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Abstract Linear codes with few weights have applications in secrete sharing, authentication
codes, association schemes, and strongly regular graphs. In this paper, several classes ofp-
ary linear codes with two or three weights are constructed from quadratic Bent functions
over the finite fieldFp, wherep is an odd prime. They include some earlier linear codes as
special cases. The weight distributions of these linear codes are also determined.
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1 Introduction

Throughout this paper, letp be an odd prime andm be a positive integer. An[n,κ,d] linear
code over the finite fieldFp is aκ-dimensional subspace ofFn

p with minimum (Hamming)
distanced. Let Ai denote the number of codewords with Hamming weighti in a codeC of
lengthn. The weight enumerator ofC is defined by

1+A1z+A2z2+ · · ·+Anzn.
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The sequence(A1,A2, · · · ,An) is called the weight distribution of the code. Clearly, the
weight distribution gives the minimum distance of the code,and thus the error correcting
capability. In addition, the weight distribution of a code allows the computation of the error
probability of error detection and correction with respectto some error detection and error
correction algorithms (see [16] for details). Thus the study of the weight distribution of a
linear code is an important research topic in coding theory.A linear codeC is said to be
t-weight if the number of nonzeroAi in the sequence(A1,A2, · · · ,An) is equal tot.

It is well known that linear codes have important applications in consumer electronics,
communication and data storage system. Besides, linear codes with few weights have also
applications in secret sharing [2,27], authentication codes [8], association schemes [1], and
strongly regular graphs [1]. Very recently, Dinget al. proposed a general construction of
linear codes from a subsetD of Fpm and the trace function fromFpm to Fp [6,7]. This con-
struction can generate two-weight and three-weight linearcodes with excellent parameters
if the subsetD is appropriately chosen.

The objective of this paper is to present a construction of two-weight or three-weight
linear codes based on quadratic Bent functions. It works forany quadratic Bent function
overFp, and includes the construction in [7] as a special case. The weight distribution of the
resultant linear codes are determined. Some of the linear codes obtained in this paper are
optimal in the sense that they meet some bounds on linear codes.

The rest of this paper is organized as follows. Section 2 introduces basic theory of
quadratic forms over finite fields which will be needed in subsequent sections. Section 3
establishes a bridge from quadratic Bent functions to linear codes with two or three weights,
and settles the weight distributions of linear codes from quadratic Bent functions. Finally,
Section 4 concludes this paper and makes some comments.

2 Quadratic forms over finite fields

IdentifyingFpm with them-dimensionalFp-vector spaceFm
p , a functionQ(x) fromFpm toFp

can be regarded as anm-variable polynomial overFp. The former is called a quadratic form
overFp if the latter is a homogeneous polynomial of degree two in theform

Q(x1,x2, · · · ,xm) = ∑
1≤i≤ j≤m

ai j xixj ,

whereai j ∈ Fp, and we use a basis{β1,β2, · · · ,βm} of Fpm overFp and identifyx= ∑m
i=1 xiβi

with the vector ¯x= (x1,x2, · · · ,xm) ∈ Fm
p . We writex̄ when an element is to be thought of as

a vector inFm
p , and writex when the same vector is to be thought of as an element ofFpm.

The rank of the quadratic formQ(x) is defined as the codimension of theFp -vector space

V = {y∈ Fpm : Q(x+y)−Q(x)−Q(y) = 0 for all x∈ Fpm}.

That is|V|= pm−r wherer is the rank ofQ(x).
Quadratic forms have been well studied (see [21], [14], [15], for example). Here we

follow the treatment in [14] and [15]. It should be noted thatthe rank of a quadratic form
overFp is the smallest number of variables required to represent the quadratic form, up to
nonsingular coordinate transformations. Mathematically, any quadratic form of rankr can
be transferred to three canonical forms as follows. Throughout this section, letB2 j(x̄) =
x1x2+x3x4+ · · ·+x2 j−1x2 j where j ≥ 0 is an integer (we assume thatB0 = 0 when j = 0).
Let ν(x) be a function overFp defined byν(0) = p−1 andν(ζ) =−1 for anyζ ∈ F∗

p.
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Lemma 1 ([15]) Let Q(x) be a quadratic form overFp of rank r in m variables. Then Q(x)
is equivalent (under a change of coordinates) to one of the following three standard types:

Type I: Br (x̄), r even;

Type II: Br−1(x̄)+µx2
m, r odd;

Type III: Br−2(x̄)+x2
r−1− ςx2

r , r even;
where µ∈ {1,ς} andς is a fixed nonsquare inFp. Furthermore, for anyζ ∈ Fp, the number
of solutionsx̄∈ Fm

p to the equation Q(x̄) = ζ is:

Type I: pm−1+ν(ζ)pm−r/2−1;

Type II: pm−1+η(µζ)pm−(r+1)/2;

Type III: pm−1−ν(ζ)pm−r/2−1;
whereη is the quadratic (multiplicative) character ofFp andη(0) is assumed to be 0.

An interesting class of quadratic forms is the quadratic form with full rank since in this
case the corresponding functions are Bent functions. Letf be a function fromFpm to Fp.
The Walsh transform off at the pointλ ∈ Fpm is defined as

f̂ (λ) = ∑
x∈Fpm

ω f (x)−Trm
1 (λx)

p ,

whereωp = e2π
√
−1/p is a primitive p-th root of unity and Trm1 (x) = ∑m−1

i=0 xpi
is the trace

function fromFpm to Fp.
The function f is called a Bent function if| f̂ (λ)|= pm/2 for all λ ∈ Fpm. Bent function

was introduced by Rothaus in [23] for boolean functions, namely the case ofp= 2, and later
was generalized by Kumar, Scholtz, and Welch in [19] forp> 2.

The following result was proven in [26].

Lemma 2 ([26]) Let Q(x) be a quadratic form fromFpm to Fp with full rank m. Then
∣∣∣∣∣ ∑
x∈Fpm

ωQ(x)−Trm
1 (λx)

p

∣∣∣∣∣= pm/2

for anyλ ∈ Fpm.

It can be readily verified from Lemma 2 that a quadratic formQ(x) from Fpm to Fp is
a Bent function if and only if it has full rank. In the next section, we will employ quadratic
Bent functions to construct linear codes with few weights. Before doing this, we first give
two lemmas that will be used to prove the main result of the paper.

The following follows directly from Lemma 1.

Lemma 3 Let Q(x) be a quadratic Bent function fromFpm to Fp. Define

DQ = {x∈ F∗
pm : Q(x) = 0}.

Then
|DQ|= pm−1−1

if m is odd, and otherwise

|DQ|= pm−1+ ε(p−1)p
m−2

2 −1, (1)

here and hereinafterε = 1 if Q(x) is equivalent to Type I andε = −1 if Q(x) is equivalent
to Type III.
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Lemma 4 Let Q(x) be a quadratic Bent function fromFpm to Fp. For any b∈ Fpm, define

DQ,b = {x∈ F∗
pm : Q(x) = 0 andTrm

1 (bx) = 0}
and

Nb = |DQ,b|.
Then Nb has the following distribution as b runs throughFpm:

Nb =





pm−1+ ε(p−1)p
m−2

2 −1, 1 time

pm−2−1, (p−1)
(

pm−1− εp
m−2

2

)
times

pm−2+ ε(p−1)p
m−2

2 −1, pm−1+ ε(p−1)p
m−2

2 −1 times

if m is even, and otherwise

Nb =





pm−1−1, 1 time
pm−2−1, pm−1−1 times

pm−2+(p−1)p
m−3

2 −1, p−1
2

(
pm−1+ p

m−1
2

)
times

pm−2− (p−1)p
m−3

2 −1, p−1
2

(
pm−1− p

m−1
2

)
times.

Proof Whenb= 0, it is clear that

Nb = N0 = |DQ|.
The value ofN0 is thus determined due to Lemma 3. Therefore we only need to calculateNb

for b∈F∗
pm. To this end, we suppose that{α1,α2, · · · ,αm} and{β1,β2, · · · ,βm} are dual basis

of Fpm overFp. Using these bases, we writex = x1β1+x2β2 + · · ·+xmβm andb= b1α1+
b2α2+ · · ·+bmαm for x,b∈ Fpm, where ¯x= (x1,x2, · · · ,xm) ∈ Fm

p andb̄= (b1,b2, · · · ,bm) ∈
Fm

p . Then we have

Nb = N(0,0)−1, (2)

whereN(0,0) is the number of solutions ¯x∈ Fm
p to the equation system

{
Q(x̄) = 0
b̄· x̄= 0

whereb̄ · x̄= b1x1+b2x2+ · · ·+bmxm is the inner product of the vectors̄b andx̄. Let

Q̂(x̄) =





Bm(x̄), if Q(x) is equivalent to Type I

Bm−1(x̄)+
x2

m
4µ, if Q(x) is equivalent to Type II

Bm−2(x̄)+
x2

m−1
4 − x2

m
4ς , if Q(x) is equivalent to Type III

whereµ∈ {1,ς} andς is a fixed nonsquare inFp, as defined in Lemma 1. Note thatQ̂(x̄) is
equivalent toQ(x̄) under a change of coordinates. ThusQ̂(x̄) andQ(x̄) are equivalent to the
same standard type. Thanks to Proposition 3.4 in [15], we have

N(0,0) =

{
pm−2+ ε(p−1)p

m−2
2 , if Q̂(b̄) = 0

pm−2, if Q̂(b̄) 6= 0
(3)

if m is even and otherwise

N(0,0) =

{
pm−2, if Q̂(b̄) = 0
pm−2+η(µQ̂(b̄))(p−1)p

m−3
2 , if Q̂(b̄) 6= 0

(4)

whereη is the quadratic character ofFp and η(0) is assumed to be 0. By (2), the value
distribution ofNb for evenm (resp., oddm) then follows from Equation (3) (resp., (4)), and
the number of solutions̄b∈ Fm

p to Q̂(b̄) = ζ given in Lemma 1, whereζ ∈ Fp.
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3 Linear Codes with Two or Three Weights From Quadratic Bent Functions

In this section, inspired by the work of Dinget al. [6,7], we shall construct several classes
of linear codes with two or three weights employing quadratic forms over finite fieldFp.
Before doing this, we give a brief introduction to the construction of linear codes proposed
by Dinget al. recently [6], [7].

Let D = {d0,d1, · · · ,dn−1} be anyn-subset ofFpm. Define a linear codeCD of lengthn
from D as follows:

CD := {cb : b∈ Fpm}, (5)

where

cb = (Trm
1 (bd0),Trm

1 (bd1), · · · ,Trm
1 (bdn−1)). (6)

Clearly, the dimension ofCD is at mostm. In general, it is difficult to determine the min-
imal distance ofCD not to mention the weight distribution. However, the weightdistribution
of CD can be settled in some cases [6], [7]. For example, whenD = {x∈ F∗

pm : Trm
1 (x

2) = 0}
and p is an odd prime, the weight distribution ofCD was completely determined in [7]. It
turns out in [7] thatCD is two-weight for evenm and three-weight for oddm. Note that
Trm

1 (x
2) is a quadratic Bent function overFp. This inspires us to construct linear code from

general quadratic Bent functions overFp.
Let Q(x) be a quadratic Bent function fromFpm to Fp. Define

DQ = {x∈ F∗
pm : Q(x) = 0}, (7)

and a linear codeCDQ according to (5). For the codeCDQ, we have the following results.

Table 1: The weight distribution ofCDQ for odd
m.

Weightw No. of codewordsAw

0 1

(p−1)(pm−2− p
m−3

2 ) p−1
2 (pm−1+ p

m−1
2 )

(p−1)pm−2 pm−1−1

(p−1)(pm−2+ p
m−3

2 ) p−1
2 (pm−1− p

m−1
2 )

Table 2: The weight distribution ofCDQ for evenm.

Weightw No. of codewordsAw

0 1

(p−1)pm−2 pm−1+ ε(p−1)p
m−2

2 −1

(p−1)(pm−2+ εp
m−2

2 ) (p−1)(pm−1− εp
m−2

2 )

Theorem 1 If m is odd, thenCDQ is a three-weight[pm−1 − 1,m] code overFp with the
weight distribution in Table 1.
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Proof According to the definition ofCDQ, its length is equal to|DQ|. By Lemma 3,|DQ| =
pm−1−1 whenm is odd. For any codewordcb in CDQ, according to the definition, its Ham-
ming weight is equal to

WT(cb) = |DQ|− |DQ,b|

where
DQ,b = {x∈ F∗

pm : Q(x) = 0 and Trm1 (bx) = 0}.

Then, the weight distribution ofCDQ follows from Lemmas 3 and 4. Finally, the dimension
of CDQ follows from its weight distribution.

Theorem 2 If m is even, thenCDQ is a two-weight[pm−1+ ε(p−1)p
m−2

2 −1,m] code over
Fp with the weight distribution in Table 2, whereε = 1 if Q(x) is equivalent to Type I and
ε =−1 if Q(x) is equivalent to Type III.

Proof The proof of this theorem is similar to that of Theorem 1.

Theorems 1 and 2 imply that any quadratic Bent function overFp naturally gives a
two-weight or three-weight linear code. In the remainder ofthis section, we shall introduce
several classes of linear codes from some known quadratic Bent functions.

3.1 Linear Codes From Some Known Planar Functions

A function π(x) from Fpm to Fpm is referred to as perfect nonlinear if

max
a∈F∗

pm

max
b∈Fpm

|{x∈ Fpm : π(x+a)−π(x) = b}| = 1.

A perfect nonlinear function from a finite field to itself is also called a planar function in
finite geometry [4]. Some known quadratic planar functions fromFpm toFpm are summarized
as follows

(a) π(x) = x2;
(b) π(x) = xpk+1 wherem/gcd(m,k) is odd [5];
(c) π(x) = x10−x6−x2 wherep= 3 andm is odd [4];
(d) π(x) = x10−ux6−u2x2 wherep= 3, m is odd andu∈ F∗

pm [9];

(e) π(x) = xps+1−upk−1xpk+p2k+s
wherem= 3k, gcd(k,3) = 1, k−s≡ 0 (mod 3), s 6= k and

k/gcd(k,s) is odd, andu is a primitive element ofFpm [28].

It is well known that every component function Trm
1 (cπ(x)),c∈ F∗

pm of a planar function
π(x) over Fpm is a Bent function [3]. Thus, for any planar functionπ(x) listed as above,
one obtains thatQ(x) = Trm

1 (cπ(x)) is a quadratic Bent function overFp. Using these planar
functions, we can obtain linear codes with two or three weights according to Theorems 1
and 2.

Corollary 1 Let π(x) be any planar function listed above and Q(x) = Trm
1 (cπ(x)), where

c∈ F∗
pm. Then

1. CDQ is a three-weight[pm−1−1,m] code overFp with the weight distribution in Table 1
if m is odd; and
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2. CDQ is a two-weight[pm−1+ε(p−1)p
m−2

2 −1,m] code overFp with the weight distribu-

tion in Table 2 if m is even. Furthermore,ε= η(c)(−1)(
p−1

2 )2 m
2 +1 for the planar functions

listed in (a) and (b).

Proof According to Theorem 2, we only need to proveε = η(c)(−1)(
p−1

2 )2 m
2 +1 for the planar

functions listed in (a) and (b). Whenπ(x) = x2, similar as the proof of Theorem 2 in [7],
one can easily obtainε= η(c)(−1)(

p−1
2 )2 m

2 +1 for Q(x) = Trm
1 (cx2). Whenπ(x) = xpk+1 where

m/gcd(m,k) is odd. Note that gcd(pm−1, pk+1) = 2. We have

|{x∈ F∗
pm : Trm

1 (cxpk+1) = 0}|= |{x∈ F∗
pm : Trm

1 (cx2) = 0}|.

By Lemma 3,ε = η(c)(−1)(
p−1

2 )2 m
2 +1 for Q(x) = Trm

1 (cxpk+1).

It will be nice if the sign ofε for the planar function given in (e) with evenm can be
determined. This can be done if we can determine the equivalent type of the corresponding
Bent function.

Example 1Let p= 3, m= 5, andQ(x) = Trm
1 (x

10−x6−x2). The Magma program shows
thatCDQ has parameters[80,5,48] and weight enumerator 1+90z48+80z54+72z60, which
agrees with the result in Corollary 1.

Example 2Let p = 3, m= 6, β be a primitive element ofF36. WhenQ(x) = Trm
1 (x

p2+1),
the Magma program shows thatCDQ has parameters[224,6,144] and weight enumerator

1+504z144+224z162. WhenQ(x) = Trm
1 (βxp2+1), the Magma program shows thatCDQ has

parameters[260,6,162] and weight enumerator 1+260162+468z180. The computer experi-
mental data agrees with the result in Corollary 1.

3.2 Linear Codes From Gold Class of Bent Functions

Let p be an odd prime andc= αt ∈ F∗
pm, whereα is a primitive element ofFpm andt is an

integer with 0≤ t ≤ pm−2. Then for anyj ∈ {1,2, · · · ,m}, Helleseth and Kholosha in [12]
proved that the quadratic function

Q(x) = Trm
1 (cxp j+1) (8)

is a Bent function if and only if

pgcd(2 j,m)−1 ∤
pm−1

2
− t(pj −1). (9)

Corollary 2 Let Q(x) be defined as(8) and it satisfies(9). ThenCDQ is a three-weight
[pm−1−1,m] code overFp with the weight distribution in Table 1 if m is odd, and for even m,
CDQ is a two-weight[pm−1+ ε(p−1)p

m−2
2 −1,m] code overFp with the weight distribution

in Table 2.

Observe that the Gold class of quadratic Bent functions defined by (8) covers several
known cases:

1. Sidelnikov Bent function: whenj = m, thenQ(x) is reduced toQ(x) = Trm
1 (cx2);

2. Kumar-Moreno Bent function: Kumar and Moreno in [18] showed thatf (x)=Trm
1 (x

pk+1)
is a Bent function, wherem/gcd(m,k) is odd andc∈ F∗

pm.
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3. Kasami Bent function: whenj = m/2, thenQ(x) is reduced toQ(x) = Trm
1 (cxpm/2+1)

which is a Bent function ifc+cpm/2 6= 0 [22].

Remark 1The Sidelnikov Bent function and the Kumar-Moreno Bent function are exactly
the Bent functions from the planar functionsπ(x) = x2 andπ(x) = xpk+1 mentioned in above
subsection.

Whenm is even, one should also note that the sign ofε can be determined by the value
of the Walsh transform ofQ(x) at the zero point. Let

Ni = |{x∈ Fpm : Q(x) = 0}|

for i = 0,1, · · · , p−1, then

Q̂(0) = ∑
x∈Fpm

ωQ(x)
p =

p−1

∑
i=0

Niωi
p.

Thus, the values ofNi for i = 0,1, · · · , p−1 can be determined by the value ofQ̂(0) and the
well known fact that the polynomial 1+x+x2 + · · ·+xp−1 is irreducible over the rational
number field. Therefore, the sign ofε can be determined by comparing the values ofN0 and
|DQ| given as in (1). This fact implies that the sign ofε in Corollary 2 can be determined
based on Lemma 2 given in [12] for any given parametersp,n, j andc. Using this method,
the sign ofε for the Kasami Bent function can be directly determined as follows.

Corollary 3 Let m be even and Q(x) = Trm
1 (cxpm/2+1) with c+cpm/2 6= 0. ThenCDQ is a two-

weight [pm−1 + ε(p− 1)p
m−2

2 − 1,m] code overFp with the weight distribution in Table 2
whereε =−1.

Proof According to Theorem 2, it is sufficient to show thatε = −1 for the Kasami Bent
function. Note thatxpm/2+1 runs through each element ofF∗

pm/2 exactly pm/2+1 times asx
ranges overF∗

pm. Thus for eachy∈ F∗
p, we have

∑
x∈F∗

pm

ωTrm
1 (ycxpm/2+1)

p = (pm/2+1) ∑
z∈F∗

pm/2

ωTrm
1 (ycz)

p =−1− pm/2.

It then follows that

|{x∈ F∗
pm : Q(x) = 0)}| = 1

p ∑
x∈F∗

pm

∑
y∈Fp

ωyTrm
1 (cxpm/2+1)

p

=
1
p


pm−1+ ∑

y∈F∗
p

∑
x∈F∗

pm

ωTrm
1 (ycxpm/2+1)

p




=
1
p
(pm−1− (p−1)(pm/2+1))

= pm−1− (p−1)p
m−2

2 −1.

Comparing this value with (1), one obtains thatε =−1. This completes the proof.

Example 3Let p= 3, m= 4 andQ(x) = Trm
1 (x

p2+1). The Magma program shows thatCDQ

has parameters[20,4,12] and weight enumerator 1+60z12+20z18, which agrees with the
result in Corollary 3. This code is optimal due to the Griesmer bound.
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Example 4Let p= 5, m= 4 andQ(x) = Trm
1 (x

p2+1). The Magma program shows thatCDQ

has parameters[104,4,80] and weight enumerator 1+520z80+104z100, which agrees with
the result in Corollary 3. This code is almost optimal since the best linear code of length 104
and dimension 4 overF5 has minimal weight 81.

3.3 Linear Codes From the Helleseth-Gong Function

The Helleseth-Gong (HG) functionH(x) from Fpm to Fp is defined by [11]

H(x) = Trm
1

(
ℓ

∑
i=0

uix
(p2i+1)/2

)
(10)

wherem= 2ℓ+1, 1≤ s≤ 2ℓ is an integer such that gcd(s,2ℓ+1) = 1, b0 = 1, bis = (−1)i

andbi = b2ℓ+1−i for i = 1,2, · · · , ℓ, u0 = b0/2 = (p+1)/2, andui = b2i for i = 1,2, · · · , ℓ.
Herein, all the indexes ofb’s are taken mod(2ℓ+1). The following result was proved by
Janget al. ([13], p. 1842).

Lemma 5 Let H(x) be the HG function defined by (10). Then Q(x) = H(x2) is a quadratic
Bent function.

The following follows immediately from Theorem 2 and Lemma 5.

Corollary 4 Let m be odd and Q(x) = H(x2) where H(x) is the HG function defined by
(10). ThenCDQ is a three-weight[pm−1−1,m] code overFp with the weight distribution in
Table 1.

Example 5Let p= 3, m= 5 and and the HG function in (10) be given byH(x) = Tr5
1(2x+

2x5 + x41). ThenQ(x) = Tr5
1(2x2 + 2x10+ x82). The Magma program shows thatCDQ has

parameters[80,5,48] and weight enumerator 1+90z48+80z54+72z60, which agrees with
the result in Corollary 4.

3.4 Linear Codes From Quadratic Bent Function in PolynomialForm

In general, up to equivalence (Section IV, [12]), any quadratic function having no linear term
overFpm can be expressed as the form of

Q(x) =
⌊m/2⌋

∑
i=0

Trm
1 (cix

pi+1), (11)

where⌊x⌋ denotes the largest integer not exceedingx andci ∈ Fpm for i = 0,1, · · · ,⌊m/2⌋.
For an odd primep, Helleseth and Kholosha proved thatQ(x) defined by (11) is Bent

if and only if a correspondingm×m symmetric matrix is nonsingular [12]. Normally, it
is difficult to determine whether a matrix of orderm has full rank or not. But for some
special cases, for example, the case ofci ∈ Fp for i = 0,1, · · · ,⌊m/2⌋, the Bentness ofQ(x)
defined by (11) can be determined easier [12,17]. Following the line of this work, Li, Tang
and Helleseth presented a large number of Bent functions of the form (11) withci ∈ Fp for
i = 0,1, · · · ,⌊m/2⌋ in a simple way [20]. Then, according to Theorems 1 and 2, linear codes
with two or three weights can be obtained.
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Corollary 5 Let Q(x) be defined as(11). If Q(x) is Bent, thenCDQ is a three-weight[pm−1−
1,m] code overFp with the weight distribution in Table 1 if m is odd, and for even m,CDQ

is a two-weight[pm−1+ ε(p−1)p
m−2

2 −1,m] code overFp with the weight distribution in
Table 2.

Example 6Let p= 3,m= 5 andQ(x)=Trm
1 (x

2+2xp+1+xp2+1). According to Corollary 11
in [20], Q(x) is a Bent function inF35. The Magma program shows thatCDQ has parameters
[80,5,48] and weight enumerator 1+90z48+80z54+72z60, which agrees with the result in
Corollary 5.

Remark 2Notice that Proposition 1 in [12] gave an explicit expression for the Walsh trans-
form values ofQ(x) defined by (11) based on the dual ofQ(x) and the determinant ofQ(x)
(i.e., the determinant of the corresponding matrix associated withQ(x)). However, it does
not help us to determine the sign ofε for evenm. This is because that one can determine
which Type ofQ(x) is equivalent to according to Lemma 1 if one knows the determinant of
Q(x). Thus, the determination of the sign ofε in Corollary 5 remains open. The reader is
invited to join the adventure.

Finally, we conclude this section by mentioning that all thecodes obtained above can be
punctured into a shorter ones whose weight distribution canbe easily derived from those of
the original codes. Note that for any quadratic Bent function Q(x), it is easy to verify that
Q(yx) = y2Q(x) for anyy∈ Fp. ThusQ(x) = 0 means thatQ(yx) = 0 for all y∈ F∗

p. Hence
the setDQ of (7) can be expressed as

DQ = F∗
pDQ = {yz: y∈ F∗

p and z∈ DQ} (12)

wherezi/zj /∈ F∗
p for each pair of distinct elementszi andzj in DQ. This implies thatCDQ

is
a punctured version ofCDQ. Notice that for anya∈ Fpm,

|{x∈ DQ : Q(x) = 0 and Trm1 (ax) = 0}|
= (p−1)|{x∈ DQ : Q(x) = 0 and Trm1 (ax) = 0}|. (13)

We immediately have the following results forCDQ
.

Corollary 6 Let m be odd and Q(x) be any quadratic Bent functions fromFpm to Fp. Then
CDQ

is a three-weight code overFp with parameters

[
pm−1−1

p−1
,m

]

and the weight distribution in Table 3.

Corollary 7 Let m be even and Q(x) be any quadratic Bent functions fromFpm to Fp. Then
CDQ

is a two-weight code with parameters

[
pm−1−1

p−1
+ εp

m−2
2 ,m

]

and the weight distribution in Table 4.
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Remark 3The codesCDQ
in Corollaries 6 and 7 are exactly thep-ary projective codes from

nondegenerate quadrics in projective spaces which were studied in [25] and [24]. Based on
some results in projective geometry, Wan obtained the minimal weight and weight hierar-
chies of these linear codes (see Theorem 9 in [24]). To the best of our knowledge, the weight
distribution ofCDQ

has not been established in literature. In Corollaries 6 and7, employing
the theory of quadratic forms over finite fields, we completely determined the weight distri-
bution of the codesCDQ

. In addition, following the recent work of Dinget al. [6], [7], we
give the simple trace representation of the codewords inCDQ

(see (6)) which may be useful
from the viewpoint of applications. These are our contributions to the codeCDQ

.

Example 7Let CDQ be the linear codes with parameters[80,5,48] in Examples 1, 5 and
6. The Magma program shows thatCDQ

has parameters[40,5,24] and weight enumerator
1+90z24+80z27+72z30 which agrees with the result in Corollary 6. This code is optimal
in the sense that any ternary code of length 40 and dimension 5cannot have minimal distance
25 or more [10].

Example 8Let CDQ be the linear codes with parameters[20,4,12] in Example 7. The Magma
program shows thatCDQ

has parameters[10,4,6] and weight enumerator 1+ 60z6 + 20z9

which agrees with the result in Corollary 7. This code is optimal due to the Griesmer bound.

Example 9Let CDQ be the linear codes with parameters[104,4,80] in Example 4. The
Magma program shows thatCDQ

has parameters[26,4,20] and weight enumerator 1+
520z20+ 104z25, which agrees with the result in Corollary 7. This code is optimal in the
sense that it meets the Griesmer bound.

Table 3: The weight distribution ofCDQ
for oddm.

Weightw No. of codewordsAw

0 1

pm−2− p
m−3

2 p−1
2 (pm−1+ p

m−1
2 )

pm−2 pm−1−1

pm−2+ p
m−3

2
p−1

2 (pm−1− p
m−1

2 )

Table 4: The weight distribution ofCDQ
for evenm.

Weightw No. of codewordsAw

0 1

pm−2 pm−1+ ε(p−1)p
m−2

2 −1

pm−2+ εp
m−2

2 (p−1)(pm−1− εp
m−2

2 )

4 Concluding Remarks

In this paper, inspired by the work of [7], quadratic Bent functions were used to construct
linear codes with few nonzero weights over finite fields. It was shown that the presented lin-
ear codes have only two or three nonzero weights if the employed quadratic Bent functions
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have even or odd number of variables, respectively. The weight distributions of the codes
were also determined and some of constructed linear codes are optimal in the sense that their
parameters meet certain bound on linear codes. The work of this paper extended the main
results in [7].

Notice that Lemma 1 enables us to construct linear codes along the way discussed in
the paper for any quadratic function (for example, semi-bent function) over finite fields.
However the minimal distance of the corresponding linear codes may not be good if the
employed quadratic function is not of full rank (i.e., is notBent). This is another motivation
for us to design linear codes from quadratic Bent functions in this paper.
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