpart. Multi-Property-Preserving Hash Domain Extension and the EMD Transform. In
Xuejia Lai and Kefei Chen, editors, ASIACRYPT 2006, volume 4284 of Lecture Notes in Computer Science, pages 299–314.
Springer, 2006. (Cited on page 4.)

[7] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge Functions. ECRYPT 2007, 2007. http:

//sponge.noekeon.org/SpongeFunctions.pdf. (Cited on page 1.)

[8] Rishiraj Bhattacharyya, Avradip Mandal, and Mridul Nandi. Security Analysis of the Mode of JH Hash Function. In
Seokhie Hong and Tetsu Iwata, editors, FSE, volume 6147 of Lecture Notes in Computer Science, pages 168–191. Springer,
2010. (Cited on pages 1 and 2.)

[9] Donghoon Chang, Mridul Nandi, and Moti Yung. Indifferentiability of the Hash Algorithm BLAKE. Cryptology ePrint
Archive, Report 2011/623, 2011. http://eprint.iacr.org/. (Cited on page 1.)

[10] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya. Merkle-Damg̊ard Revisited: How to
Construct a Hash Function. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science,
pages 430–448. Springer, 2005. (Cited on pages 1 and 3.)

[11] Ewan Fleischmann, Michael Gorski, and Stefan Lucks. Some Observations on Indifferentiability. In Ron Steinfeld and
Philip Hawkes, editors, ACISP, volume 6168 of Lecture Notes in Computer Science, pages 117–134. Springer, 2010. (Cited
on page 2.)

[12] Jonathan J. Hoch and Adi Shamir. Breaking the ICE - Finding Multicollisions in Iterated Concatenated and Expanded
(ICE) Hash Functions. In Matthew J. B. Robshaw, editor, FSE, volume 4047 of Lecture Notes in Computer Science, pages
179–194. Springer, 2006. (Cited on page 1.)

[13] Antoine Joux. Multicollisions in Iterated Hash Functions: Application to Cascaded Constructions. In Matthew K. Franklin,
editor, CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science, pages 306–316. Springer, 2004. (Cited on
page 1.)

[14] John Kelsey and Tadayoshi Kohno. Herding Hash Functions and the Nostradamus Attack. In Serge Vaudenay, editor,
EUROCRYPT, volume 4004 of Lecture Notes in Computer Science, pages 183–200. Springer, 2006. (Cited on page 1.)

13

http://sponge.noekeon.org/SpongeFunctions.pdf
http://sponge.noekeon.org/SpongeFunctions.pdf
http://eprint.iacr.org/

[15] John Kelsey and Bruce Schneier. Second Preimages on n-Bit Hash Functions for Much Less than 2n Work. In Ronald
Cramer, editor, EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages 474–490. Springer, 2005.
(Cited on page 1.)

[16] Jooyoung Lee and Deukjo Hong. Collision resistance of the jh hash function. Cryptology ePrint Archive, Report 2011/019,
2011. http://eprint.iacr.org/. (Cited on page 2.)

[17] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, impossibility results on reductions, and
applications to the random oracle methodology. In Moni Naor, editor, TCC, volume 2951 of Lecture Notes in Computer
Science, pages 21–39. Springer, 2004. (Cited on pages 1 and 3.)

[18] Mridul Nandi and Douglas R. Stinson. Multicollision Attacks on Some Generalized Sequential Hash Functions. IEEE
Transactions on Information Theory, 53(2):759–767, 2007. (Cited on page 1.)

[19] Thomas Ristenpart, Hovav Shacham, and Thomas Shrimpton. Careful with Composition: Limitations of the Indifferen-
tiability Framework. In Kenneth G. Paterson, editor, EUROCRYPT, volume 6632 of Lecture Notes in Computer Science,
pages 487–506. Springer, 2011. (Cited on page 2.)

[20] Hongjun Wu. The JH Hash Function. The 1st SHA-3 Candidate Conference. (Cited on pages 2 and 3.)

A Definitions

Definition A.1 (Random oracle) A random oracle is a function RO : X → Y chosen uniformly at random from the set of
all |Y ||X| functions that map X → Y . In other words, a function RO : X → Y is a random oracle if and only if, for each x ∈ X,
the value of RO(x) is chosen uniformly at random from Y .

B Equivalence of Games

Definition B.1 (Equivalence of games) Denote the views of the games G1 and G2 after i queries by V i1 and V i2 , when they
are interacting with the adversary A. The games G1 and G2 are said to be equivalent with respect to the adversary A if and only

if V i1 ∼ V i2 for all i > 0. Equivalence between the games G1 and G2 with respect to the adversary A is denoted by G1
A≡ G2, or

simply G1 ≡ G2, when the adversary is clear from the context.

C Time Complexity of the Simulator S

Since there are i queries after i rounds, the maximum number of nodes in Ts is i2. Therefore, to construct Ts at the i-th round,
the amount of time required is O(i4). Now, if the adversary submits σ queries, then the time complexity is O(σ5). Since the
time to construct Ts dominates over others, the simulator time complexity is also O(σ5).

D Proof of the Induction Step

We need to show that given GOODσ− 1
2
, the views V σ1 and V σ2 are identically distributed. We do this by induction on the number

of queries i = σ. When i = 0, then no query has been made; therefore the views are identical. We now assume the induction
hypothesis holds, where the hypothesis is given GOODi− 1

2
, then V i1 and V i2 are identically distributed. We have to show that if

GOODi+ 1
2

occurred, then V i+1
1 and V i+1

2 are identically distributed. Let (Ii+1
1 , Oi+1

1) and (Ii+1
2 , Oi+1

2) denote the input-output

pairs for the games G1 and Game(RO, S,S−1) respectively in the i+ 1st round.
Notice that if V i1 = V i2 , then the input views Ii+1

1 and Ii+1
2 are identically distributed. We also have Lemma 4.2 which shows

that the graphs Ts in two games are isomorphic.
A little reflection shows that proving the induction step is now equivalent to showing that if Ii+1

1 = Ii+1
2 then the output-views

Oi+1
1 and Oi+1

2 are identically distributed. Let Ii+1 denote the shared query input Ii+1
1 = Ii+1

2 .
We continue by considering all possible cases based on a set of conditions for the game G1 in the i + 1st round; cases 1

through 9 consider when Ii+1 is an s-query, cases 10 and 11 consider Ii+1 to be an s−1-query, while cases 12 through 17 consider
when Ii+1 is part of an l-query. Our decision tree produced the above 17 cases, which have been derived from a sequence of
questions (see Figure 8). The reader is invited to verify that all cases are considered.
Case 1: s-query, |M| = 0, and Fresh:
Implication. The condition implies that Oi+1

1 follows the uniform distribution U [0, 22n− 1] (Fig. 5), since a Type0 event did not
occur in the i+ 1st round. Since the graphs Ts are isomorphic in both games G1 and Game(RO,S, S−1) by Lemma 4.2, |M| = 0
for Game(RO, S, S−1) (Fig. 3(b)). This implies that Oi+1

2 follows the uniform distribution U [0, 22n − 1] (Fig. 3(b)).

Case 2: s-query, |M| = 0, not Fresh, and type Q6:
Implication. The event GOODi+ 1

2
implies that Type2 event did not occur for G1 in the current i+ 1th round; therefore, since

|M| = 0, Oi+1
1 follows the uniform distribution U [0, 22n − 1]. As the graphs Ts of the games G1 and Game(RO, S, S−1) are iso-

morphic by Lemma 4.2, |M| = 0 for Game(RO, S,S−1). This implies that Oi+1
2 = r follows the uniform distribution U [0, 22n−1].

14

http://eprint.iacr.org/

Case 3: s-query, |M| = 0, not Fresh, and type Q5-1:
Implication. This case is impossible since |M| = 0 and Ii+1 being of type Q5-1 contradict each other.

Case 4: s-query, |M| = 0, not Fresh, and type Q1, Q2, Q3, Q4, or Q5-2:
Implication. This case is impossible since GOODi+ 1

2
implies that Type2 event did not occur for G1 in the current i+ 1st round.

The given conditions create a Type2 event.

Case 5: s-query, |M| > 1:
Implication. If |M| > 1 then we would have a node-collision in Ts. However, this is impossible since GOODi+ 1

2
ensures that a

Type1 event did not occur for G1 in the previous i rounds, and a node-collision in Ts is a Type1 event.

Case 6: s-query, |M| = 1, and Fresh:
Implication. Since Ii+1 is fresh, Oi+1

1 follows the uniform distribution U [0, 22n − 1], since a Type0 event did not occur in the
i + 1st round. Now, for G1, M ∈ M implies that M /∈ Dom(Dl) in the first i rounds, since the current s-query Ii+1 is fresh.
Also note that, because V 1

i = V 2
i and the Ts’s are isomorphic, we have that the Dl’s in both games are identical. Therefore, for

Game(RO, S, S−1), M /∈ Dom(Dl) in the first i rounds. This implies that Oi+1
2 follows the uniform distribution U [0, 22n − 1].

Case 7: s-query, |M| = 1, not Fresh, and type Q6:
Implication. The event GOODi+ 1

2
implies that a Type2 event did not occur in the i+ 1st round of G1; therefore, Oi+1

1 follows

the uniform distribution U [0, 22n−1]. In G1, M ∈M implies that M /∈ Dom(Dl) in the first i rounds, since the current s-query
Ii+1 is either of type Q3 or Q4, while the final π-query of any l-query cannot be of type Q3 or Q4. As in the previous case,
V 1
i = V 2

i and the isomorphic Ts’s together imply that the Dl in both games are identical. Therefore, for Game(RO,S, S−1),
M /∈ Dom(Dl) in the first i rounds. This implies that Oi+1

2 follows the uniform distribution U [0, 22n − 1].

Case 8: s-query, |M| = 1, not Fresh, and type Q5-1:
Implication. The event GOODi+ 1

2
implies that Type2 event did not occur in the i+ 1st round of G1; therefore, Oi+1

1 [n, 2n− 1]

follows the uniform distribution U [0, 2n−1], and Oi+1
1 [0, n−1] is a fixed value. Now, for G1, M ∈M implies that M ∈ Dom(Dl)

after the first i rounds, since the current s-query Ii+1 is of type Q5-1; also note that Oi+1
1 [0, n− 1] = Dl[M]⊕ z, where z is final

block of M after padding. As in the previous case, V 1
i = V 2

i and the isomorphism of Ts’s together imply that Dl are identical
in both games. Therefore, Oi+1

2 [0, n− 1] = Dl[M]⊕ z (line 103 of Fig. 3(b)); also note that Oi+1
2 [n, 2n− 1] follows the uniform

distribution U [0, 2n − 1]. In conclusion, Oi+1
1 and Oi+1

2 are identically distributed.

Case 9: s-query, |M| = 0, not Fresh, and type Q1, Q2, Q3, Q4, or Q5-2:
Implication. This case is impossible since event Type2 did not occur in the current i + 1st round, and, therefore, Ii+1 cannot
be of type Q1, Q2, Q3, Q4 or Q5-2.

Case 10: s−1-query and Fresh:
Implication. The condition implies that Oi+1

1 follows the uniform distribution U [0, 22n − 1], since a Type0 event did not occur
in the current i+ 1st round. Because V i1 = V i+1

2 , we have that the s−1-query is also a fresh query for Game(RO,S, S−1). Also
note that the tables Ds of both games are an identical permutation.Therefore, Oi+1

2 follows the uniform distribution U [0, 22n−1].

Case 11: s−1-query and not Fresh:
Implication. A Type4 event and the above condition contradict each other.

Case 12: l-query and not Final Block:
Implication. If V 1

i+1 = V 2
i+1 then Oi+1

1 = Oi+1
2 = λ, where λ is the empty string.

Case 13: l-query, Final Block, l-query not in Tπ:
Implication. Let M be the l-query in question. Since the event GOODi+ 1

2
implies that a Type1 event did not occur in the

previous i rounds of G1, there are no node-collisions in the graph Tπ. Therefore, the final π-query is fresh, and so Oi+1
1 follows

the uniform distribution U [0, 2n − 1], since a Type0 event did not occur in the i+ 1st round. Now notice, the tables Dl in both
games were identical when the l-query M was submitted; therefore, at that time of submission, M /∈ Dom(Dl) for both games.
This ensures that Oi+1

2 = RO(M) follows the uniform distribution U [0, 2n − 1].

Case 14: l-query, Final Block, l-query in Tπ, l-query in Ts:
Implication. The graphs Ts in both games are isomorphic by Lemma 4.2. It follows that Oi+1

1 = Oi+1
2 .

Cases 15, 16 and 17: l-query, Final Block, l-query in Tπ, l-query not in Ts:
Ii+1 is the final message-block of the current l-query (denoted by M) which forms a red branch (three types of a red branch are
defined in Section 4.2.2). Let the final π-query while processing the l-query M be denoted by yk−1y

′′
k−1.

Case 15: Final π-query is type Q1, Q2, or Q5:
Implication. The above condition implies the occurrence of Type3-1 event in the i+ 1st round; therefore, we arrive at a contra-

15

diction.

Case 16: Final π-query is type Q3, Q4, or Q6:
Implication. Since a Type3-2 event did not occur in the i+ 1st round, Oi+1

1 follows the uniform distribution U [0, 2n − 1]. Also
observe, for G1, the l-query M did not belong to Dom(Dl) (when M was submitted), since the final π-query of any l-query cannot
be of type Q3, Q4 or Q6. As the tables Dl of both games are identical, then for Game(RO, S,S−1) we have that M /∈ Dom(Dl)
(when M was submitted). Therefore, Oi+1

2 = RO(M), which follows the uniform distribution U [0, 2n − 1].

Case 17: Final π-query is type Q0 and an intermediate query is type Q1, Q2, Q3, Q4, Q5, or Q6:
Implication. This case is impossible since Type3-3 in the i+ 1st round did not occur.

In summary, for each of the 17 cases above we have shown that the outputs Oi+1
1 and Oi+1

2 are identically distributed if the
variable BAD is not set. This completes the proof of the induction step of Theorem 4.1.

D.1 Proof of Graph Isomorphism Lemma

Proof. For each fresh π/π−1-query, the graph Tπ for game G1 is augmented in one phase (see the subroutine PartialGraph
of Figure 5). In that phase, all possible nodes generated from a fresh π-query are added to the graph Tπ. A straightforward
analysis of the Type1-a, b and c events shows that if these events do not occur then no nodes can be added beyond this phase.
In other words, if Type1-a , b and c events do not occur in i rounds then the graph Tπ contains all possible paths generated
from all elements stored in the table Dπ in i rounds with root (IV, IV ′). Note that the graph Ts is the maximally connected
subgraph of Tπ rooted at (IV, IV ′), generated only by the s-queries and responses stored in Ds. Also recall that, due to absence
of a Type-c event, no s−1 query can be added to the graph Tπ. This implies that the graph Ts of the game G1 contains all
paths generated from all s/s−1-queries and responses with root (IV, IV ′).
We note that the graph Ts for Game(RO, S, S−1) also contains all paths generated from all s/s−1-queries and responses with
root (IV, IV ′). Since V i1 = V i2 , the graphs Ts for G1 and Game(RO,S, S−1) are isomorphic after i rounds. 2

E Graphics

E.1 Two subcases of Type2-2

E.2 Experimental Data

16

Q
ue

ry
-t

yp
e?

|M
|=

?
0

1

Im
po

ss
ib

le

(N
ot

 T
yp

e1
)

>1

s-
qu

er
y

l-q
ue

ry

F
in

al
 m

es
sa

ge
-

bl
oc

k?

E
m

pt
y

O
ut

pu
ts

(V
1=

V
2)

no
ye

s l-q
ue

ry
 is

 in

T
π

?

ye
s

no

l-q
ue

ry
 is

 in

T
s?

R
an

do
m

O
ut

pu
ts

(N
ot

T
yp

e0
,N

ot

T
yp

e1
; E

qu
al

D
l’s

)

ye
s

no

Id
en

tic
al

O
ut

pu
ts

(I
so

m
or

ph
is

m

of
 T

s’
s)

R
an

do
m

O
ut

pu
ts

(N
ot

 T
yp

e0
,

Is
om

or
ph

is
m

of
 T

s’
s,

 E
qu

al

D
l’s

,)

1.
 E

qu
al

 In
pu

ts

2.
 Is

om
or

ph
is

m
 o

f

T
s’

s

(N
ot

 T
yp

e1
, V

1=
V

2)

F
re

sh
?

Id
en

tic
al

ly

D
is

tr
ib

ut
ed

O
ut

pu
ts

(N
ot

T
yp

e2
;Is

om
or

p

hi
sm

 o
f

T
s’

s,
E

qu
al

D
l’s

)

ye
s

no

Q
ue

ry
 ty

pe
?

R
an

do
m

O
ut

pu
ts

(N
ot

 T
yp

e2
;

Is
om

or
ph

is
m

of
 T

s’
s,

 E
qu

al

D
l’s

)

Q
5-

1
Q

6

Im
po

ss
ib

le

(N
ot

 T
yp

e2
)

R
an

do
m

 O
ut

pu
ts

(N
ot

T
yp

e0
,Is

om
or

ph
is

m

of
 T

s’
s,

|M
|=

0)

F
re

sh
?

Im
po

ss
ib

le

(|
M

|=
0)

ye
s

no

Q
ue

ry
 ty

pe
?

R
an

do
m

O
ut

pu
ts

(N
ot

 T
yp

e2
;

Is
om

or
ph

is
m

of
 T

s’
s,

|M
|=

0)

Q
5-

1
Q

6

Q
1,

Q
2,

Q
3,

 Q
4,

Q
5-

2

Im
po

ss
ib

le

(N
ot

 T
yp

e2
)

W
hi

ch
 ty

pe
 o

f r
ed

br
an

ch
?

i

ii
iii

Im
po

ss
ib

le

(N
ot

 T
yp

e3
)

R
an

do
m

 O
ut

pu
ts

(N
ot

 T
yp

e3
;

E
qu

al
 D

l’s
)

Im
po

ss
ib

le

(N
ot

 T
yp

e3
)

1

2

3

45

6

7
8

9

12

13

14

15
16

17

s-1
-q

ue
ry

F
re

sh
?

ye
s

no

Im
po

ss
ib

le

(N
ot

T
yp

e4
)

R
an

do
m

O
ut

pu
ts

(N
ot

T
yp

e0
,V

1=
V

2)

Q
1,

Q
2,

Q
3,

 Q
4,

Q
5-

2

10
11

Figure 8: The decision tree for the proof of the induction step of Theorem 4.1. The conditions for the game G1 are
shown inside the diamonds of the decision tree. The text in each leaf-node shows the implications of the conditions to
the outputs of games G1 and Game(RO,S,S−1), while the reasons for such implications are described in brief inside
the bracket.

17

IVIV’

Q1 Q5Q3Q2

Q0

Q0

Q5-1 Q5-2

Q0

Q0

A
 p

at
h

on
 T
π

 r
ep

re
se

nt
in

g
an

 l-
qu

er
y

IVIV’

Q0

Current

 ==

Current

 ==

=

x x

r r

U[0,2
n
-1]

~/

Q4 Q6

Figure 9: A query of type Q5-1 and Q5-2; the corresponding Type2-2 events are also shown.

Figure 10: Plot of experimental data of value of n versus the normalized logarithm of σ, log2(σ)/n, for the game G1

with various values of r, the proportion of reverse queries allowed.

18

	Introduction
	Indifferentiability Framework for JH
	Description of the JH Mode
	Introduction to the Indifferentiability Framework
	JH Indifferentiability

	Description of the Security Games for JH
	Definition of the events: BADi, GOODi and a few more
	Events Type0 and Type1: current /-1-query is fresh (total 6 cases)
	Event Type0: Distance of random permutation from the uniform (3 cases)
	Event Type1: Collision on T (3 cases)

	Events Type2, 3 and 4: current /-1-query is old (total 16 cases)
	Event Type2: current s-query is old (total 7 cases)
	Event Type3: current l-query forms a red branch (total 3 cases)
	Event Type4: current s-1-query is old (total 6 cases)

	Proof of Theorem 4.1

	Estimation of "026A30C to1.5.Pr[to.AG11]to.-Pr[to.ARO,S,S-11]to."026A30C to1.5.
	Experimental Results
	Conclusion and Open Problems
	Definitions
	Equivalence of Games
	Time Complexity of the Simulator S
	Proof of the Induction Step
	Proof of Graph Isomorphism Lemma

	Graphics
	Two subcases of Type2-2
	Experimental Data

