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Abstract

We introduce the new concept of joint nonlinear complexity for multisequences

over finite fields and we analyze the joint nonlinear complexity of two families of

explicit inversive multisequences. We also establish a probabilistic result on the

behavior of the joint nonlinear complexity of random multisequences over a fixed

finite field.

1 Introduction

There is a well-developed area that studies sequences over finite fields from the complexity-
theoretic standpoint, with a view towards applications in cryptography and pseudoran-
dom number generation. We refer to the recent handbook article [15] for a concise survey
of this area. For applications that involve parallelization, such as word-based stream
ciphers and pseudorandom vector generation, it is necessary to use multisequences over
finite fields. The complexity analysis of multisequences over finite fields has so far
concentrated on the consideration of the joint linear complexity and of closely related
complexity measures for multisequences (see again [15]). In this paper, we introduce
and analyze joint nonlinear complexities of multisequences over finite fields.

We use the standard notation Fq for the finite field with q elements, where q is a
prime power. We abbreviate a sequence σ0, σ1, . . . of elements of Fq by (σi)

∞
i=0. For

an integer m ≥ 1, an m-fold multisequence over Fq consists of m parallel streams of
sequences of elements of Fq. A multisequence may also be regarded as a sequence of
vectors, and this viewpoint will be useful in Section 4. Strictly speaking, for m = 1 we
have the case of a single sequence and not that of a multisequence in the usual sense, but
we include the case m = 1 for the sake of completeness. A single sequence is therefore
viewed as a 1-fold multisequence.
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Definition 1. Let Z = (Z(1), Z(2), . . . , Z(m)), Z(j) = (σ
(j)
i )∞i=0, 1 ≤ j ≤ m, be an m-

fold multisequence over the finite field Fq and let k, n ∈ N. The nth joint nonlinear

complexity of order k of the m-fold multisequence Z, denoted by N
(m)
k (Z, n), is the

smallest c ∈ N for which there exists a polynomial f ∈ Fq[x1, . . . , xc] of degree at most
k in each variable such that

σ
(j)
i+c = f(σ

(j)
i , σ

(j)
i+1, . . . , σ

(j)
i+c−1) for 0 ≤ i ≤ n− c− 1, 1 ≤ j ≤ m. (1)

This definition actually refers to the case where not all the first n terms of all sequences
Z(j), 1 ≤ j ≤ m, are equal to 0. Otherwise, we define N

(m)
k (Z, n) = 0.

Remark 1. We note that the definition of N
(m)
k (Z, n) in Definition 1 makes sense also

if Z is a finite m-fold multisequence over Fq of length at least n. We always have

0 ≤ N
(m)
k (Z, n) ≤ n.

Remark 2. In Definition 1 it suffices to consider the case where 1 ≤ k ≤ q − 1. This
follows from the well-known fact that, as a map, any polynomial f : F

c
q → Fq can

be represented by a polynomial over Fq in c variables of degree at most q − 1 in each
variable (see [8, pp. 368–369]). Thus, for k ≥ q − 1 all joint nonlinear complexities

N
(m)
k (Z, n) of a fixed Z are the same and equal to N

(m)
q−1(Z, n). For k = q−1 and m = 1,

N
(1)
q−1(Z, n) is equal to the nth maximum-order complexity introduced by Jansen [5] and

studied further in [3], [6], [7], [9], [10], and [17]. For arbitrary m ≥ 1, it is reasonable

to call N
(m)
q−1(Z, n) the nth joint maximum-order complexity of Z. The definition in [6,

Definition 1] may be viewed as a previous notion of joint maximum-order complexity.

We apply the joint nonlinear complexities in Definition 1 to the analysis of the well-
known family of explicit inversive pseudorandom sequences. We show that, by combining
suitably chosen explicit inversive pseudorandom sequences into multisequences, we can
construct multisequences with high joint nonlinear complexities. Sections 2 and 3 con-
tain appropriate constructions and results for two different types of explicit inversive
pseudorandom sequences. In Section 4, we establish a benchmark result on the behavior
of joint nonlinear complexities of random multisequences over Fq.

2 Explicit inversive pseudorandom number genera-

tor with period q

For a prime p and a positive integer r, let q = pr. We identify the finite prime field Fp

with the set Zp := {0, 1, . . . , p − 1} ⊂ Z with arithmetic modulo p. For a fixed basis
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{γ1, γ2, . . . , γr} of Fq over Fp, we define

ξn = n1γ1 + n2γ2 + · · ·+ nrγr for n = 0, 1, . . . , q − 1

if
n = n1 + n2p+ · · ·+ nrp

r−1 with n1, n2, . . . , nr ∈ Zp.

We extend the definition of the ξn periodically with period q, so that we have ξn+q = ξn
for all n ≥ 0.

We define an m-fold multisequence Sr = (S(1), S(2), . . . , S(m)), S(j) = (σ
(j)
i )∞i=0, 1 ≤

j ≤ m, over Fq by choosing β1, . . . , βm ∈ F
∗
q and putting

σ
(j)
i = (ξi + βj)

q−2 for i ≥ 0 and 1 ≤ j ≤ m. (2)

Note that Sr is periodic with least period q.
Form = 1 and r = 1 this generator was introduced in [2] and form = 1 and arbitrary

r in [16]. The linear complexity profile of this single sequence has been analyzed in [12]
(see [15] for the definition of the linear complexity profile). In [12], again for m = 1, the
nonlinear complexity profile (see [12] and [17]), which is a less general concept than the
concept in Definition 1, has been investigated for the explicit inversive pseudorandom
number generator (2). The nonlinear complexity profile for some recursively defined
generators has been estimated in [4]. For m greater than 1, the generator (2) was
first considered in [14], where bounds on its joint linear complexity profile have been
established (see again [15] for the definition of the joint linear complexity profile).

The objective in this section is to analyze the nth joint nonlinear complexity of
order k of the m-fold multisequence (2). To the best of our knowledge, this is the first
treatment of the joint nonlinear complexity of a concrete multisequence generator.

We put
W (a) = min(a, p− a) for any a ∈ Zp.

For any α ∈ Fq, let

α = a1γ1 + a2γ2 + · · ·+ arγr with a1, a2, . . . , ar ∈ Zp

be the unique representation of α as a linear combination of the basis elements γ1, γ2, . . . , γr.
Then we define

||α|| =
r
∑

s=1

W (as)p
s−1.

For later use, we note that ||α|| = || − α|| for all α ∈ Fq.
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Let m be an integer with 1 ≤ m ≤ q − 1. We choose pairwise distinct elements
β1, . . . , βm ∈ F

∗
q . For m ≥ 2 we define the minimum distance dr between β1, . . . , βm as

dr = dr(β1, . . . , βm) = min
1≤j1<j2≤m

||βj1 − βj2|| for m ≥ 2.

For m = 1, by convention dr := q. Note that we always have 1 ≤ dr ≤ q. We also
remark that our definition of dr is a corrected version of the definition in [14]. The
results in [14] on the joint linear complexity profile hold with our definition of dr.

Theorem 1. Let Sr be an m-fold multisequence over Fq of the form (2) with 1 ≤ m ≤
q − 1 and pairwise distinct β1, . . . , βm ∈ F

∗
q. Then for integers 1 ≤ k ≤ q − 1 and

1 ≤ n ≤ q − 1, the nth joint nonlinear complexity of order k of Sr satisfies

N
(m)
k (Sr, n) ≥ min

(

n

2
,

√

mn

4(k + 3)
, dr,

√

m(dr + 1)

4(k + 3)

)

.

Proof. We fix k, m, and n, and so we may use the abbreviated notation N
(m)
k (Sr, n) =

cn = c. Note that c > 0 since σ
(j)
0 = β−1

j , hence every component sequence S(j),
1 ≤ j ≤ m, starts with a nonzero element of Fq.

First we consider the case where n < c + dr + 1. Suppose that f ∈ Fq[x1, . . . , xc],
1 ≤ c ≤ n− 1, is a polynomial of degree at most k in each variable such that

σ
(j)
i+c = f(σ

(j)
i , σ

(j)
i+1, . . . , σ

(j)
i+c−1) for 0 ≤ i ≤ n− c− 1, 1 ≤ j ≤ m.

Then for those integers 0 ≤ i ≤ n − c − 1, 1 ≤ j ≤ m, for which ξi+l + βj 6= 0 for all
l = 0, 1, . . . , c, we have

− 1

ξi+c + βj

+ f

(

1

ξi + βj

,
1

ξi+1 + βj

, . . . ,
1

ξi+c−1 + βj

)

= 0. (3)

We exclusively consider those integers i, 0 ≤ i ≤ n − c − 1, for which we additionally
have ξi+l = ξi + ξl for all 0 ≤ l ≤ c. Then (3) is equivalent to

− 1

ξi + ξc + βj

+ f

(

1

ξi + βj

,
1

ξi + ξ1 + βj

, . . . ,
1

ξi + ξc−1 + βj

)

= 0. (4)

Consequently, all elements of the form

λ = ξi + βj for 0 ≤ i ≤ n− c− 1, 1 ≤ j ≤ m, (5)

4



such that
ξi+l = ξi + ξl and λ+ ξl 6= 0 for 0 ≤ l ≤ c

are zeros of the rational function

R(z) = − 1

z + ξc
+ f

(

1

z
,

1

z + ξ1
, . . . ,

1

z + ξc−1

)

. (6)

We may suppose that c < dr (and thus c < q), for otherwise the lower bound in

the theorem holds trivially. Then −ξc is not a pole of f
(

1
z
, 1
z+ξ1

, . . . , 1
z+ξc−1

)

, hence

R(z) = g(z)/h(z) 6= 0 ∈ Fq(z). If R = g/h is reduced to lowest degree terms, then by
the definition of R the polynomials g, h ∈ Fq[z] satisfy deg(g) ≤ deg(h) ≤ kc+ 1.

To estimate the number of elements of the form (5), we define integers 0 ≤ v < r,
0 ≤ w < r, 1 ≤ Nv < p, and 1 ≤ Lw < p by

Nvp
v ≤ n < (Nv + 1)pv and Lwp

w ≤ c < (Lw + 1)pw.

Since c ≤ n, we have w < v or w = v and Lv ≤ Nv.
First suppose that w < v. Then (compare with [14, Section 3]) we have ξi+l = ξi+ξl,

0 ≤ l ≤ c, for ξi with i = hwp
w + · · ·+ hvp

v, where hw, . . . , hv ∈ Zp, 0 ≤ hw < p− Lw,
and 0 ≤ hv < Nv. Note that i+ l ≤ i+ c ≤ n− 1. Consequently, we have at least

Nv(p− Lw)p
v−w−1 >

Nv

Nv + 1

(p− Lw)Lwn

pc
≥ n

4c
(7)

distinct elements ξi satisfying ξi+l = ξi + ξl, 0 ≤ l ≤ c.
We show next that the elements ξi + βj in (5), with i as in the preceding paragraph,

are all distinct if n < c+dr+1. So suppose that ξi1 +βj1 = ξi2 +βj2 with 1 ≤ j1, j2 ≤ m
and j1 6= j2. Then

ξi1 − ξi2 = βj2 − βj1 = bwγw+1 + bw+1γw+2 + · · ·+ bvγv+1

with bw, bw+1, . . . , bv ∈ Zp. We may assume that 0 ≤ bv < Nv, otherwise we consider the
equality ξi2 − ξi1 = βj1 − βj2. By the definitions of ||βj1 − βj2 || and dr, we have

dr ≤ ||βj1 − βj2|| = ewp
w + ew+1p

w+1 + · · ·+ evp
v,

where ew, ew+1, . . . , ev ∈ Zp, 0 ≤ ew ≤ p− Lw − 1, and 0 ≤ ev ≤ Nv − 1. Consequently,

n− c > Nvp
v − (Lw + 1)pw

= (Nv − 1)pv +

v−1
∑

s=w+1

(p− 1)ps + (p− Lw − 1)pw

≥
v
∑

s=w

esp
s = ||βj1 − βj2 || ≥ dr,
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which contradicts n < c+ dr + 1.
As a consequence, the rational function R has at least m n

4c
− (c+ 1) distinct zeros.

Therefore, together with the previous upper bound on the degree of the numerator g of
R, we obtain kc+ 1 ≥ mn

4c
− (c+ 1), thus c(k + 3) ≥ c(k + 1) + 2 ≥ mn

4c
, or equivalently

c ≥
√

mn

4(k + 3)
.

Secondly, we investigate the case where w = v. If Lv = Nv, then c ≥ Nvp
v >

(Nv/(Nv + 1))n ≥ n/2. Now let w = v and Nv ≥ Lv + 1 ≥ 2. Then we have ξi+l =
ξi + ξl for 0 ≤ l ≤ c for at least the (Nv − Lv) distinct elements ξi with i = hvp

v and
0 ≤ hv ≤ Nv − Lv − 1. As before, we want to show that the elements ξi + βj in (5) are
distinct if n < c+dr +1, where now i = hvp

v and 0 ≤ hv ≤ Nv −Lv −1. Note that then
ξi = hvγv+1, so if we had hvγv+1 + βj1 = h′

vγv+1 + βj2 with 0 ≤ hv < h′
v ≤ Nv − Lv − 1,

then
dr ≤ ||βj1 − βj2 || = ||(h′

v − hv)γv+1|| ≤ (Nv − Lv − 1)pv < n− c,

which is a contradiction.
It follows that the rational function R has at least m(Nv − Lv)− c− 1 zeros, hence

c(k + 3) ≥ c(k + 1) + 2 ≥ m(Nv − Lv). (8)

Suppose that

m > 3

(

Lv

Nv + 1

)2

(k + 3)n.

Then (8) yields

c ≥ m(Nv − Lv)

k + 3
>

√
mn

(Nv − Lv)Lv

√
3

(Nv + 1)
√
k + 3

≥
√

mn

3(k + 3)
.

Otherwise, we have
(

Lv

Nv + 1

)2

≥ m

3n(k + 3)

and we again obtain

c ≥ Lvp
v >

Lv

Nv + 1
n ≥

√

mn

3(k + 3)
.

Altogether, assuming that n < c + dr + 1, we have

c ≥ min

(

n

2
,

√

mn

4(k + 3)

)

.
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If n ≥ cn + dr + 1 = c + dr + 1, then c ≥ cdr+c. Hence by what we have already

shown, we have either c ≥ dr+c
2

, i.e., c ≥ dr, or c ≥
√

m(dr+c)
4(k+3)

≥
√

m(dr+1)
4(k+3)

. Now the

desired lower bound on c is proved in all cases. ✷

3 Explicit inversive pseudorandom number genera-

tor with period t

Let Fq be the finite field with q ≥ 3 elements, let t be a positive divisor of q− 1, and let
γ ∈ F

∗
q be an element of order t. Let m be an integer with 2 ≤ m ≤ q − 1. We choose

pairwise distinct elements α1, . . . , αm ∈ F
∗
q and an element β ∈ F

∗
q. Then we define an

m-fold multisequence Z = (Z(1), Z(2), . . . , Z(m)), Z(j) = (σ
(j)
i )∞i=0, 1 ≤ j ≤ m, over Fq by

σ
(j)
i = (αjγ

i − β)q−2 for i ≥ 0 and 1 ≤ j ≤ m. (9)

Note that Z is periodic with least period t.
The generator (9) has been introduced in [13] and its linear complexity profile has

been investigated. In [14, Section 4] the nth joint linear complexity L
(m)
n (Z) of the

multisequence (9) has been analyzed. In particular, it has been shown that some of those

multisequences satisfy L
(m)
n (Z) ≥ mn/(m + 1) for small values of n, i.e. they exhibit

a perfect joint linear complexity profile (cf. [18]). Lower bounds on the nth nonlinear
complexity of order k, defined as in Definition 1 for m = 1, of the generator (9) were
obtained in [17]. The results slightly improve bounds for the generators in [4, 12]. In this
section, an analysis of the nth joint nonlinear complexity of order k of the generator (9)
is given for arbitrary values of m ≥ 2. The results suggest that the multisequences (9)
also possess an excellent behavior with respect to joint nonlinear complexity.

For ξ ∈ F
∗
q we define

||ξ||t = b if ξ = γb with 0 ≤ b < t

and ||ξ||t = t if ξ does not belong to the cyclic subgroup 〈γ〉 of F∗
q generated by γ.

Furthermore, we define

δt = δt(α1, . . . , αm) = min
1≤j1,j2≤m

j1 6=j2

||αj1α
−1
j2
||t.

Note that we always have 1 ≤ δt ≤ t.
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Theorem 2. Let γ ∈ F
∗
q with q ≥ 3 be an element of order t and let Z be an m-

fold multisequence over Fq of the form (9) with 2 ≤ m ≤ q − 1. Then for integers

1 ≤ k ≤ q − 1 and n ≥ 1, the nth joint nonlinear complexity of order k of Z satisfies

N
(m)
k (Z, n) ≥ min

(

mn− 2

m+ k + 1
,
δtm− 2

k + 1
, t

)

.

Proof. Since the joint nonlinear complexity of order k is invariant under the termwise
multiplication of all component sequences with a fixed element from F

∗
q , we may assume

that β = 1. We fix k, m, and n, and we write c = N
(m)
k (Z, n). We have c > 0 since

σ
(j)
0 = (αj − 1)q−2 6= 0 for at least one j with 1 ≤ j ≤ m.
Suppose that f ∈ Fq[x1, . . . , xc], 1 ≤ c ≤ n− 1, is a polynomial of degree at most k

in each variable such that

σ
(j)
i+c = f(σ

(j)
i , σ

(j)
i+1, . . . , σ

(j)
i+c−1) for 0 ≤ i ≤ n− c− 1, 1 ≤ j ≤ m.

Consequently, for those integers 0 ≤ i ≤ n − c − 1 and indices j for which αjγ
i+l 6= 1

for 0 ≤ l ≤ c, we have

− 1

αjγi+c − 1
+ f

(

1

αjγi − 1
,

1

αjγi+1 − 1
, . . . ,

1

αjγi+c−1 − 1

)

= 0.

Hence all elements of the form

λ = αjγ
i for 0 ≤ i ≤ n− c− 1, 1 ≤ j ≤ m,

such that
αjγ

i+l 6= 1 for 0 ≤ l ≤ c

are zeros of the rational function

R(z) = − 1

γcz − 1
+ f

(

1

z − 1
,

1

γz − 1
, . . . ,

1

γc−1z − 1

)

= − 1

γcz − 1
+

G(z)

H(z)
.

We can suppose that c < t. Then the element γ−c is not a root of H(z) and consequently
not a root of H(z)− (γcz − 1)G(z). Hence R(z) 6= 0 ∈ Fq(z).

Write R in reduced form as g/h with g, h ∈ Fq[z] and gcd(g, h) = 1. By the definition
of R we have deg(g) ≤ deg(h) ≤ kc+1. If n ≤ δt+c, then allm(n−c) elements λ = αjγ

i,
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0 ≤ i ≤ n − c − 1, 1 ≤ j ≤ m, are distinct. Hence g has at least m(n − c) − (c + 1)
roots. It follows that

m(n− c)− (c+ 1) ≤ deg(g) ≤ kc+ 1,

and so c ≥ (mn− 2)/(k +m+ 1). If n > δt + c, then all mδt elements αjγ
i, 0 ≤ i < δt,

1 ≤ j ≤ m, are distinct, and so g has at least mδt − (c + 1) roots. It follows that
c ≥ (mδt − 2)/(k + 1). ✷

For the case where t < q − 1, the bound in Theorem 2 can be improved if all αj ,
1 ≤ j ≤ m, are chosen not to be in the coset β〈γ〉 of 〈γ〉.
Corollary 1. Let γ ∈ F

∗
q with q ≥ 3 be an element of order t < q− 1, let αj ∈ F

∗
q \β〈γ〉

for 1 ≤ j ≤ m, and let Z be an m-fold multisequence over Fq of the form (9) with

2 ≤ m ≤ q − 1− t. Then for integers 1 ≤ k ≤ q − 1 and n ≥ 1, the nth joint nonlinear

complexity of order k of Z satisfies

N
(m)
k (Z, n) ≥ min

(

mn− 1

m+ k
,
δtm− 1

k
, t

)

.

Proof. As in the proof of Theorem 2, we can assume that β = 1. Since we then
suppose that αjγ

r 6= 1 for all 1 ≤ j ≤ m and for all integers r, we need not subtract c+1
when estimating the number of roots of g in the proof of Theorem 2. Consequently, if
n ≤ δt+c, then g has at least m(n−c) roots, and so c ≥ (mn−1)/(k+m). If n > δt+c,
then g has at least mδt roots, and hence c ≥ (mδt − 1)/k. ✷

4 A probabilistic result

We establish a probabilistic result on the behavior of joint nonlinear complexities of
random multisequences over the finite field Fq, where q is an arbitrary prime power. For
a positive integer m, the set of all m-fold multisequences over Fq can be identified with
the set (Fm

q )
∞ of all sequences over Fm

q . In other words, (Fm
q )

∞ is the Cartesian product
of denumerably many copies of Fm

q . We introduce a canonical probability measure on
(Fm

q )
∞ as follows. Let µq,m be the uniform probability measure on F

m
q which assigns

the measure q−m to each element of Fm
q . Then µ∞

q,m is the complete product probability
measure on (Fm

q )
∞ induced by µq,m.

We say that a property of m-fold multisequences Z ∈ (Fm
q )

∞ holds µ∞
q,m-almost

everywhere if it holds for a set of m-fold multisequences Z of µ∞
q,m-measure 1. We may

view such a property as a typical property of a random m-fold multisequence over Fq.
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Theorem 3. Let k and m be integers with 1 ≤ k ≤ q− 1 and m ≥ 1. Then µ∞
q,m-almost

everywhere we have

lim inf
n→∞

(

N
(m)
k (Z, n)− log(mn)

log(k + 1)

)

≥ 0.

Proof. We fix k, m, and q throughout the proof. For n, r ∈ N with r ≤ n, let T
(m)
k,n (r)

be the number of m-fold multisequences Zn over Fq of length n with N
(m)
k (Zn, n) ≤

r. We view each Zn as a finite sequence Zn = (si)
n−1
i=0 of vectors si ∈ F

m
q . Each

sequence Zn = (si)
n−1
i=0 counted by T

(m)
k,n (r) is (not necessarily uniquely) determined by a

polynomial f ∈ Fq[x1, . . . , xr] of degree at most k in each variable and by initial vectors
s0, s1, . . . , sr−1 ∈ F

m
q in a vector recursion

si+r = f(si, si+1, . . . , si+r−1) for 0 ≤ i ≤ n− r − 1.

Here we have written a recursion of the form (1) in vector notation in an obvious
manner, i.e., the polynomial f operates on each of the m components of the vectors
si, si+1, . . . , si+r−1. The number of possibilities for f is q(k+1)r and the number of possi-
bilities for the r initial vectors from F

m
q is qmr. Therefore

T
(m)
k,n (r) ≤ q(k+1)r+mr for 1 ≤ r ≤ n. (10)

Now we fix ε > 0 and put

Bn =
log(mn)

log(k + 1)
− ε for n = 1, 2, . . .

and
An = {Z ∈ (Fm

q )
∞ : N

(m)
k (Z, n) ≤ Bn} for n = 1, 2, . . . .

We have 1 ≤ ⌊Bn⌋ ≤ n for sufficiently large n. Since N
(m)
k (Z, n) depends only on the

first n terms of Z, the bound (10) yields

µ∞
q,m(An) = q−mnT

(m)
k,n (⌊Bn⌋) ≤ q(k+1)Bn+mBn−mn (11)

for sufficiently large n. The definition of Bn implies that

(k + 1)Bn +mBn −mn < n
( m

(k + 1)ε
+

m log(mn)

n log(k + 1)
−m

)

.

Now

lim
n→∞

( m

(k + 1)ε
+

m log(mn)

n log(k + 1)
−m

)

=
m

(k + 1)ε
−m < 0,
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and so for some 0 < δ < 1 we have

(k + 1)Bn +mBn −mn < −δn

for sufficiently large n. It follows then from (11) that
∑∞

n=1 µ
∞
q,m(An) < ∞. Then the

Borel-Cantelli lemma (see [1, Lemma 3.14] and [11, p. 228]) shows that the set of all
Z ∈ (Fm

q )
∞ for which Z ∈ An for infinitely many n has µ∞

q,m-measure 0. In other words,
µ∞
q,m-almost everywhere we have Z ∈ An for at most finitely many n. By the definition

of An, this means that µ∞
q,m-almost everywhere the inequality

N
(m)
k (Z, n) > Bn =

log(mn)

log(k + 1)
− ε

is satisfied for sufficiently large n. Consequently, µ∞
q,m-almost everywhere we have

lim inf
n→∞

(

N
(m)
k (Z, n)− log(mn)

log(k + 1)

)

≥ −ε.

By applying this for all ε = 1/l with l ∈ N and noting that the intersection of countably
many sets of µ∞

q,m-measure 1 has again µ∞
q,m-measure 1, we obtain the result of the

theorem. ✷

Remark 3. For k = q − 1 and m = 1, that is, for the maximum-order complexity
(see Remark 2), results of Jansen [5] and Erdmann and Murphy [3] demonstrate that

the expected value of N
(1)
q−1(Z, n) behaves asymptotically like (logn)/(log q), up to an

absolute constant. On the basis of these results and of Theorem 3, we venture the
conjecture that for any m ≥ 1 we have

lim
n→∞

N
(m)
q−1(Z, n)

log(mn)
= C(m)

q µ∞
q,m-almost everywhere,

where the constant C
(m)
q > 0 depends only on q and m. In view of the heuristic that the

expected order of magnitude of N
(m)
k (Z, n) for random m-fold multisequences Z over Fq

is log(mn), it is clear that the multisequences in Sections 2 and 3 can be said to have
high joint nonlinear complexity under suitable conditions on their parameters.
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