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Abstract Linear codes with few weights have applications in secheaeisg, authentication
codes, association schemes, and strongly regular graptigsipaper, several classesppf

ary linear codes with two or three weights are constructethfguadratic Bent functions
over the finite fieldF,, wherep is an odd prime. They include some earlier linear codes as
special cases. The weight distributions of these lineaesade also determined.
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1 Introduction

Throughout this paper, lgi be an odd prime anoh be a positive integer. Am, K, d] linear
code over the finite field,, is ak-dimensional subspace Bf with minimum (Hamming)
distanced. Let A; denote the number of codewords with Hamming weighta code( of

lengthn. The weight enumerator af is defined by

1+AZ+ AL+ +AZ.
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The sequencéA;, Ay, ---,A,) is called the weight distribution of the code. Clearly, the
weight distribution gives the minimum distance of the caaled thus the error correcting
capability. In addition, the weight distribution of a cod®as the computation of the error
probability of error detection and correction with respecsome error detection and error
correction algorithms (se&[L6] for details). Thus the gtatithe weight distribution of a
linear code is an important research topic in coding thearlnear code(C is said to be
t-weight if the number of nonzerd; in the sequencéAq, Ay, - -+, Aq) is equal ta.

It is well known that linear codes have important applicasiéan consumer electronics,
communication and data storage system. Besides, lineasasith few weights have also
applications in secret sharirlg[2]27], authenticationesd@], association schemés [1], and
strongly regular graph$][1]. Very recently, Dimg al. proposed a general construction of
linear codes from a subsBtof Fy» and the trace function frofiyn to Fy, [6[7]. This con-
struction can generate two-weight and three-weight licedes with excellent parameters
if the subseD is appropriately chosen.

The objective of this paper is to present a construction akFtweight or three-weight
linear codes based on quadratic Bent functions. It worksafyr quadratic Bent function
overlF,, and includes the construction [f [7] as a special case. HEighdistribution of the
resultant linear codes are determined. Some of the linedescobtained in this paper are
optimal in the sense that they meet some bounds on lineascode

The rest of this paper is organized as follows. Sedfibn Zihtces basic theory of
quadratic forms over finite fields which will be needed in sdgent sections. Sectigh 3
establishes a bridge from quadratic Bent functions to licedes with two or three weights,
and settles the weight distributions of linear codes froradyatic Bent functions. Finally,
Sectiorl % concludes this paper and makes some comments.

2 Quadratic forms over finite fields

Identifying F y» with them-dimensionalF ,-vector spac&}, a functionQ(x) from Fym toIF,
can be regarded as amvariable polynomial oveF,. The former is called a quadratic form
overF, if the latter is a homogeneous polynomial of degree two irfoine

Q(Xa X, Xm) = 3 &%,

1<i<j<m

whereg;; € Fp, and we use a bas{$1,B2,- -+ ,Bm} of Fpn overF, and identifyx= ™, x3;
with the vectox = (xq, Xz, -+, Xm) € Fj. We writex when an element is to be thought of as
a vector inFyy, and writex when the same vector is to be thought of as an elemeR-of
The rank of the quadratic forQ(x) is defined as the codimension of thig -vector space

V={yeFum: Qx+y)—Q(x)—Q(y) =0forallx e Fyn}.

That is|V| = p™" wherer is the rank ofQ(x).

Quadratic forms have been well studied (se€ [Z1]] [14]] [1&] example). Here we
follow the treatment in[[14] and [15]. It should be noted th@ rank of a quadratic form
overF, is the smallest number of variables required to representjtiadratic form, up to
nonsingular coordinate transformations. Mathematicalhy quadratic form of rank can
be transferred to three canonical forms as follows. Throughhis section, leBy;j(X) =
X1Xo +X3Xa + - - - + Xoj_1%2j Wherej > 0 is an integer (we assume tt&g = 0 whenj = 0).
Letv(x) be a function oveF, defined by (0) = p— 1 andv({) = —1 for any{ € IF},.
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Lemma 1 ([15]) Let Q(x) be a quadratic form ovel, of rank r in m variables. Then @)
is equivalent (under a change of coordinates) to one of theviiing three standard types:

Typel:  B(X), r even;
Type ll:  B_1(X)+ W&, r odd;

Type lll: B »(X)+x2 ; — ¢, r even;
where pe {1,¢} and¢ is a fixed nonsquare i,. Furthermore, for any, € F,, the number
of solutionsx € Y} to the equation @) = {is:

Typel:  pri4v(Q)p™/% L
Type Il g™t n(u)p™ Y/

Type lll:  prt—v(Q)p™ /2
wheren is the quadratic (multiplicative) character &f, andn(0) is assumed to be 0.
An interesting class of quadratic forms is the quadratiofavith full rank since in this

case the corresponding functions are Bent functions.fle¢ a function fromF ,» to IF,.
The Walsh transform of at the poinfA € Fyn is defined as

]?()\) _ w'f)(x)—TrT()\x)’
Xelfpm
wherew, = €™~ is a primitive p-th root of unity and TF(x) = S™!xP is the trace
function from[Fym to .

The functionf is called a Bent function iffA(}\)| = p™2 for all A € Fn. Bent function
was introduced by Rothaus in]23] for boolean functions, elgrthe case op = 2, and later
was generalized by Kumar, Scholtz, and Welchid [19]dor 2.

The following result was proven in [26].

Lemma 2 ([26]) Let Q(x) be a quadratic form fronf¥ ,» to F, with full rank m. Then

QXTI

Xelfpm

m/2

=p

for anyA € Fyn.

It can be readily verified from Lemnid 2 that a quadratic faix) from Fyn to Fp, is
a Bent function if and only if it has full rank. In the next siect, we will employ quadratic
Bent functions to construct linear codes with few weightsfdBe doing this, we first give
two lemmas that will be used to prove the main result of theepap

The following follows directly from LemmEl]1.

Lemma 3 Let Q(x) be a quadratic Bent function frofifi» to F,. Define
Dg = {x € Fyn: Q(x) = 0}.
Then
Dol =p™* -1
if m is odd, and otherwise
Tz

IDg| = p™*+e(p—1)p 7 —1, 1)

here and hereinaftet = 1 if Q(x) is equivalent to Type | and= —1 if Q(x) is equivalent
to Type IIl.
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Lemma 4 Let Q(x) be a quadratic Bent function froifi,» to F,. For any be Fyn, define
Dqb = {x € Fym : Q(x) = 0 and Tri'(bx) = 0}
and
Np = |Dgp|-
Then N has the following distribution as b runs througy:
P lte(p—1)p"T —1, 1time
Np=<¢ p™2—1, (p—1) (pmfl—emez) times
P24 g(p—1)p"T —1, P l4e(p—1)p"z —1times
if m is even, and otherwise

pmi—1, 1time
pmM2—1, p™1—1times
No=9q pm 2+ (p—1)p™= — 1, 2% (p™ 14 p™F ) times
P2 (p-1)p7T —1, 22 (p™1-p) times
Proof Whenb =0, itis clear that
Np = No = |Dg].

The value of; is thus determined due to Lemiia 3. Therefore we only need¢alateN,
for b € Fi. To this end, we suppose th@t, 0y, - - - ,am} and{pB1, Bz, - -, Bm} are dual basis
of Fgn overF,,. Using these bases, we write= X131 +XoB2 + - - - 4+ XmBm andb = bya; +
D202 + - - - +bm0m for X, b € Fym, wherex = (xq, %z, ,Xm) € Fy andb = (by, by, - ,bm) €
IF?,“ Then we have

Np = N(Ov 0) - 17 (2)
whereN(0,0) is the number of solutions< [} to the equation system
Q(x)=0
b-x=0
whereb - X = byX; +byXo + - - - + bXm iS the inner product of the vectomsandx. Let
Bm(X), if Q(x) is equivalent to Type |
Q(g) ={ Bma(X)+ j—ﬁn, if Q(x) is equivalent to Type Il

Bm_2(X) + = — ’fg, if Q(x) is equivalent to Type Il

wherep € {1,¢} andg is a fixed nonsquare ifi,, as defined in Lemnid 1. Note thatx) is
equivalent toQ(x) under a change of coordinates. THYIX) andQ(x) are equivalent to the
same standard type. Thanks to Proposition 3.471h [15], we hav

_ [P 4e(p-1)p"7, if Q(b) =0
voo - {f: f O(b) 0 ©
if mis even and otherwise
A if Q(b) =0
N©.0)= { P21 (uQ(B)) (p— 1)p™E, it Q(b) £0 @

wheren is the quadratic character &, andn(0) is assumed to be 0. B{l(2), the value
distribution ofN, for evenm (resp., oddm) then follows from Equatiori{3) (respLl(4)), and
the number of solutionk € F}}' to Q(b) = { given in LemmdlL, wheré € IF,.
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3 Linear Codes with Two or Three Weights From Quadratic Bent Functions

In this section, inspired by the work of Dirgs al. [6l[7], we shall construct several classes
of linear codes with two or three weights employing quadr&trms over finite fieldF,.
Before doing this, we give a brief introduction to the coustion of linear codes proposed
by Ding et al. recently [6], [7].

Let D = {dp,dy,---,d,_1} be anyn-subset off ,». Define a linear codép of lengthn
from D as follows:

b = {Cb: bGFpm}, (5)
where
Co = (Tr7'(bch), Try'(bdh), -+, Tr1'(bch-1)). (6)

Clearly, the dimension afp is at mostm. In general, it is difficult to determine the min-
imal distance ot not to mention the weight distribution. However, the weidistribution
of (b can be settled in some casés [6], [7]. For example, viinen{x € Fn : Tr{'( (x?) =0}
and p is an odd prime, the weight distribution gf was completely determlned inl[7]. It
turns out in [7] that(p is two-weight for everm and three-weight for oddh. Note that
Tr7'(x?) is a quadratic Bent function ovét,. This inspires us to construct linear code from
general quadratic Bent functions ovéy.

Let Q(x) be a quadratic Bent function froffy» to F,. Define

Dq = {X € Fjn : Q(x) =0}, (7)

and a linear codep,, according to[(b). For the cod®,, we have the following results.

Table 1: The weight distribution afp, for odd

m.
Weightw No. of codeword#\
0 1
m-3 m-T
(p— )(’“22 pP7) pTgml+p2)
(p—1p" pr -1
(P-1(p™2+p™=) | B! -p™)

Table 2: The weight distribution afp, for evenm.

Weightw No. of codeword\,
0 1

m-2 m-1 B m2z
(p—1)p P +e(p 1)|0T72 1
(P-1)(p"2+ep™?) | (p-1(p"-ep™)

Theorem 1 If m is odd, thencp, is a three-weighfp™* — 1,m] code overF, with the
weight distribution in Table 1.
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Proof According to the definition of’p,,, its length is equal t¢Dg|. By Lemma3,Dg| =
p™ ! —1 whenmis odd. For any codeword, in (p,, according to the definition, its Ham-
ming weight is equal to

WT(cp) = |Dg| — [Dqp|

where
Dopb = {X € Fn : Q(x) = 0 and TH'(bx) = 0}.

Then, the weight distribution (ﬂ‘DQ follows from LemmagB and 4. Finally, the dimension
of (p, follows from its weight distribution.

Theorem 2 If m is even, therp,, is a two-weighfp™* +¢(p— 1) p"z’ —1, m| code over
I, with the weight distribution in Table 2, whege= 1 if Q(x) is equivalent to Type | and
€= —1if Q(x) is equivalent to Type III.

Proof The proof of this theorem is similar to that of Theorgm 1.

Theoremd Il anfll2 imply that any quadratic Bent function d&gnaturally gives a
two-weight or three-weight linear code. In the remaindethig section, we shall introduce
several classes of linear codes from some known quadratitfBections.

3.1 Linear Codes From Some Known Planar Functions

A function 1i(x) from F to Fm is referred to as perfect nonlinear if

]Fm, :b :l
max max|{x € Fyn : mix+8) —1(x) = b}|

A perfect nonlinear function from a finite field to itself issal called a planar function in
finite geometryl[4]. Some known quadratic planar functionstF g to Fy» are summarized
as follows

(a) m(x) =
(b) T(x) =xP 1 Wherem/ gcd(m,k) is odd [B];
(c) T(x) = x*°—x8 —x? wherep = 3 andmis odd [4];

(d) m(x) = x0— uxs u?x? wherep = 3, mis odd andu € F» [9];
(e) T(x) = xP+1 — uP~1xP P wherem = 3k, gcdk,3) = 1,k—s=0(mod 3, s# k and
k/gcdk,s) is odd, ancu is a primitive element oF g [28].

Itis well known that every component functionfTcr(x)), ¢ € Iy of a planar function
T(x) over Fyn is a Bent function[[B]. Thus, for any planar functiotix) listed as above,
one obtains tha®(x) = Tr{'(cm(x)) is a quadratic Bent function ovél,. Using these planar
functions, we can obtain linear codes with two or three wisigitcording to Theorens 1

and2.

Corollary 1 Let1i(x) be any planar function listed above and>X®= Tr{'(cm(x)), where
ce€ Fym. Then

1 (pyisa three-weighfp™* — 1, m] code oveiF, with the weight distribution in Table 1
if mis odd; and
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2. (p, is atwo-weight pTlie(p—1) p"FT2 —1,m] code oveif, with the weight distribu-

tion in Table 2 if m is even. Furthermores=n (c)(—1)(*z * 3+1 for the planar functions
listed in (a) and (b).

Proof According to Theoreml2, we only need to preve n(c)(fl)<%l)“§+1 for the planar
functions listed in (a) and (b). Whem(x) = x?, similar as the proof of Theorem 2 inl[7],
one can easily obtain=n(c)(—1)("z "2+ for Q(x) = TrM(cx?). Whenri(x) = x*+1 where
m/ gcd(m, k) is odd. Note that gag™ — 1, p* + 1) = 2. We have

[{X € Fip : TIN(eXP ) = 0} = [{X € Fiyn : TI(03®) = O}
By LemmaBg = n(c)(—1)*z 5 +1 for Q(x) = TrM(cxP+1).

It will be nice if the sign ofe for the planar function given in (e) with even can be
determined. This can be done if we can determine the equivbipe of the corresponding
Bent function.

Example 1Let p =3, m= 5, andQ(x) = Tr{(x}°— x® — x?). The Magma program shows
that (p, has parameter80, 5,48 and weight enumerator-£90z*2 + 80z>* -+ 722°°, which
agrees with the result in CorollaLy 1.

Example 2Let p= 3, m= 6, 3 be a primitive element of 3. WhenQ(x) = TrT(xF’2+1),
the Magma program shows thap, has parameter224,6,144 and weight enumerator
15042144 + 2247152, WhenQ(x) = Tr]'(BxP**1), the Magma program shows thas, has
parameter$260,6,162 and weight enumerator-1 26052+ 4682'8°. The computer experi-
mental data agrees with the result in Coroll@ary 1.

3.2 Linear Codes From Gold Class of Bent Functions

Let p be an odd prime and= a' € Fym, Wherea is a primitive element oF y» andt is an
integer with 0<t < p™—2. Then for anyj € {1,2,--- ,m}, Helleseth and Kholosha in 2]
proved that the quadratic function

Q(x) = Tr'(cx? 1) (8)

is a Bent function if and only if
. m_ B
pgcd(2J~,m),1prTl,t(pl —-1). (9)

Corollary 2 Let (x) be defined agg) and it satisfies@). Then (p, is a three-weight
[p™ 1 —1,m| code oveif, with the weight distribution in Table 1 if m is odd, and for eve,
(o, is a two-weighfp™ ! +¢g(p—1) p'T —1, m| code ovel, with the weight distribution
in Table 2.

Observe that the Gold class of quadratic Bent functions eeéflyy [8) covers several
known cases:

1. Sidelnikov Bent function: whep= m, thenQ(x) is reduced t@Q(x) = TrI(cx?);
2. Kumar-Moreno Bent function: Kumar and Morenolin/[18] sleabthatf (x) = Tr"(xP 1)
is a Bent function, where/ gcdm, k) is odd andc € F.
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3. Kasami Bent function: whef = m/2, thenQ(x) is reduced toQ(x) = Tr'(cx?"**1)
which is a Bent function it +c?"* £ 0 [22].

Remark 1The Sidelnikov Bent function and the Kumar-Moreno Bent fiorc are exactly
the Bent functions from the planar function&) = x2 andmi(x) = x**+1 mentioned in above
subsection.

Whenmiis even, one should also note that the sige oén be determined by the value
of the Walsh transform a®(x) at the zero point. Let

Ni = [{x € Fpn : Q(x) = 0}
fori=0,1,---,p—1, then

~ p-1 )
QO = 3 «f =5 N
XeFp i=

Thus, the values df; fori =0,1,---, p— 1 can be determined by the value@@) and the
well known fact that the polynomial £ x+x? +--- 4+ xP~ is irreducible over the rational
number field. Therefore, the sign ®tan be determined by comparing the valueBgand
|Dg| given as in[(lL). This fact implies that the sign&in Corollary[2 can be determined
based on Lemma 2 given in[12] for any given paramepers j andc. Using this method,
the sign ofe for the Kasami Bent function can be directly determined #evi.

Corollary 3 Let m be even and @) = Tr"(cx”"*1) with ¢+ ¢ £ 0. Then(p, is a two-

weight [p™ ! +¢g(p—1) p"z — 1, m| code overF, with the weight distribution in Table 2
wheree = —1.

Proof According to Theorerfl]2, it is sufficient to show theat= —1 for the Kasami Bent
function. Note thax””**? runs through each element Bf,. exactly p2+1 times asx
ranges oveF:.. Thus for eacly € F}, we have

m/2

2 Qoo™ ) _ (g2 4 q) 2 wpfves — _1_ pm2,
Xe pm zc o

It then follows that

l m m2,
HXE€Fm: Q(X)=0)} = = % w)’/)Trl(cxP 241
pxe "‘]mye p

m_ TrT(ycxpm/ 2+ Bl
pm—1+ % Wy
yeF; xeFm

(P"—1—(p—1)(p"?+1))

=p™t—(p-1p=z -1

Comparing this value with {1), one obtains tleat —1. This completes the proof.

ol Tl

Example 3Let p=3,m=4 andQ(x) = TrT(xpz+1). The Magma program shows th@s,
has parameter®0,4,12] and weight enumerator-1 60z} + 20z*8, which agrees with the
result in CorollaryB. This code is optimal due to the Griestraund.
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Example 4Let p=5, m= 4 andQ(x) = Tr{'(x**+1). The Magma program shows thas,
has parameterid04 4,80 and weight enumerator-£5202° 4 10471°°, which agrees with
the result in CorollarfZl3. This code is almost optimal sifeehest linear code of length 104
and dimension 4 ovéfs has minimal weight 81.

3.3 Linear Codes From the Helleseth-Gong Function

The Helleseth-Gong (HG) functidd (x) from Fyn to F,, is defined by[[1l1]

H (X) — TrT <i Ui X(pzl+l)/2> (10)

wherem=2/+1, 1< s< 2/ s an integer such that g2/ +1) = 1, by = 1, bs = (—1)!
andb; = by g fori=1,2,--- /,up=ho/2=(p+1)/2, anduy; = by fori=1,2,--- ¢.
Herein, all the indexes df's are taken mod2/+ 1). The following result was proved by
Janget al. ([13], p. 1842).

Lemma5 Let H(x) be the HG function defined Hy {10). ThefxR= H(x?) is a quadratic
Bent function.

The following follows immediately from Theorel 2 and Lemima 5

Corollary 4 Let m be odd and ) = H(x?) where Hx) is the HG function defined by
(I0). Then(p, is a three-weighfp™* — 1, m| code overF, with the weight distribution in
Table 1.

Example 5Let p= 3, m= 5 and and the HG function ifL{1L0) be given Hyx) = Tr3(2x+
26 +x*). ThenQ(x) = Tri(2x% + 2x1°+ x82). The Magma program shows thap, has
parameter$80, 5,48 and weight enumerator-1902*8 4+ 802°* + 722, which agrees with
the result in Corollarf4.

3.4 Linear Codes From Quadratic Bent Function in Polynofffgam

In general, up to equivalence (Section [V,][12]), any quadifanction having no linear term
overFyn can be expressed as the form of

[m/2]
Q=S Trcx" ), (11)

where|x| denotes the largest integer not exceedimgdc; € Fyn fori =0,1,---,|m/2].

For an odd primep, Helleseth and Kholosha proved th@¢x) defined by[(Ill) is Bent
if and only if a correspondingn x m symmetric matrix is nonsingular [12]. Normally, it
is difficult to determine whether a matrix of order has full rank or not. But for some
special cases, for example, the case af F, fori =0,1,---,|m/2], the Bentness dP(x)
defined by[(Tll) can be determined easdiei([1IR2,17]. Followhedine of this work, Li, Tang
and Helleseth presented a large number of Bent functionsedform [11) withc; € Fy, for
i=0,1,---,|m/2] in a simple way[[2D]. Then, according to Theordrhs 1[dnd 2alivedes
with two or three weights can be obtained.
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Corollary 5 Let (x) be defined a€LT). If Q(x) is Bent, then(p,, is a three-weightp™* —
1,m] code oveil", with the weight distribution in Table 1 if m is odd, and for eva, (p,
is a two-weightp™* +¢&(p—1)p"z — 1,m| code overF, with the weight distribution in
Table 2.

Example 6Let p=3,m=>5 andQ(x) = Tr(xX% 4+ 2xP*1 + xP*+1). According to Corollary 11
in [20], Q(x) is a Bent function irf'5s. The Magma program shows th@s, has parameters
[80,5,48 and weight enumerator-1907*8 + 802°* + 7225°, which agrees with the result in
Corollary[3.

Remark 2 Notice that Proposition 1 in[12] gave an explicit expreadior the Walsh trans-
form values ofQ(x) defined by[(Ill) based on the dual@fx) and the determinant @)(x)
(i.e., the determinant of the corresponding matrix assediaith Q(x)). However, it does
not help us to determine the sign ©for evenm. This is because that one can determine
which Type ofQ(x) is equivalent to according to Lemrk 1 if one knows the deteamti of
Q(x). Thus, the determination of the sign ®fn Corollary[3 remains open. The reader is
invited to join the adventure.

Finally, we conclude this section by mentioning that all¢tbeles obtained above can be
punctured into a shorter ones whose weight distributionbeaeasily derived from those of
the original codes. Note that for any quadratic Bent fumctix), it is easy to verify that
Q(y¥) = y?Q(x) for anyy € F,. ThusQ(x) = 0 means thaQ(yx) = 0 for all y € F},. Hence
the setDq of (7) can be expressed as

Do =FyDq = {yz:yeF, and ze Dq} (12)

wherez /z; ¢ I}, for each pair of distinct elemengsandz; in Dog. This implies thais, is
a punctured version afp,. Notice that for anya € [Fym,

|{x € Do : Q(x) = 0 and TH'(ax) = 0}
= (p—1)|{x€ Dg: Q(x) =0 and T (ax) = 0}|. (13)
We immediately have the following results fog,, .

Corollary 6 Let m be odd and (X) be any quadratic Bent functions frafty» to F,. Then
(p, is a three-weight code ovéf, with parameters

pm_lfl
{ p-1 ’m}

and the weight distribution in Table 3.

Corollary 7 Let m be even and @) be any quadratic Bent functions frafiy» to F,. Then
(p, is a two-weight code with parameters

pmfl_l T"T’Z
o e

and the weight distribution in Table 4.
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Remark 3The codeg, in Corollaried® anfll7 are exactly tipeary projective codes from
nondegenerate quadrics in projective spaces which wedesttin [25] and[[24]. Based on
some results in projective geometry, Wan obtained the nahimeight and weight hierar-
chies of these linear codes (see Theorem 9'ih [24]). To thedbesir knowledge, the weight
distribution of G5, has not been established in literature. In Corolldiles dzrmploying
the theory of quadratic forms over finite fields, we completitermined the weight distri-
bution of the codesi‘D In addition, following the recent work of Dingt al. [6], [7], we
give the simple trace representatlon of the codewordgjn(see [(6)) which may be useful
from the viewpoint of applications. These are our contitns to the codep,,.

Example 7Let (p, be the linear codes with parameté@$), 5,48 in Exampledl[6 and
[@. The Magma program shows tf‘@iq has parametergl0, 5,24 and weight enumerator
1490724 4- 8077 4 722%° which agrees with the result in Corolldry 6. This code is jali
in the sense that any ternary code of length 40 and dimensianriot have minimal distance
25 or more[[10].

Example 8Let (p, be the linear codes with parameté28,4,12] in ExampldY. The Magma
program shows thafp, has parameterd0,4,6] and weight enumerator - 602° + 202°
which agrees with the result in Corolldrly 7. This code ismjafidue to the Griesmer bound.

Example 9Let (p, be the linear codes with parametgf®4 4,80 in Example[#. The
Magma program shows thais, has parameterf26,4,20] and weight enumerator &

5207%° + 1047°%, which agrees with the result in Corolldty 7. This code isirapt in the
sense that it meets the Griesmer bound.

Table 3: The weight distribution afg, for oddm.

Weightw No. of codewords\,
0 1
—1
pmzpr EA(p™iipT)
p pm T _1
— m—1
pr21p™ | Br(pmtop™)

Table 4: The weight distribution afy, for evenm.

Weightw No. of codeword#\

0 1

pm2 Pt te(p— 1)me -1
p"21ep™ | (p-1)(p™l-ep"?)

4 Concluding Remarks

In this paper, inspired by the work dfl[7], quadratic Bentdtions were used to construct
linear codes with few nonzero weights over finite fields. Iswhown that the presented lin-
ear codes have only two or three nonzero weights if the eregloyadratic Bent functions
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have even or odd number of variables, respectively. The hweligtributions of the codes
were also determined and some of constructed linear codeptmal in the sense that their
parameters meet certain bound on linear codes. The worksopéper extended the main
results in[[7].

Notice that Lemma&]l enables us to construct linear codegydtmmway discussed in
the paper for any quadratic function (for example, semittfenction) over finite fields.
However the minimal distance of the corresponding lineatesomay not be good if the
employed quadratic function is not of full rank (i.e., is B®nt). This is another motivation
for us to design linear codes from quadratic Bent functiorthis paper.
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