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BARKER SEQUENCES OF ODD LENGTH

KAI-UWE SCHMIDT AND JÜRGEN WILLMS

Abstract. A Barker sequence is a binary sequence for which all non-
trivial aperiodic autocorrelations are at most 1 in magnitude. An old
conjecture due to Turyn asserts that there is no Barker sequence of
length greater than 13. In 1961, Turyn and Storer gave an elementary,
though somewhat complicated, proof that this conjecture holds for odd
lengths. We give a new and simpler proof of this result.

1. Introduction

Consider a binary sequence A of length n > 1, namely an element of
{−1, 1}n. We write A(k) for the k-th entry in A. Define the aperiodic
autocorrelation at shift u (where 0 ≤ u < n) of A to be

C(u) =

n−u
∑

k=1

A(k)A(k + u).

Notice that C(0) = n. All other values C(u) are called the nontrivial ape-
riodic autocorrelations. There is sustained interest in binary sequences for
which all of the nontrivial aperiodic autocorrelations are small (see [3] for
a good survey). It is known [5] that, for each n > 1, there exists a binary
sequence of length n such that all nontrivial aperiodic autocorrelations are
at most

√

2n log(2n) in magnitude.
On the other hand, it is not known whether there exist infinitely many

Barker sequences, namely binary sequences with the ideal property that
the nontrivial aperiodic autocorrelations are at most 1 in magnitude. No-
tice that for fixed a, b ∈ {0, 1}, the transformation A(k) 7→ A(k)(−1)a+bk

preserves the Barker property. We can therefore assume without loss of gen-
erality that a Barker sequence A satisfies A(1) = A(2) = 1. The only known
Barker sequences with this property are (writing + for 1 and − for −1)

A3 = [+ +−], A2 = [++],

A5 = [+ + +−+], A4 = [+ + +−],

A7 = [+ + +−−+−], A′

4 = [+ +−+],

A11 = [+ + +−−−+−−+−],

A13 = [+ + +++−−++−+−+].
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Indeed, it has been conjectured since at least 1960 [6] that there is no Barker
sequence of length greater than 13. This conjecture is known to be true for
sequences of odd length, as proven by Turyn and Storer [7].

Theorem 1 (Turyn and Storer [7]). If there exists a Barker sequence of odd
length n, then n ∈ {3, 5, 7, 11, 13}.

Fairly deep methods have been devised to attack the case that the length
is even, including the character-theoretic approach by Turyn [8] and the
field-descent method by B. Schmidt [4], but the problem remains open. We
refer to [3] for a brief survey and to [2] for the latest results on this problem.

The proof of Theorem 1 due to Turyn and Storer [7] is elementary, but
involves an arduous inductive argument.1 Borwein and Erdélyi [1] gave a
proof using a different induction, but its overall structure is similar to that
of Turyn and Storer [7]. In this paper, we offer a simpler proof of Theorem 1.

We briefly explain how our proof differs from the previous ones. For a
putative Barker sequence A of length n > 3 assume that A(1) = A(2) = 1
and let p + 1 be the position of the first occurrence of −1 in A. It is not
hard to show that p ≥ 3. The crucial (and lengthy) step in the proofs of [7]
and [1] is to establish that A has the following block structure

A(jp + 1) = A(jp + 2) = · · · = A(jp + r)

for all j and r satisfying 1 ≤ jp + r ≤ n − p − 2 and 1 ≤ r ≤ p. Once this
is established, it is easy to conclude that A cannot have many such blocks
and must therefore be short.

In contrast, we do not establish such a block structure explicitly. We
consider the runs of A, which are subsequences of maximal length consisting
of equal entries (see [10] for connections between runs and autocorrelations).
We assume that A starts with e − 1 runs whose lengths are divisible by p
and that the length of the e-th run is not divisible by p. Let q be the sum
of the lengths of the first e runs. It is not hard to show that n ≥ 2q − 3.
The key result is that, if n > p+ q + 1, then

|C(n− p− q + 1)− C(n− p− q − 1)| ≥ 4,

which contradicts the defining property of a Barker sequence. Therefore, we
have 2q − 3 ≤ n ≤ p+ q + 1, from which we can easily deduce Theorem 1.

We shall make use of the following results due to Turyn and Storer [7].
In order to make this note self-contained, we include their short proofs.

Lemma 2 (Turyn and Storer [7]). Suppose that A is a Barker sequence of
odd length n. Then the following statements hold:

(i) A(k)A(n − k + 1) = (−1)(n+1)/2+k for each k satisfying 1 ≤ k ≤ n.
(ii) A(k)A(k + 1) = A(2k)A(2k + 1) for each k satisfying 1 ≤ k ≤ n−3

2 .

1We note that [9] gives counterexamples to [7, Theorem 1 (iv)]. One can show however
that, in [7, Theorem 1], the statements (ii) and (iii) imply (iv) with the corrected range
k ≤ t/p− 1/2, which is consistent with [9] and sufficient for the induction in the proof.



BARKER SEQUENCES OF ODD LENGTH 3

Proof. First note that, if u is odd, then C(u) is a sum of an even number of
1 or −1, so C(u) = 0. The next step is to observe that, for 0 < u < n,

(1) C(u) + C(n− u) =

n
∑

k=1

A(k)A(k + u),

where the second index is reduced modulo n if necessary. Use xy ≡ x−y+1
(mod 4) for x, y ∈ {−1, 1} to conclude that (1) is congruent to n modulo 4.
Therefore, since exactly one of u and n− u is odd, we find that

(2) C(u) ≡

{

0 (mod 4) for odd u

n (mod 4) for even u.

Now count the number of 1 and −1 in the sum C(u) to obtain, for 0 ≤ u < n,

n−u
∏

k=1

A(k)A(k + u) = (−1)(n−u−C(u))/2.

Multiply two successive equations of this form and use (2) to prove (i).
To prove (ii), use (i) to obtain, for 1 ≤ u ≤ n−1

2 ,

C(n− 2u+ 1) =

2u−1
∑

k=1

A(k)A(2u − k)(−1)
n+1

2
+k

= A(u)2(−1)
n+1

2
+u + 2

u−1
∑

k=1

A(k)A(2u − k)(−1)
n+1

2
+k.

By (2), the left-hand side equals (−1)(n−1)/2, so that

−
1 + (−1)u

2
=

u−1
∑

k=1

A(k)A(2u − k)(−1)k.

Count the number of 1 and −1 in the sum to find that
u−1
∏

k=1

A(k)A(2u − k) = 1

or equivalently
2u−1
∏

k=1

A(k) = A(u).

Multiplying two successive equations of this form proves (ii). �

2. Proof of Theorem 1

Suppose that A is a Barker sequence of odd length n = 2m − 1. Since
C(1) is a sum of an even number of 1 or −1, we have C(1) = 0. This implies
that A has exactly m runs. Accordingly, we associate with A the unique
numbers s0, s1, . . . , sm satisfying

0 = s0 < s1 < · · · < sm−1 < sm = n
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and

(3) A(sj + 1) = A(sj + 2) = · · · = A(sj+1) = (−1)jA(1)

for all j ∈ {0, 1, . . . ,m − 1}. Note that s1 > 1 implies sm = sm−1 + 1
by Lemma 2 (i), so that s1 cannot divide all of the numbers s1, . . . , sm.
Accordingly, for s1 > 1, we define e to be the smallest j such that s1 ∤ sj.

We shall need two lemmas.

Lemma 3. Suppose that A is a Barker sequence of odd length n > 5 and
that s1 > 1. Then s1 and se are odd and n ≥ 2se − 3.

Proof. From Lemma 2 (i), we find that A must end with s1 alternating
entries, which implies that n ≥ 2s1− 1. Since n > 5, we then conclude that,
if s1 were even, then Lemma 2 (ii) gives

A(s1/2)A(s1/2 + 1) = A(s1)A(s1 + 1),

which contradicts (3). Hence s1 is odd and so s1 ≥ 3.
For the lower bound for n, recall that A starts with e blocks of equal en-

tries, where the first e−1 blocks have length at least s1 ≥ 3. By Lemma 2 (i),
A must end with e blocks of alternating elements whose lengths match those
of the corresponding initial locks. The overlap between the initial blocks and
the corresponding final blocks can be at most 3. Hence n ≥ 2se − 3.

It remains to show that se is odd. We know that se ≤ (n + 3)/2. Hence,
if se were even, then since n > 5, we find from Lemma 2 (ii) that

A(se/2)A(se/2 + 1) = A(se)A(se + 1),

which again contradicts (3) since s1 does not divide se. �

Our key result is the following lemma.

Lemma 4. Suppose that A is a Barker sequence of odd length n and that
s1 > 1. Then n ≤ s1 + se + 1.

Proof. Since e > 1 and s1 > 1, the lemma holds for n ≤ 5, so assume that
n > 5. From Lemma 3 we know that s1 and se are odd. Write v = s1 + se,
so that v is even, and suppose for a contradiction that n ≥ v + 3.

In what follows, we make repeated use of (3) without explicit reference.
Without loss of generality, we can assume that A(1) = 1. Let u be an even
integer satisfying se + 1 ≤ u ≤ n− 1. From Lemma 2 (i) we find that

C(n− u+ 1) =
u−1
∑

k=1

A(k)A(u − k)(−1)
n+1

2
+k,

which we can rewrite as

(−1)
n+1

2 C(n−u+1) =

e−1
∑

j=0

(−1)j
sj+1
∑

k=sj+1

A(u−k)(−1)k+

u−1
∑

k=se+1

A(k)A(u−k)(−1)k.



BARKER SEQUENCES OF ODD LENGTH 5

Since se + 2 ≤ v ≤ n − 3 by assumption, we can apply this identity with
u = v and u = v + 2 to obtain

(4) (−1)
n+1

2 (C(n−v+1)−C(n−v−1)) =
e−1
∑

j=0

(−1)jSj+R−A(v)+A(v+1),

where

Sj =

sj+1
∑

k=sj+1

(−1)k(A(v − k)−A(v − k + 2))

for 0 ≤ j ≤ e− 1 and

R =

v−1
∑

k=se+1

(−1)kA(k)(A(v − k)−A(v − k + 2)).

Since v ≥ se + 2, the sum R is nonempty. However only the first summand
in R is nonzero. Hence, since se is odd,

R = A(se + 1)(A(s1 − 1)−A(s1 + 1)) = 2(−1)e.

The sum Sj is telescoping, so we can rewrite Sj as

Sj = (−1)sj+1(A(v−sj+1)−A(v−sj+1+1))−(−1)sj (A(v−sj)−A(v−sj+1)),

from which we find that

Sj = 0 for 1 < j < e− 1

since, by definition, v−sj and v−sj+1 are not divisible by s1 for 1 < j < e−1.
Moreover, we obtain

S0 = 2(−1)e −A(v) +A(v + 1)

and

S1 = −2(−1)e and Se−1 = −2 for e > 2.

For e = 2, we have S1 = −4. Substitute everything into (4) to give

(−1)
n+1

2 (C(n− v + 1)−C(n− v − 1) = 8(−1)e − 2A(v) + 2A(v + 1),

which contradicts the Barker property of A. Therefore n ≤ v + 1. �

We now complete our proof of the theorem. We know that A3 and A5

are Barker sequences of length 3 and 5, respectively, so assume that n > 5.
As mentioned earlier, we can assume without loss of generality that A(1) =
A(2) = 1, so that s1 > 1. From Lemmas 3 and 4 we then find that

(5) 2se − 3 ≤ n ≤ s1 + se + 1,

which implies se ≤ s1 + 4. From Lemma 3 we know that s1 and se are odd
and that s1 ≥ 3. Since s1 ≥ 3, we have e ∈ {2, 3} and, since se − s1 is even,
there are only the following three cases to consider.

Case 1: e = 3. This case forces (s1, s2, s3) = (3, 6, 7), so n = 11 by (5)
and the corresponding sequence is A11.
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Case 2: e = 2 and s2 = s1 + 2. Here (5) implies that n equals either
2s1 + 1 or 2s1 + 3. Hence, we find from Lemma 2 (ii) that

1 = A(s1 − 1)A(s1) = A(2s1 − 2)A(2s1 − 1).

If n = 2s1+1, then A(n−2) = A(n−3), which forces s1 = 3 by Lemma 2 (i).
Therefore, in this case we have n = 7 and (s1, s2) = (3, 5) and the corre-
sponding sequence is A7. If n = 2s1 + 3, then A(n − 4) = A(n − 5),
which implies that s1 = 3 or 5. In the first case we obtain n = 9 and
(s1, s2) = (3, 5). But then Lemma 2 (i) and (ii) imply A(6) = A(7) = 1 and
A(6)A(7) = −1, respectively, a contradiction. In the second case we obtain
n = 13 and (s1, s2) = (5, 7) and the corresponding sequence is A13.

Case 3: e = 2 and s2 = s1 + 4. In this case we have n = 2s1 + 5 by (5).
Since, by Lemma 2 (i), A must end with a block of s1 alternating elements
preceded by a block of four alternating elements, we have n ≥ 2s2−1. Hence
n ≥ 2s1 + 7, a contradiction.
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