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DIMENSIONAL DUAL HYPEROVALS IN CLASSICAL POLAR

SPACES

JOHN SHEEKEY

Abstract. In this paper we show that n-dimensional dual hyperovals cannot
exist in all but one classical polar space of rank n if n is even. This resolves a
question posed by Yoshiara.

1. Definitions and preliminaries

An n-dimensional dual arc D in a vector space V (N, q) over a finite field Fq is a
set of n-dimensional subspaces such that

(1) each two intersect in exactly a one-dimensional space;
(2) no three intersect non-trivially.

It is clear that |D| ≤ qn−1
q−1 + 1. For let S be any element of D. Then the other

elements of D intersect S in distinct one-dimensional subspaces, of which there are
qn−1
q−1 . If D meets this bound, it is called an n-dimensional dual hyperoval. We will

sometimes use the shorthand n-DA and n-DHO.

For background and a recent survey of known results and applications, we refer to
[15]. Note that the definition therein are in terms of projective spaces, but here
we use vector space terminology and notation, following [5]. In this paper we will
mostly consider the case N = 2n. In [5], this is required in the definition, but we
will not impose this restriction here.

It is known that n-dimensional dual hyperovals exist in V (2n, q) for all n and all q
even, see for example [15]. It is an open problem whether any can exist when q is
odd.

In this paper we will consider n-dimensional dual arcs in polar spaces, that is,
where D consists of maximum totally isotropic subspaces with respect to some
nondegenerate form on V (N, q). Necessarily then we have that N ∈ {2n, 2n +
1, 2n+ 2}.

It is known [15] that there exist n-dimensional dual hyperovals in the hyperbolic
quadric Q+(2n− 1, q) for all n odd and q = 2 (see Section 2 for notation). Further-
more, there exists a 3-dimensional dual hyperoval in the hermitian variety H(5, 4),
the Mathieu dual hyperoval.

In [15] Problem 4.7, the following (paraphrased) question is asked.
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Does the existence of an n-dimensional dual hyperoval in a polar space imply that

n is odd?

Taniguchi [10] proved that n-dimensional “alternating doubly dual hyperovals” exist
in V (2n, 2) if and only if n is odd. Dempwolff [4], showed that n-dimensional
“symmetric doubly dual hyperovals” exist only if n is odd. We will see in Section 4
that the existence of such implies the existence of an n-dimensional dual hyperovals
in the symplectic space W (2n− 1, q).

We respond now to these questions with the following theorem.

Theorem 1. Suppose D is an n-dimensional dual hyperoval in a polar space P of

rank n. Then either n is odd or P is an elliptic quadric.

The result is a simple application of a theorem of Vanhove.

2. Polar spaces

A classical polar space P is the geometry of totally singular subspaces with respect
to some non-degenerate quadratic form on V (N, q), or totally isotropic with respect
to some non-degenerate symplectic or sesquilinear form on V (N, q). The rank of
P is the maximum (vector space) dimension of a subspace of P . If every (n − 1)-
dimensional space of a polar space of rank n is contained in precisely qe +1 totally
isotropic n-dimensional spaces, then P is said to have parameters (q, qe). See for
example [2] for background. We tabulate the relevant polar spaces of rank n here.

Name form Notation Ambient vector Parameters e
space

Hyperbolic quadric quadratic Q+(2n− 1, q) V (2n, q) (q, 1) 0
Parabolic quadric quadratic Q(2n, q) V (2n+ 1, q) (q, q) 1
Elliptic quadric quadratic Q−(2n+ 1, q) V (2n+ 2, q) (q, q2) 2
Symplectic space symplectic W (2n− 1, q) V (2n, q) (q, q) 1
Hermitian variety sesquilinear H(2n− 1, q2) V (2n, q2) (q2, q) 1/2
Hermitian variety sesquilinear H(2n, q2) V (2n+ 1, q2) (q2, q3) 3/2

Note that n-dimensional dual hyperovals in polar spaces defined by a quadratic
form are often referred to as being of orthogonal type.

If q is even, W (2n− 1, q) is isomorphic to Q(2n, q), and contains Q+(2n− 1, q).

Example 1. Yoshiara defined in [14] the following n-dimensional dual hyperovals in
V (2n, 2), and showed in [16] that they lie in Q+(2n−1, 2) (and hence W (2n−1, 2))
if and only if n is odd. Let h be an integer coprime to n, and for each t ∈ F2n define

St = {(x, x2−2h

t+ xt2
h

) : x ∈ F2n}.

Then D := {St : t ∈ F2n} is an n-dimensional dual hyperoval in Q+(2n− 1, 2) (and
W (2n− 1, 2)), where the quadratic form on V (2n, 2) is

(a, b) 7→ Tr(ab2
h

),

and the associated symmetric (alternating) bilinear form on V (2n, 2) is

((a, b), (c, d)) 7→ Tr(ad2
h

− bc2
h

).
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Dempwolff and Kantor [5] gave a geometric construction leading to many inequiva-
lent examples in Q+(2n−1, 2). Dempwolff [3] gave further examples in W (2n−1, 2)
which cannot lie in Q+(2n− 1, 2).

Example 2. There exists a 3-dimensional dual hyperoval in V (6, 4) which lies in
the polar space H(5, 4) known as the Mathieu dual hyperoval, see e.g. [6].

To the author’s knowledge, no examples in other polar spaces are known. Del Fra
[6] showed that the only 3-dimensional dual hyperovals in a polar space are the
above examples.

Yoshiara [16] showed that n-dimensional dual hyperovals can exist in Q+(2n− 1, q)
only if n is odd.

3. Dual polar graphs and Main result

Given a polar space P of rank n, we define the dual polar graph ΓP , whose vertices
are the n-spaces of P , and where two vertices are adjacent if their intersection has
dimension n− 1. Many properties of this graph are know, see for example [1], [12].

For a set D of n-spaces of P , the inner distribution is an (n + 1)-tuple of integers
a = (a0, a1, . . . , an), where

ai =
{(S, T ) : S, T ∈ D | dim(S ∩ T ) = n− i}

|D|
.

Equivalently, if we view D as a subset of ΓP , and let d(S, T ) denote the distance
function on Γ, then

ai =
{(S, T ) : S, T ∈ D | d(S, T ) = i}

|D|
.

In [13, Lemma 3.2], the following was proved.

Theorem 2 (Vanhove). Let P be a classical polar space of rank n with parameters

(q, qe), and let D be a set of n-spaces in P with inner distribution (a0, a1, . . . , an).
Then

n
∑

i=0

(

−
1

qe

)i

ai ≥ 0.

Now suppose D is a dimensional dual arc in P . Then it is clear that

a0 = 1

an−1 = |D| − 1

ai = 0 otherwise.

Hence we get that

1 +

(

−
1

qe

)n−1

(|D| − 1) ≥ 0,

and so if n is even,

|D| ≤ q(n−1)e + 1.

Hence we get an upper bound for an n-dimensional dual arc in each classical polar
space.
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Theorem 3. Suppose D is an n-dimensional dual arc in P, and suppose n is even.

Then we have the following upper bounds on |D|.

P Ambient vector Parameters e |D| ≤ Size of DHO

space

Q+(2n− 1, q) V (2n, q) (q, 1) 0 2 qn−1
q−1 + 1

Q(2n, q) V (2n+ 1, q) (q, q) 1 qn−1 + 1 qn−1
q−1 + 1

Q−(2n+ 1, q) V (2n+ 2, q) (q, q2) 2 q2n−2 + 1 qn−1
q−1 + 1

W (2n− 1, q) V (2n, q) (q, q) 1 qn−1 + 1 qn−1
q−1 + 1

H(2n− 1, q2) V (2n, q2) (q2, q) 1/2 qn−1 + 1 q2n−1
q2−1 + 1

H(2n, q2) V (2n+ 1, q2) (q2, q3) 3/2 q3(n−1)/2 + 1 q2n−1
q2−1 + 1

Proof of Theorem 1: This now now follows immediately by comparing the above
upper bounds on n-dimensional dual arcs (fourth column) with the required size of
an n-dimensional dual hyperoval (fifth column).

Remark 1. Note that an n-dimensional dual hyperoval is a special case of a
constant-distance, constant-dimension subspace code [8], [9], or equivalently, a clique
in the graph Γn−1, where Γi is the graph whose vertices are the vertices of Γ, and
whose edges are between vertices at distance i in Γ. Note however that not every
clique of the correct size in Γn−1 gives rise to an n-dimensional dual hyperoval. As
the proof of Theorem 3 does not use the fact that no three spaces intersect non-
trivially, the same bounds hold for the relevant constant-distance subspace codes
in each polar spaces.

This is the same method used by Vanhove in [11] to prove that the maximum size
of a partial spread in H(2n− 1, q) is qn + 1 if n is odd.

Remark 2. This table does not imply any results for dimensional dual hyperovals
in elliptic quadrics Q−(2n + 1, q). This problem seems to require a different ap-
proach. Note that such objects do not satisfy the definition of a dimensional dual
hyperoval in [5].

4. Alternating and symmetric doubly dual hyperovals

An n-dimensional dual hyperoval D in V (2n, q) is said to be “doubly dual” if
D⊥ := {S⊥ : S ∈ D} is also an n-dimensional dual hyperoval, where ⊥ is some
nondegenerate polarity. Note that if D lies in some polar space P , it is doubly
dual: we take ⊥ to be the polarity defined by the quadratic or sesquilinear form
associated to P , whence S⊥ = S for all maximum subspaces S in P . However, the
converse is not necessarily true.

In [4] the concept of a (bilinear) symmetric doubly dual hyperoval was introduced,
and it was proved that such objects can not exist in V (2n, q) for n even. We will
now show that the existence of this implies the existence of an n-dimensional dual
hyperoval in symplectic polar space.

Suppose there is some injective linear map β : V (n, q) → End(V (n, q)). Let us
represent elements of V (2n, q) with elements of V (n, q) × V (n, q). For each y ∈
V (n, q), define an n-dimensional subspace Sy = {(x, β(y)(x)) : x ∈ V (n, q)} of
V (2n, q), and define Dβ = {Sy : y ∈ V (n, q)}. If Dβ is an n-dimensional dual
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hyperoval, then it is called a bilinear dual hyperoval. Note that this can occur only
if q = 2.

Define βo : V (n, q) → End(V (n, q)) by βo(x)(y) = β(y)(x). If β = βo, that is
if β(y)(x) = β(x)(y) for all x, y ∈ V (n, q), then Dβ is called a symmetric dual

hyperoval. If furthermore β(x)(x) = 0 for all x, then Dβ is called an alternating

dual hyperoval.

Let 〈, 〉 : V (n, q) × V (n, q) → Fq be a nondegenerate symmetric bilinear form on
V (n, q). Let t denote the adjoint operator with respect to this form, i.e. 〈x, f(y)〉 =
〈f t(x), y〉 for all x, y ∈ V (n, q), and define βt : V (n, q) → End(V (n, q)) by βt(x) =
β(x)t.

Taniguchi [10] showed that alternating doubly dual hyperovals exist in V (2n, 2)
if and only if n is odd. Dempwolff [4] improved this by showing that symmetric
doubly dual hyperovals exist in V (2n, 2) only if n is odd. We now show that this
result follows also from Theorem 1 of this paper.

The following lemma follows from [7], and from [3, Lemma 3.8].

Lemma 1. If there exists a symmetric bilinear n-dimensional doubly dual hyperoval

D in V (2n, 2), then there exists an n-dimensional dual hyperoval in W (2n− 1, 2).

Combining this with Theorem 1 immediately gives us the following corollary.

Corollary 1. There exists a symmetric bilinear n-dimensional doubly dual hyper-

oval D in V (2n, 2) only if n is odd.

Note that Theorem 1, applied to W (2n − 1, q), does not require either bilinearity
or that q = 2, and so this result is more general than the results of Taniguchi and
Dempwolff.

Dempwolff further conjectured in [3] that n-dimensional doubly dual hyperovals
over F2 exist only if n is odd. This remains an open problem.
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