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A Class of Five-weight Cyclic Codes and Their Weight

Distribution∗
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Abstract

In this paper, a family of five-weight reducible cyclic codes is presented. Further-

more, the weight distribution of these cyclic codes is determined, which follows from

the determination of value distributions of certain exponential sums.
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1 INTRODUCTION

Recall that an [n, l, d] linear code C over Fq is a linear subspace of Fn
q with dimension l

and minimum Hamming distance d, where q is a prime power. Let Ai denote the number

of codewords in C with Hamming weight i. The sequence (A0, A1, A2, . . . , An) is called

the weight distribution of the code C. And C is called cyclic if for any (c0, c1, . . . , cn−1) ∈
C, also (cn−1, c0, . . . , cn−2) ∈ C. A linear code C in Fn

q is cyclic if and only if C is an ideal

of the polynomial residue class ring Fq[x]/(x
n − 1). Since Fq[x]/(x

n − 1) is a principal

ideal ring, every cyclic code corresponds to a principal ideal (g(x)) of the multiples of

a polynomial g(x) which is the monic polynomial of lowest degree in the ideal. This

polynomial g(x) is called the generator polynomial, and h(x) = (xn − 1)/g(x) is called

the parity-check polynomial of the code C. We also recall that a cyclic code over Fq

is called irreducible if its parity-check polynomial is irreducible over Fq and reducible,

otherwise. Determining the weight distribution of a cyclic code is an important research

object in coding theory. Information on the weight distribution of binary cyclic codes

can be found in [8–10, 17]. For information on the weight distribution of non-binary

cyclic codes, the reader is referred to [1–7,12–16,18–20]. In this paper, we will determine

the weight distribution of a class of five-weight reducible non-binary cyclic codes.

Throughout this paper, let m and k be any two positive integers such that s =

m/d ≥ 5 is odd, where d = gcd(m, k). Let p be an odd prime, q = pm and q0 = pd.

Then we have q = qs0. Let t be a divisor of d such that d/t is odd, and m0 = m/t.
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Let π be a primitive element of the finite field Fq. Let h0(x), h1(x) and h2(x) be the

minimal polynomials of π−2, π−(pk+1) and π−(p2k+1) over Fpt , respectively. The cyclic

codes over Fpt with parity-check polynomial h0(x)h1(x) has been extensively studied

by [13]. Let C be the cyclic code with parity-check polynomial h0(x)h1(x)h2(x). In the

case of t = 1, the weight distribution of C can be obtained by the results of [19, 20].

The objective of this paper is to consider the problem for any positive t such that d/t

is odd. For t ≥ 2 and even k, the case of 2 ∤ m
(m,k) but 2 | m

(m,k/2) exists, which was not

considered neither in [19] nor in [20]. Moreover, the weight distribution of this class of

cyclic codes in this special case can not be obtained with the same arguments as in [19]

and [20] in a straightforward generalization. In this paper, we always assume d/t is odd

and will show that C has five nonzero weights and determine the weight distribution of

this class of cyclic codes.

The rest of this paper is organized as follows. Some preliminaries will be introduced

in Section 2. A family of cyclic codes and their weight distributions will be given in

Section 3.

2 PRELIMINARIES

We follow the notation in Section 1. In this section, we first give a brief introduction

to the theory of quadratic forms over finite fields.

For any quadratic form F over Fq0 , there exists a symmetric matrix A of order s such

that F (X) = XAXT , where X = (x1, x2, . . . , xs) ∈ Fs
q0 and XT denotes the transpose

of X . Then there exists a non-singular matrix M of order s over Fq0 such that MAMT

is a diagonal matrix (see [11]). Under the non-singular linear substitution X = ZM

with Z = (z1, z2, . . . , zs) ∈ Fs
q0 , then F (X) = ZMAMTZT =

∑r
i=1 diz

2
i , where r is the

rank of F (X) and di ∈ F∗

q0 . Let △ = d1d2 · · · dr (we assume △ = 0 when r = 0). Let η0

be the quadratic multiplicative character of Fq0 . Then η0(△) is an invariant of A under

the action of M ∈ GLs(Fq0).

Lemma 2.1 ( [19]) Let F (X) be a quadratic form in s variables of rank r over Fq0 ,

then

∑

X∈Fs
q0

ζ
Trq0p (F (X))
p =




η0(△)(−1)(d−1)rq

s− r
2

0 , p ≡ 1 mod 4,

η0(△)(
√
−1)dr(−1)(d−1)rq

s− r
2

0 , p ≡ 3 mod 4.

where ζp is a primitive p-th root of unity.

For any fixed (a, b, c) ∈ F3
q, let Qa,b,c(x) = Trqq0(ax

2 + bxpk+1 + cxp2k+1), we have the

following result.

Lemma 2.2 For any (a, b, c) ∈ F3
q\{(0, 0, 0)}, Qa,b,c(x) is a quadratic form over Fq0

with rank at least s− 4.

Proof. The proof is similar to the proof of Lemma 2 in [13], so we omit the details.
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3 A CLASS OF FIVE-WEIGHT CYCLIC CODES AND THEIR WEIGHT

DISTRIBUTION

We follow the notation and conditions fixed in Section 1 and 2. It is easy to check that

h0(x), h1(x) and h2(x) are polynomials of degree m0 and are pairwise distinct when

s ≥ 5. Let C be the cyclic code with parity-check polynomial h0(x)h1(x)h2(x). Then C
has length q − 1 and dimension 3m0. Moreover, it can be expressed as

C = {c(a,b,c) : a, b, c ∈ Fq},

where c(a,b,c) =
(
Trqpt(aπ2i + bπ(pk+1)i + cπ(p2k+1)i)

)q−2

i=0
. The weight of the codeword

c(a,b,c) = (c0, c1, . . . , cq−2) can be expressed by exponential sums in the following way.

W (c(a,b,c)) = #{0 ≤ i ≤ pm − 2 : ci 6= 0}

= q − 1− 1

pt

q−2∑

i=0

∑

y∈Fpt

ζ
Trp

t

p (yci)
p

= q − 1− 1

pt

q−2∑

i=0

∑

y∈Fpt

ζ
Trp

t

p (y·Trq
pt

(aπ2i+bπ(pk+1)i+cπ(p2k+1)i))

p

= q − 1− 1

pt

∑

x∈F∗

q

∑

y∈Fpt

ζ
Trp

t

p (y·Trq
pt

(ax2+bxpk+1+cxp2k+1))

p

= pm−t(pt − 1)− 1

pt

∑

y∈F
∗

pt

∑

x∈Fq

ζ
Trp

t

p (y·Trq
pt

(ax2+bxpk+1+cxp2k+1))

p

= pm−t(pt − 1)− 1

pt
(
∑

y∈SQ

∑

x∈Fq

ζTr(a(xy
1
2 )2+b(xy

1
2 )p

k+1+c(xy
1
2 )p

2k+1)
p

+
∑

y∈SQ

∑

x∈Fq

ζ
Trq0p (y·Trqq0 (ax

2+bxpk+1+cxp2k+1))
p )

= pm−t(pt − 1)− 1

pt
(
∑

y∈SQ

∑

x∈Fq

ζTr(a(xy
1
2 )2+b(xy

1
2 )p

k+1+c(xy
1
2 )p

2k+1)
p

+
∑

y∈SQ

∑

x∈Fq

ζ
Trq0p (λ·Trqq0 (a(xy

1
2 )2+b(xy

1
2 )p

k+1+c(xy
1
2 )p

2k+1))
p )

= pm−t(pt − 1)− pt − 1

2pt
(
∑

x∈Fq

ζ
Trq0p (Qa,b,c(x))
p +

∑

x∈Fq

ζ
Trq0p (λQa,b,c(x))
p ),

(1)

where SQ(SQ, resp.) denotes the set of nonzero square elements (non-square elements,

resp.) of Fpt and λ is a non-square in Fpt . If we define

T (a, b, c) =
∑

x∈Fq

ζ
Trq0p (Qa,b,c(x))
p +

∑

x∈Fq

ζ
Trq0p (λQa,b,c(x))
p , (2)

then the weight distribution of the code C is completely determined by the value distri-

bution of T (a, b, c). Firstly, we have the following lemma.
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Lemma 3.1 For any fixed (a, b, c) ∈ F3
q\{(0, 0, 0)}, let T (a, b, c) be defined by (2) and

r be the rank of Qa,b,c(x).

• If r is even, then T (a, b, c) = ±2q
s− r

2
0 .

• If r is odd, then T (a, b, c) = 0.

Proof. According to Lemma 2.1, we have

∑

x∈Fq

ζ
Trq0p (λQa,b,c(x))
p =

∑

x∈Fq

ζ
Trq0p (Qa,b,c(x))
p η0(λ

r).

Then T (a, b, c) = (1 + η0(λ
r))

∑
x∈Fq

ζ
Trq0p (Qa,b,c(x))
p . Since d/t is odd, λ is also a non-

square in Fq0 . Thus, if r is even, T (a, b, c) = ±2q
s− r

2
0 and 0, otherwise. This completes

the proof.

Theorem 3.2 Let T (a, b, c) be defined by (2). Then as (a, b, c) runs through F3
q, the

value distribution of T (a, b, c) is given by Table 1.

Table 1: Value Distribution of T (a, b, c)

Value Frequency

2pm 1

0 (pm − 1)(p2m − p2m−d + p2m−4d + pm − pm−d − pm−3d + 1)

2p
m+d

2
(pm+d+p(m+3d)/2)(p2m−p2m−2d−p2m−3d+pm−2d+pm−3d−1)

2(p2d−1)

−2p
m+d

2
(pm+d−p(m+3d)/2)(p2m−p2m−2d−p2m−3d+pm−2d+pm−3d−1)

2(p2d−1)

2p
m+3d

2
(pm−3d+p(m−3d)/2)(pm−1)(pm−d−1)

2(p2d−1)

−2p
m+3d

2
(pm−3d−p(m−3d)/2)(pm−1)(pm−d−1)

2(p2d−1)

We prove this theorem only for the case that q0 ≡ 3 (mod 4). The proof for the case

that q0 ≡ 1 (mod 4) is similar and omitted. Hence we assume that q0 ≡ 3 (mod 4)

from now on. In order to determine the value distribution of T (a, b, c), we need a series

of lemmas. Before introducing them, for any positive integer k, we define d1 = pk + 1

and d2 = p2k + 1. Since −1 is a non-square in Fpt when q0 ≡ 3 (mod 4), so in the

following, we set λ = −1.

Lemma 3.3 Let q0 ≡ 3 (mod 4) and let N2 denote the number of solutions (x1, x2) ∈
F2
pm of the following system of equations





x2
1 + x2

2 = 0

xd1
1 + xd1

2 = 0

xd2
1 + xd2

2 = 0.

Then N2 = 1.
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Proof. This system of equations have only one solution (0, 0), since −1 is a non-square

in Fpm when q0 ≡ 3 (mod 4).

Lemma 3.4 Let q0 ≡ 3 (mod 4) and let N2 denote the number of solutions (x1, x2) ∈
F2
pm of the following system of equations





x2
1 − x2

2 = 0

xd1
1 − xd1

2 = 0

xd2
1 − xd2

2 = 0.

(3)

Then N2 = 2pm − 1.

Proof. We observe that (x1, x2) is a solution of (3) if and only if (x1, x2) is a solution

of the first equation of it. So the conclusion follows from the Lemma 6.24 in [11].

Lemma 3.5 Let q0 ≡ 3 (mod 4) and let N3 denote the number of solutions (x1, x2, x3) ∈
F3
pm of the following system of equations





x2
1 + x2

2 + x2
3 = 0

xd1
1 + xd1

2 + xd1
3 = 0

xd2
1 + xd2

2 + xd2
3 = 0.

(4)

Then N3 = pm+d + pm − pd.

Proof.

Case I, when x3 = 0. In this case, by Lemma 3.3, the number of solutions of (4) is 1.

Case II, when x3 6= 0. In this case, for any fixed x3, the equation system (4) has the

same number of solutions (x1, x2) ∈ F2
pm as the system





x2
1 + x2

2 + 1 = 0

xd1
1 + xd1

2 + 1 = 0

xd2
1 + xd2

2 + 1 = 0.

(5)

As assumed in the beginning of this paper, we have gcd(m, k) = d. Then by the same

method as in the proof of Lemma 4.3 in [20], we can prove that if (x1, x2) ∈ F2
pm is

a solution of (5), then (x1, x2) ∈ F2
pd . Furthermore, if (x1, x2) ∈ F2

pd is a solution

of the first equation of (5), then it is a solution of (5). So the number of solutions

(x1, x2) ∈ F2
pm of (5) is equal to the number of solutions (x1, x2) ∈ F2

pd satisfying the

first equation of it, which is pd + 1 by Lemma 6.24 in [11]. Thus (5) has exactly pd + 1

solutions.

Summarizing the results of the two cases above, we have that N3 = 1+(pm−1)(pd+

1) = pm+d + pm − pd. This completes the proof.
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Lemma 3.6 Let q0 ≡ 3 (mod 4) and let N3 denote the number of solutions (x1, x2, x3) ∈
F3
pm of the following system of equations





x2
1 + x2

2 − x2
3 = 0

xd1
1 + xd1

2 − xd1
3 = 0

xd2
1 + xd2

2 − xd2
3 = 0.

Then N3 = pm+d + pm − pd.

Proof. The proof is similar to the proof of the lemma above, so we omit the details.

Lemma 3.7 Let q0 ≡ 3 (mod 4) and let N4 denote the number of solutions (x1, x2, x3, x4) ∈
F4
pm of the following system of equations





x2
1 + x2

2 + x2
3 + x2

4 = 0

xd1
1 + xd1

2 + xd1
3 + xd1

4 = 0

xd2
1 + xd2

2 + xd2
3 + xd2

4 = 0.

(6)

Then N4 = 1 + (pm − 1)(pd + 1)(2pm − pd + 1).

Proof. See Appendix.

Lemma 3.8 Let q0 ≡ 3 (mod 4) and let N4 denote the number of solutions (x1, x2, x3, x4) ∈
F4
pm of the following system of equations





x2
1 + x2

2 + x2
3 − x2

4 = 0

xd1
1 + xd1

2 + xd1
3 − xd1

4 = 0

xd2
1 + xd2

2 + xd2
3 − xd2

4 = 0.

(7)

Then N4 = pm+2d + pm − p2d.

Proof. See Appendix.

Lemma 3.9 Let q0 ≡ 3 (mod 4) and let Ñ4 denote the number of solutions (x1, x2, x3, x4) ∈
F4
pm of the following system of equations





x2
1 + x2

2 − x2
3 − x2

4 = 0

xd1
1 + xd1

2 − xd1
3 − xd1

4 = 0

xd2
1 + xd2

2 − xd2
3 − xd2

4 = 0.

(8)

Then Ñ4 = 1 + (pm − 1)(pd + 1)(2pm − pd + 1).

6



Proof. See Appendix.

Now we are ready to prove Theorem 3.2 in the case of q0 ≡ 3 (mod 4).

Proof of Theorem 3.2.

It is clear that T (a, b, c) = 2pm if (a, b, c) = (0, 0, 0). Otherwise, by Lemma 2.2 and 3.1,

we have

T (a, b, c) ∈ {0,±2p
m+d

2 ,±2p
m+3d

2 }.

We define

n1,i = #{(a, b, c) ∈ F3
pm : T (a, b, c) = (−1)i2p

m+d
2 },

n2,i = #{(a, b, c) ∈ F3
pm : T (a, b, c) = (−1)i2p

m+3d
2 },

where i = 0, 1. Then we immediately have





∑
(a,b,c)∈F

3
pm

T (a, b, c) = 2pm + 2(n1,0 − n1,1)p
m+d

2 + 2(n2,0 − n2,1)p
m+3d

2

∑
(a,b,c)∈F

3
pm

T 2(a, b, c) = 22p2m + 22(n1,0 + n1,1)p
m+d + 22(n2,0 + n2,1)p

m+3d

∑
(a,b,c)∈F

3
pm

T 3(a, b, c) = 23p3m + 23(n1,0 − n1,1)p
3m+3d

2 + 23(n2,0 − n2,1)p
3m+9d

2

∑
(a,b,c)∈F

3
pm

T 4(a, b, c) = 24p4m + 24(n1,0 + n1,1)p
2m+2d + 24(n2,0 + n2,1)p

2m+6d.

(9)

On the other hand, it follows from Eq. (2) that

∑

(a,b,c)∈F
3
pm

T (a, b, c)

=
∑

(a,b,c)∈F
3
pm

(
∑

x∈Fpm

ζTr(ax2+bxd1+cxd2)
p +

∑

x∈Fpm

ζTr(−ax2
−bxd1−cxd2)

p )

=
∑

x∈Fpm

∑

a∈Fpm

ζTr(ax2)
p

∑

b∈Fpm

ζTr(bxd1)
p

∑

c∈Fpm

ζTr(cxd2)
p

+
∑

x∈Fpm

∑

a∈Fpm

ζTr(−ax2)
p

∑

b∈Fpm

ζTr(−bxd1)
p

∑

c∈Fpm

ζTr(−cxd2)
p

= 2p3m.

(10)

∑

(a,b,c)∈F
3
pm

T 2(a, b, c)

=
∑

(x1,x2)∈F
2
pm

∑

a∈Fpm

ζ
Tr(a(x2

1+x2
2))

p

∑

b∈Fpm

ζ
Tr(b(x

d1
1 +x

d1
2 ))

p

∑

c∈Fpm

ζ
Tr(c(x

d2
1 +x

d2
2 ))

p

+
∑

(x1,x2)∈F
2
pm

∑

a∈Fpm

ζ
Tr(a(x2

1−x2
2))

p

∑

b∈Fpm

ζ
Tr(b(x

d1
1 −x

d1
2 ))

p

∑

c∈Fpm

ζ
Tr(c(x

d2
1 −x

d2
2 ))

p

+
∑

(x1,x2)∈F
2
pm

∑

a∈Fpm

ζ
Tr(a(−x2

1+x2
2))

p

∑

b∈Fpm

ζ
Tr(b(−x

d1
1 +x

d1
2 ))

p

∑

c∈Fpm

ζ
Tr(c(−x

d2
1 +x

d2
2 ))

p

+
∑

(x1,x2)∈F
2
pm

∑

a∈Fpm

ζ
Tr(−a(x2

1+x2
2))

p

∑

b∈Fpm

ζ
Tr(−b(x

d1
1 +x

d1
2 ))

p

∑

c∈Fpm

ζ
Tr(−c(x

d2
1 +x

d2
2 ))

p

= p3m(#S1 +#S2 +#S3 +#S4),

7



where

S1 = {(x1, x2) ∈ F2
pm : x2

1 + x2
2 = 0, xd1

1 + xd1
2 = 0, xd2

1 + xd2
2 = 0},

S2 = {(x1, x2) ∈ F2
pm : x2

1 − x2
2 = 0, xd1

1 − xd1
2 = 0, xd2

1 − xd2
2 = 0},

S3 = {(x1, x2) ∈ F2
pm : −x2

1 + x2
2 = 0,−xd1

1 + xd1
2 = 0,−xd2

1 + xd2
2 = 0},

S4 = {(x1, x2) ∈ F2
pm : −x2

1 − x2
2 = 0,−xd1

1 − xd1
2 = 0,−xd2

1 − xd2
2 = 0}.

It is clear that S1 = S4 and S2 = S3. Then by Lemma 3.3 and 3.4, we have

∑

(a,b,c)∈F
3
pm

T 2(a, b, c) = 4p4m. (11)

Similarly, by Lemmas 3.5-3.9, we have
∑

(a,b,c)∈F
3
pm

T 3(a, b, c) = 8p3m(pm+d + pm − pd)

∑

(a,b,c)∈F
3
pm

T 4(a, b, c) = 16p4m(pm+d + pm − pd).
(12)

Combining Eqs. (9)-(12), we get

n1,0 =
(pm+d + p(m+3d)/2)(p2m − p2m−2d − p2m−3d + pm−2d + pm−3d − 1)

2(p2d − 1)
,

n1,1 =
(pm+d − p(m+3d)/2)(p2m − p2m−2d − p2m−3d + pm−2d + pm−3d − 1)

2(p2d − 1)
,

n2,0 =
(pm−3d + p(m−3d)/2)(pm − 1)(pm−d − 1)

2(p2d − 1)
,

n2,1 =
(pm−3d − p(m−3d)/2)(pm − 1)(pm−d − 1)

2(p2d − 1)
.

Summarizing the discussion above completes the proof of this theorem in the case of

q0 ≡ 3 (mod 4).

Table 2: Weight Distribution of C
Weight Frequency

0 1

(pt − 1)pm−t (pm − 1)(p2m − p2m−d + p2m−4d + pm − pm−d − pm−3d + 1)

(pt − 1)(pm−t − p
m+d−2t

2 ) (pm+d+p(m+3d)/2)(p2m−p2m−2d−p2m−3d+pm−2d+pm−3d−1)
2(p2d−1)

(pt − 1)(pm−t + p
m+d−2t

2 ) (pm+d−p(m+3d)/2)(p2m−p2m−2d−p2m−3d+pm−2d+pm−3d−1)
2(p2d−1)

(pt − 1)(pm−t − p
m+3d−2t

2 ) (pm−3d+p(m−3d)/2)(pm−1)(pm−d−1)
2(p2d−1)

(pt − 1)(pm−t + p
m+3d−2t

2 ) (pm−3d−p(m−3d)/2)(pm−1)(pm−d−1)
2(p2d−1)

Recall that C is the cyclic code over Fpt with parity check polynomial h0(x)h1(x)h2(x),

where h0(x), h1(x), h2(x) are the minimal polynomial of π−2, π−(pk+1) and π−(p2k+1)

over Fpt , respectively.

8



Theorem 3.10 Let m and k be any two positive integers such that s = m/d ≥ 5 is odd,

where d = gcd(m, k). Let t be a divisor of d such that d/t is odd, then C is a cyclic code

over Fpt with parameters [pm − 1, 3m0, (p
t − 1)(pm−t − p

m+3d−2t
2 )], where m0 = m/t.

Moreover, the weight distribution of C is given in Table 2.

Proof. According to the discussion in the beginning of this section, the length and

dimension of C are clear. Furthermore, the minimum Hamming distance and weight

distribution of C follows from Eq. (1) and Theorem 3.2.

Finally, we give an example to verify the results in Table 2. But the experiment for the

case d 6= 1 is beyond our computation ability.

Example 3.11 Let p = 3, m = 7 and k = 1. Then the code C is a [2186, 21, 1296]

cyclic code over F3 with weight enumerator

1 + 8951670z1296 + 1732767876z1404+ 7102473578z1458+ 1608998742z1512

+ 7161336z1620.

which is completely in agreement with the results presented in Table 2.

APPENDIX

Proof of Lemma 3.7.

For any (a, b, c) ∈ F3
pm , let N1(a,b,c) and N2(a,b,c) denote the number of solutions of the

following two systems of equations




x2
1 + x2

2 = a

xd1
1 + xd1

2 = b

xd2
1 + xd2

2 = c

(13)





x2
3 + x2

4 = −a

xd1
3 + xd1

4 = −b

xd2
3 + xd2

4 = −c.

(14)

Then we have

N4 =
∑

(a,b,c)∈F
3
pm

N1(a,b,c)N2(a,b,c).

Case 1, when a = 0. In this case, (13) and (14) have solutions if and only if b = c = 0

since −1 is a nonsquare. Moreover, N1(0,0,0) = N2(0,0,0) = 1.

Case 2, when a 6= 0. In this case, if b = 0 or c = 0, neither (13) nor (14) has solutions.

So in the following, we consider the problem only when b 6= 0 and c 6= 0.

• a is a nonzero square in Fpm , b 6= 0 and c 6= 0. In this case, for any fixed a, (13)

has the same number of solutions as




x2
1 + x2

2 = 1

xd1
1 + xd1

2 = b

xd2
1 + xd2

2 = c

(15)

9



and (14) has the same number of solutions as




x2
3 + x2

4 = −1

xd1
3 + xd1

4 = −b

xd2
3 + xd2

4 = −c,

(16)

where b = b/a
d1
2 and c = c/a

d2
2 . Clearly, (b, c) runs through F∗2

pm as (b, c) does.

According to the proofs of Lemma 3.12 and 3.13, we can get N1(1,b,c) = N2(1,b,c)

for any fixed (b, c) ∈ F∗2
pm . If (15) has solutions, then N1(1,b,c) = pd+1 or 2(pd+1).

Furthermore, only in the case of (b, c) = (1, 1), N1(1,b,c) = pd + 1, and there are
pm

−pd

2(pd+1) pairs of (b, c) such that N1(1,b,c) = 2(pd + 1). Therefore, for any fixed

nonzero square a, we have
∑

(b,c)∈F
∗2
pm

N1(a,b,c)N2(a,b,c)

= (pd + 1)2 + (2(pd + 1))2
pm − pd

2(pd + 1)

= (pd + 1)(2pm − pd + 1).

• a is a non-square in Fpm . In this case, for any fixed a, (13) has the same number

of solutions as 



x2
1 + x2

2 = −1

xd1
1 + xd1

2 = −b

xd2
1 + xd2

2 = −c

and equation system (14) has the same number of solutions as




x2
3 + x2

4 = 1

xd1
3 + xd1

4 = b

xd2
3 + xd2

4 = c.

It can be easily seen that this case is equivalent to the case when a is a nonzero

square. So for any fixed nonsquare a, we also have
∑

(b,c)∈F
∗2
pm

N1(a,b,c)N2(a,b,c)

= (pd + 1)(2pm − pd + 1).

Summarizing the two cases above, we have N4 = 1 + (pm − 1)(pd + 1)(2pm − pd + 1).

Proof of Lemma 3.8.

For any (a, b, c) ∈ F3
pm , let N1(a,b,c) and N3(a,b,c) denote the number of solutions of the

following two system of equations




x2
1 + x2

2 = a

xd1
1 + xd1

2 = b

xd2
1 + xd2

2 = c

(17)
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x2
3 − x2

4 = −a

xd1
3 − xd1

4 = −b

xd2
3 − xd2

4 = −c.

(18)

It is then obvious that

N4 =
∑

(a,b,c)∈F
3
pm

N1(a,b,c)N3(a,b,c).

Case 1, when a = 0. In this case, (17) have solutions if and only if b = c = 0 since −1

is a non-square. Moreover, N1(0,0,0) = 1 and N3(0,0,0) = 2pm − 1.

Case 2, when a 6= 0. In this case, if b = 0 or c = 0, (17) has no solution. So in the

following, we consider this problem only when b 6= 0 and c 6= 0.

• when a is a nonzero square, b 6= 0 and c 6= 0. In this case, for any fixed a 6= 0,

equation system (17) has the same number of solutions as





x2
1 + x2

2 = 1

xd1
1 + xd1

2 = b

xd2
1 + xd2

2 = c

(19)

and equation system (18) has the same number of solutions as





x2
3 − x2

4 = −1

xd1
3 − xd1

4 = −b

xd2
3 − xd2

4 = −c,

(20)

where b = b/a
d1
2 and c = c/a

d2
2 . Then (b, c) runs through F∗2

pm as (b, c) runs

through F∗2
pm . According to the proofs of Lemma 3.12 and 3.14, in order to guar-

antee (19) and (20) have solutions simultaneously for any fixed (b, c), we need to

prove that the element c1 determined by b in (19) and the element c2 determined

by b in (20) are the same number. By easy calculation, we have c1 = c2 if and

only if b = 1. And then c1 = c2 = 1. Furthermore, for any fixed nonzero square a,

∑

(b,c)∈F
∗2
pm

N1(a,b,c)N3(a,b,c)

= (pd + 1)(pd − 1).

• when a is a non-square, b 6= 0 and c 6= 0. In this case, for any fixed a 6= 0, equation

system (17) has the same number of solutions as





x2
1 + x2

2 = −1

xd1

1 + xd1

2 = −b

xd2
1 + xd2

2 = −c
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and equation system (18) has the same number of solutions as





x2
3 − x2

4 = 1

xd1
3 − xd1

4 = b

xd2
3 − xd2

4 = c.

It can be easily seen that this case is equivalent to the case when a is a nonzero

square. So for any fixed non-square a, we also have
∑

(b,c)∈F
∗2
pm

N1(a,b,c)N3(a,b,c)

= (pd + 1)(pd − 1).

N4 =
∑

(a,b,c)∈F
3
pm

N1(a,b,c)N3(a,b,c) = (2pm − 1) + (pm − 1)(pd + 1)(pd − 1).

Proof of Lemma 3.9.

With the notation as above,

Ñ4 =
∑

(a,b,c)∈F
3
pm

N2
1(a,b,c)

= 1 + (pm − 1)(pd + 1)(2pm − pd + 1).

Lemma 3.12 Let N1(b,c) denote the number of solutions (x1, x2) ∈ F2
pm of (15), where

(b, c) ∈ F∗2
pm . Then we have the following conclusions.

(1). N1(1,1) = pd + 1.

(2). When (b, c) runs through F∗2
pm \ {(1, 1)},

N1(b,c) =




2(pd + 1), for pm

−pd

2(pd+1) times,

0, for the rest.

Proof. We first compute the number N1(b) of solutions (x1, x2) ∈ F2
pm of the following

system of equations 


x2
1 + x2

2 = 1

xd1
1 + xd1

2 = b.
(21)

When q0 ≡ 3 (mod 4), −1 is a non-square in Fpm . Then we can choose t ∈ Fp2m such

that t2 = −1. From the first equation of (21), by setting θ = x1 − tx2 ∈ F∗

p2m , we have

x1 =
θ + θ−1

2
, x2 =

t(θ − θ−1)

2
. (22)

Since x1 ∈ Fpm , the following holds:

θ + θ−1

2
= (

θ + θ−1

2
)p

m

=
θp

m

+ θ−pm

2
,

which implies θp
m+1 = 1 or θp

m
−1 = 1. If θp

m+1 6= 1, then θp
m
−1 = 1. In this case,

θ ∈ F∗

pm . Since x2 = t(θ−θ−1)
2 ∈ F∗

pm , we have t ∈ F∗

pm , which is a contradiction. Hence

θp
m+1 = 1.
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• When k is even, we have pk + 1 ≡ 2 (mod 4), then t(p
k+1) = −1. Substituting

(22) into the second equation of (21), we obtain

θp
k
−1 + θ1−pk

= 2b. (23)

Denote θp
k
−1 by w, Eq. (23) is equivalent to

w2 − 2bw + 1 = 0. (24)

If Eq.(24) has no solution, i.e., b2 − 1 is a non-square of F∗

p2m , then Nb = 0.

Otherwise, let w1 and w2 = w−1
1 be two solutions of (24). According to the

discussion above, we have

θp
k
−1 = w1, θ

pm+1 = 1, (25)

or

θp
k
−1 = w−1

1 , θp
m+1 = 1. (26)

If θ1 and θ2 are two solutions of (25), then (θ1/θ2)
pk

−1 = 1 = (θ1/θ2)
pm+1. Since

gcd(pk − 1, pm + 1) = pd + 1, then (θ1/θ2)
pd+1 = 1. So if (25) has solutions, then

it has exactly pd + 1 solutions.

– If w1 = w−1
1 , then (26) is the same as (25). In this case we have w1 = ±1

and then from Eq.(24), b = ±1. But when b = −1, θp
k
−1 = w1 = −1. By

θp
m+1 = 1 and gcd(2(pk − 1), pm+1) = pd+1, we have θp

d+1 = 1. And then

θp
k
−1 = 1, which is a contradiction. So we only consider b = 1, which implies

w1 = 1. Then (25) and (26) both have pd + 1 solutions. As a result, we have

pd + 1 solutions of (21).

– If w1 6= w−1
1 , then (26) has the same number of solutions as (25). Moreover,

their solutions are distinct since w1 6= ±1. Therefore, (25) and (26) both

have pd + 1 solutions or no solutions in Fp2m . By (22), (x1, x2) is uniquely

determined by θ. Then (21) has 2(pd + 1) solutions or no solutions in F2
pm .

Until now, we have N1(1) = pd + 1 and N1(b) = 0 or 2(pd + 1) for b 6= 1. And as

in Lemma 5.4 in [20], we define

T = #{b ∈ Fpm : N1(b) = 2(pd + 1)}.

Then we have

T =
pm − pd

2(pd + 1)
.

Substituting (22) into the third equation of (15), we obtain

θp
2k

−1 + θ1−p2k

= 2c, (27)

which implies c = 1
2{(b+

√
b2 − 1)p

k+1 + (b−
√
b2 − 1)p

k+1}. Hence if (15) has

solutions, then N1(b,c) = N1(b) and c is uniquely determined by b.
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• When k is odd, we have pk + 1 ≡ 0 (mod 4), then t(p
k+1) = 1. Similarly, if (15)

has solutions, then we have N1(b,c) = N1(b) and c is uniquely determined by b.

Summarizing all the cases above completes the proof.

Lemma 3.13 Let N2(b,c) denote the number of solutions (x1, x2) ∈ F2
pm of (16), where

(b, c) ∈ F∗2
pm . Then we have the following conclusions.

(1). N2(1,1) = pd + 1.

(2). When (b, c) runs through F∗2
pm \ {(1, 1)},

N2(b,c) =




2(pd + 1), for pm

−pd

2(pd+1)
times,

0, for the rest.

Proof. The proof is similar to the proof of the lemma above.

Lemma 3.14 Let N3(b,c) denote the number of solutions (x1, x2) ∈ F2
pm of (20), where

(b, c) ∈ F∗2
pm . Then we have the following conclusions.

(1). N3(1,1) = pd − 1.

(2). When (b, c) runs through F∗2
pm \ {(1, 1)},

N3(b,c) =




2(pd − 1), for pm

−pd

2(pd−1) times,

0, for the rest.

Proof. The proof is similar to the proof of the Lemma 3.12.
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