
A New Method for Decomposition in the Jacobian of Small
Genus Hyperelliptic Curves

Palash Sarkar and Shashank Singh

Applied Statistics Unit
Indian Statistical Institute

palash@isical.ac.in, sha2nk.singh@gmail.com

Abstract. Decomposing a divisor over a suitable factor basis in the Jacobian of a hyperelliptic
curve is a crucial step in an index calculus algorithm for the discrete log problem in the
Jacobian. For small genus curves, in the year 2000, Gaudry had proposed a suitable factor
basis and a decomposition method. In this work, we provide a new method for decomposition
over the same factor basis. The advantage of the new method is that it admits a sieving
technique which removes smoothness checking of polynomials required in Gaudry’s method.
Also, the total number of additions in the Jacobian required by the new method is less than
that required by Gaudry’s method. The new method itself is quite simple and we present
some example decompositions and timing results of our implementation of the method using
Magma.

Keywords: Discrete Log, Index calculus, Hyperelliptic curve, Cryptography

MSC: 11Y16, 11T71, 94A60

1 Introduction

Elliptic curve cryptography was independently introduced by Koblitz [12] and Miller [15]
and was soon followed by hyperelliptic curve (HEC) cryptography which was introduced
by Koblitz [13]. For hyperelliptic curves, cryptography is carried out in a suitably large
subgroup of the Jacobian. A fundamental assumption required for HEC based cryptogra-
phy to be secure is that the discrete logarithm problem (DLP) in the Jacobian should be
computationally hard.

In the last few decades, the main approach to tackling the DLP in different cryptographic
groups has been the use of index calculus algorithms. The structure of such algorithms
identifies a factor basis which consists of a small subset of elements of the group and a
method to decompose elements of the group over the factor basis. Any such decomposition
gives rise to a relation among the element that is decomposed and some of the elements of
the factor basis. After obtaining sufficiently many relations, sparse linear algebra techniques
are used to recover the discrete logs of the factor basis elements. From this, it is possible
to obtain the discrete log of a target element either directly or by a further computation.
The main tasks in designing an index calculus algorithm are to identify a factor basis and
a method for decomposition over the factor basis and if applicable, a method to calculate
the discrete log of the target element.

The first index calculus algorithm for hyperelliptic curves was introduced in [1]. For large
genus curves, this provided a sub-exponential time algorithm for the DLP in the Jacobian
of such curves. Later developments along this line have been reported in [6, 4, 5, 21].

The index calculus algorithm also works for small genus curves but, the running time is
no longer sub-exponential. Even so, it can be better than the running time of the Pollard
rho algorithm. This was described by Gaudry in [8]. The work is important and provided a



practical algorithm for solving the DLP over small genus curves. In particular, the work [8]
actually solved some HEC-DLP challenges. Subsequently, variants of this algorithm called
the large prime variant [19] and the double large prime variant [10] were introduced to
improve the efficiency, especially for genus 3 and 4.

Let q be a prime power and IFq be the field of q elements having characteristic greater
than 2. Suppose C : y2 = f(x) is a HEC of genus g ≥ 2 where f(x) is a polynomial over IFq
of degree 2g + 1. The notation JC(IFq) denotes the Jacobian of C restricted to the set of
divisor classes which can be represented by IFq-rational divisors. Gaudry’s algorithm works
over JC(IFq) by defining a factor basis and providing a method for decomposing a divisor
over the factor basis. Nagao [16] proposed a decomposition method for curves C defined over
IFqn where n ≥ 2. Subsequently, Joux and Vitse [11] proposed a modification of Nagao’s
method for such curves and combined this method with the Weil descent method [7, 9, 2] to
solve the DLP for certain elliptic curves defined over IFp6 for p to be a 25-bit prime.

Our contributions: We consider small genus hyperelliptic curves. For such curves, Gaudry’s
method [8] (and the double large prime variant [10]) is presently the only known practical
algorithm for solving the DLP on the Jacobian of such curves. This method has three parts:
identification of a factor basis, a method for decomposition and the linear algebra step.

In this work, we provide a new method for decomposition. The factor basis remains the
same as in Gaudry’s method and also the linear algebra step remains unchanged. Our main
contribution is to show an alternative method for decomposing divisors over the factor basis
proposed by Gaudry. The advantage of the alternative method is that it allows to apply a
sieving technique to eliminate the smoothness checking of polynomials required in Gaudry’s
method of decomposition. The sieving technique that we use is based on the technique used
by Joux and Vitse [11] for quadratic extension fields. On the flip side, a relative disadvantage
of the new method is that a decomposition is obtained in about (g + 1)! trials whereas in
Gaudry’s method a decomposition is obtained in about g! trials.

We have implemented the new decomposition method and Gaudry’s method in Magma
and report some experimental results and timings. These indicate that using the new method
results in some practical reduction in the time for obtaining a decomposition.

2 Notation

We mention some notation on hyperelliptic curves. A basic description on hyperelliptic
curves can be found in [14]. Let K = IFq be the field of definition of the curve C : y2 = f(x)
and L be an extension of K. We consider reduced divisors by their Mumford representations:
i.e., a divisor D will be written as D = div(u(x), v(x)) where u(x), v(x) ∈ L[x], deg(v) <
deg(u) ≤ g and u(x) divides v2(x)− f(x). If u(x) ∈ L[x], then D is said to be an L-rational
divisor. A divisor class is said to be L-rational if it can be represented by an L-rational
divisor. The set of all divisor classes of C will be denoted by JC and the set of all L-rational
divisor classes will be denoted by JC(L).

3 Index Calculus Algorithms

Let G = 〈g〉 be a cyclic group and h be an element of G. The DLP in G is to compute
i such that h = gi. An index calculus algorithm to solve the DLP in G has several steps.
The first step is to identify a factor basis which is a subset of G. The second step consists
of identifying relations between the elements of the factor basis. These relations can be
converted into linear relations between the discrete logs of the elements of the factor basis.



The system of linear equations which arises is exteremly sparse and is solved using either
the Lanczos or the block Wiedemann algorithm. This step provides the discrete logs of the
elements of the factor basis. The third step is to decompose the target element over the
factor basis. With the discrete logs of factor basis elements already known, the discrete log
of the target element is obtained. For some algorithms, the relation collection step itself
ensures that relations are obtained between the target element and the elements of the
factor basis. In such cases, the discrete log of the target element is obtained immediately
after the linear algebra step.

For hyperelliptic curves, the DLP is defined over JC(K). Elements of the Jacobian are
divisors. To implement index calculus algorithms over JC(K) two things are required. First,
one has to identify a set of divisors as the factor basis and second, it is required to have a
method to decompose a divisor in JC(K) over the factor basis. Each such decomposition
provides a relation among the divisors in the factor basis. Note that it is not required to
be able to decompose every divisor in JC(K) over the factor basis. It is only required to
generate enough relations so that it is possible to obtain the discrete logs of the elements
in the factor basis.

In the next few subsections, we briefly recall some of the developments in index calculus
algorithms for hyperelliptic curves which are relevant to our work.

3.1 Adleman-DeMarrais-Huang Decomposition [1]

The general description of the algorithm is in terms of function fields. Here we provide a
description that applies to the Jacobian of a hyperelliptic curve.

For a smoothness bound S, a divisor over IFq is said to be S-smooth if all its points
are defined over an extension IFqk with k ≤ S. Equivalently, D = div(u(x), v(x)) is S-
smooth if and only if the irreducible factors of u(x) have degrees at most S. The degree
of D is the degree of u(x); D is said to be prime if u(x) is irreducible. Further, D is
equal to

∑
div(ui(x), vi(x)) where ui(x) are the irreducible factors of u(x) and for suitable

polynomials vi(x). The factor basis is defined to be the following set:

FB = {D ∈ JC(K) : D is prime and is of degree at most S}. (1)

Relations among the elements of the factor basis are obtained in the following manner.
Consider a polynomial function G(x, y) = λ(x) + yµ(x) in K[C]. Since G is a rational
function, we have div(G) ≡ 0. The degree of G(x, y) is the degree of its norm which is
N(G) = λ2(x)− f(x)µ2(x). If N(G) is S-smooth, then a decomposition is obtained.

In the above approach, checking whether N(G) is S-smooth can be avoided using a
sieving technique due to Flassenberg and Paulus [6]. This is based on the following fact:
a polynomial ρ(x) divides λ2(x) − f(x)µ2(x) if and only if ρ(x) divides λ21(x) − f(x)µ21(x)
where λ1(x) = λ(x) + r(x)ρ(x) and µ1(x) = µ(x) + s(x)ρ(x) for any polynomials r(x) and
s(x). This was originally proposed over odd characteristic fields. A later work [21] modified
it to work over even characteristic fields.

3.2 Gaudry’s Decomposition [8]

Gaudry provided a method for decomposition in the Jacobian JC(IFq) of a curve C : y2 =
f(x), with f(x) ∈ IFq[x]. The factor basis is defined to be of the following form:

FB = {D ∈ JC(IFq) : D = (P )− (∞), P ∈ C(IFq)}. (2)



Given D1 and D2 in JC(IFq), the task is to compute logD1
D2. For integers a1, a2, consider

the divisor a1D1 + a2D2 given by its reduced representation div(u(x), v(x)). Suppose u(x)
factors into linear terms over IFq. If α is a root of u(x), then the point Pα = (α, v(α)) is on
the curve and it is possible to write

div(u(x), v(x)) =
∑
α

((Pα)− (∞)). (3)

This shows that a1D1 + a2D2 can be written as a sum of the factor basis elements which
is a desired decomposition. Since the degree of u(x) is at most g, we expect to obtain a
decomposition in about g! trials. Each decomposition consists of g points of the factor basis
along with the elements D1 and D2.

For each smooth relation that is obtained, the right side of (3) is written as a row in
a matrix having IFq columns. The corresponding values of a1 and a2 are stored separately.
Once q + 1 independent rows are obtained, it becomes possible to use linear algebraic
techniques to obtain a linear combination of the rows which sum to 0. From this it becomes
possible to obtain logD1

D2. We refer to [8] for the details. The third step of the index
calculus algorithm is not required.

Direct computation of a1D1 + a2D2 requires two scalar multiplications and an addition
in the Jacobian of the curve. This computation can be reduced by generating the integers
a1 and a2 using a random walk where the two scalar multiplications and the addition can
be replaced with only one addition.

Obtaining q decompositions requires about qg! trials. Each row of the matrix for the
linear algebra step has g non-zero entries. Using sparse matrix techniques (Lanczos or block
Weidemann) the linear algebra step requires O(gq2) time. So, the overall complexity is
O(qg! + gq2) which for a fixed g is O(q2). More precisely, the O(q2) complexity holds if g!
is O(q). The size of the Jacobian is about qg. For qg around 2160 and g ≤ 9, the quantity g!
is at most q and so the overall complexity is O(q2). We again refer to [8] for further details.

3.3 Nagao [16] and Joux-Vitse [11] Decompositions

Nagao proposed a method for decomposing a divisor D in JC(IFqn) for n ≥ 2. The factor
basis is the following:

FB = {D ∈ JC(IFqn) : D = (P )− (∞), P ∈ C(IFqn), x(P ) ∈ IFq}. (4)

Given a divisor D in JC(IFqn), the method involves using the Riemann-Roch theorem to
set up a system of ng(n − 1) nonlinear equations in as many variables. Solution of this
system yields a polynomial of degree ng over IFq. If the polynomial is smooth over IFq, then
a decomposition of D over the factor basis is obtained.

In a later work, Joux and Vitse [11] modified this method to obtain a decomposition
method for the divisor of a rational function. Their decomposition method consists of several
steps. In an initial phase, they set up a system of n(n− 1)g + 2(n− 1) nonlinear equations
in n(n − 1)g + 2n variables. This system is solved to obtain a LEX Grobner basis where
two of the variables are undetermined or free. In the second phase, these two variables are
varied over IFq and for different combinations of values of these two variables a much simpler
system of equations is solved. The solution provides a polynomial of degree ng+ 2 which is
then checked for smoothness. If smoothness is achieved, then a decomposition is obtained.
In the case of n = 2, Joux and Vitse provide an interesting sieving technique to provide a
significant practical speed-up. Further, they also point out that their sieving technique can



be very easily used to obtain relations with double large primes [10]. We discuss this issue
in more details later.

In Nagao’s method, the number of equations and variables is ng(n − 1). So, for n = 1
this is a vacuous system and the decomposition method does not apply. Similarly, for the
Joux-Vitse method the number of equations is n(n− 1)g+ 2(n− 1) and again for n = 1 the
system is vacuous and the decomposition method does not apply. It is for this reason that
both these papers have the constraint n ≥ 2.

Gaudry’s method applied to IFqn will result in a factor basis of size qn, whereas in
Nagao’s approach and also in the Joux-Vitse decomposition, the factor basis will be of size
q. This will lead to faster linear algebra provided the decomposition can be carried out. On
the other hand, Gaudry’s method will be applicable when the underlying field is IFq with q
a prime, whereas, as mentioned above, Nagao’s and the Joux-Vitse methods will not apply
to this case.

4 A New Decomposition Method

As in Gaudry’s method, we consider the Jacobian JC(IFq) of a curve C : y2 = f(x) of genus
g ≥ 2 over a field IFq having characteristic greater than 2. The factor basis remains the
same as that in Gaudry’s algorithm i.e., the factor basis is given by (2).

Suppose D is a reduced non-degenerate divisor. We write D = div(u(x),−v(x)) and
−D = (u(x), v(x)) with degx(u) = g. The x-coordinates of the points on C determining
D are the roots of u(x); suppose these are δ1, . . . δg, then the corresponding y-coordinates
are given by −v(δ1), . . . ,−v(δg). The y-coordinates of −D are v(δ1), . . . , v(δg). So, −D =∑
i(Qi) − g(∞) where Qi = (δi, v(δi)). Note that the δ’s are not necessarily over IFq; the

divisor D is in JC(IFq) if and only if u(x) is in IFq[x].
Given D = (u(x),−v(x)) and an element λ0 in IFq, define a bivariate polynomial G(x, y)

as follows:

G(x, y) = u(x)λ0 − (y − v(x)). (5)

The parameter λ0 plays an important role in obtaining decompositions. By its definition,
we have G(δi, v(δi)) = 0 for i = 1, . . . , g, i.e., the points determining −D are also zeros of
G(x, y). This polynomial has more zeros on C and our aim is to find them. So, we wish to
look for common solutions to G(x, y) = 0 and the curve equation y2 = f(x). Eliminating y
between these two equations we obtain the equation S(x) = 0 where S(x) is as follows:

S(x) = (u(x)λ0 + v(x))2 − f(x).

From the propery of the Mumford representation, u(x) divides v2(x)−f(x) and so S(x)/u(x)
is also a polynomial. We define

H(x) = S(x)/u(x) = ((u(x)λ0 + v(x))2 − f(x))/u(x).

Since u(x) is of degree at most g, deg(v) < deg(u) and the degree of f(x) is 2g + 1, the
degree of S(x) is 2g + 1. So, the degree of H(x) is g + 1.

Suppose H(x) is smooth over IFq and its roots are α1, . . . , αg+1 and further assume that
these roots are distinct from the roots of u(x). Define βj = u(αj)λ0 +v(αj), i = 1, . . . , g+1,
i.e., βj is the value for y when G(αj , y) = 0 is solved for y. Further, since αj is a root of
S(x), we have f(αj) = (u(αj)λ0 + v(αj))

2 = β2j . So, Pj = (αj , βj) are zeros of both G(x, y)
and y2 − f(x). Since the α’s are distinct from the δ’s, the Pj ’s are distinct from the Qi’s.



Note that deg(G(x, y)) = 2g + 1 and so the Qi’s and the Pj ’s together account for all the
zeros of G(x, y). So, we can write:

div(G) = −D +
g+1∑
i=1

(Pi)− (g + 1)(∞)

= −D +
g+1∑
i=1

((Pi)− (∞)).

Since G(x, y) is a polynomial (and hence a rational) function, its divisor div(G) ≡ 0. From
this, we can write:

D ≡
g+1∑
i=1

((Pi)− (∞))

where Pi is an IFq-rational point of C. This gives the decomposition of D over the factor
basis.

Since the degree of H(x) is g+ 1, we expect the smoothness condition to be attained in
about (g+1)! trials. There is only one control variable, namely λ0, which ranges over IFq. So,
we expect to obtain about q/(g+1)! relations by varying λ0. This does not provide sufficient
number of relations to complete the linear algebra step. Additional control variables can be
obtained as discussed below.

As in Gaudry’s method suppose D1 and D2 are given and the requirement is to compute
logD1

D2. For integers a1 and a2, set D = a1D1 + a2D2 and consider the decomposition of
D. For each such D, by randomly varying λ0 it is possible to obtain q/(g + 1)! relations.
The variables a1 and a2 provide two additional control variables. The variable ai can range
from 0 to ord(Di) − 1. Since ord(Di) would be about qg, by varying the control variables
(a1, a2) it is possible to obtain about q2g divisors D. About q relations will be obtained if
q2g > (g + 1)! which holds whenever q > g + 1.

To generate the successive D’s, we adopt the random walk technique as in Gaudry’s
method. By this method, the cost of generating the next D from the present one is exactly
one addition in JC(IFq). We will require about (g + 1)! such D’s and the total cost of
generating all these divisors will also be about (g + 1)! additions. The amortised cost per
relation is then (g + 1)!/q additions in JC(IFq).

The main cost is the (g + 1)! trials required to obtain a single relation. Each such trial
consists of obtaining H(x) (of degree g + 1) and checking it for smoothness. So, the cost of
obtaining a single relation is the smoothness check of (g + 1)! polynomials each of degree
g + 1. We next show how to use sieving to avoid this smoothness checking.

4.1 Sieving to Improve Efficiency

We adapt the sieving method proposed by Joux and Vitse in [11] for quadratic extensions
to the present case. Write S(x, λ0) = (u(x)λ0 + v(x))2 − f(x) and H(x, λ0) = ((u(x)λ0 +
v(x))2− f(x))/u(x) to denote the dependence of S and H on λ0. For a fixed λ0, suppose α
is such that u(α) 6= 0 but, S(α, λ0) is equal to 0. Then such an α is a root of H(x, λ0). It is
possible that H(x, λ0) and u(x) have a common root, but, we will not be interested in such
H(x, λ0).

The different possible divisors D are generated from the given divisors D1 and D2 as
described above. For each such divisor D = div(u(x),−v(x)), the sieving step is performed
as follows. We use an array ctr[0, . . . , q − 1] of length q. Each entry of ctr is initialised to



0. For the divisor D, the sieving step runs over all the elements of IFq. For each α ∈ IFq,
such that u(α) 6= 0, consider the polynomial S(α, λ0) which is quadratic in λ0. Here we
are considering λ0 as a variable. We wish to solve the equation S(α, λ0) = 0 for λ0. The
solutions are the following:

−v(α)± (f(α))1/2

u(α)
. (6)

By ensuring u(α) 6= 0 and solving for λ0 in S(α, λ0) = 0, we are actually obtaining λ0 such
that H(α, λ0) = 0.

If f(α) is a perfect square over IFq, then (6) gives two values of λ0 which are in IFq.
Denote these values as λ00 and λ01. Increment ctr[λ00] and ctr[λ01]. Note that it is possible
to have f(α) = 0 in which case λ00 and λ01 are equal.

There are two ways in which an O(q) pre-computation helps in speeding up.

1. Prepare a table of square roots of f(α) for all α ∈ IFq and use this table to solve (6).
This table is independent of the divisor D and will be used in all the sieving steps. This
avoids computing (f(α))1/2 during actual sieving.

2. Prepare a table of inverses of all the non-zero elements of IFq. After computing γ = u(α)
use this table to obtain γ−1. This avoids computing the multiplicative inverse of u(α)
during actual sieving.

After the loop over all elements α ∈ IFq has been completed, we check each entry of ctr.
If ctr[λ0] = g+ 1, then this λ0 results in the polynomial H(x, λ0) in x which is smooth over
IFq. To see this note that if ctr[λ0] is equal to g + 1, then the sieving has encountered g + 1
roots of H(x) in IFq; since H(x) is of degree g + 1, it must actually be smooth over IFq.

Once a value of λ0 for which H(x) is smooth has been identified, the roots of H(x) for
this value of λ0 are obtained by factorisation. These roots have already been encountered
in the sieving phase and could be stored and used later. We comment more on this issue
later. On the other hand, even if we do not store the roots, only one factoring is required
per decomposition and the efficiency loss for this may not be significant.

Each sieving step consists of an O(q) loop and at each iteration of the loop, it is required
to compute u(α), v(α) and a small number of additional IFq-operations and table look-ups.
Computing u(α) and v(α) requires O(g) IFq-operations. The sieving step is repeated for
about (g + 1)! divisors D to obtain about q relations. At no point is it required to perform
a smoothness check.

A matrix view of the sieving process: For a fixed divisor, we provide an alternate view
of the sieving process. Consider a q × q matrix M . Further consider that α varies over the
columns and λ0 varies over the rows of M . Entries of M are either 0 or 1. An entry at the
position (λ0, α) of M is 1 if λ0 is a solution in IFq of (6), i.e., if (f(α))1/2 is in IFq; otherwise
the entry at the position (λ0, α) of M is 0. So, for every α, the column indexed by α has
either two 1’s or zero 1’s. If we assume that (f(α))1/2 is in IFq for about half of the α’s, the
total number of 1’s in the matrix M is about q. For any λ0, the sum of all elements in the
row of M indexed by λ0 is the value ctr[λ0]. Hence,

∑
λ0∈IFq

ctr[λ0] is also about q. As a

result, if for some λ0 the value ctr[λ0] is greater than 1, then for some other λ0, the value
ctr[λ0] will be zero.

The above description explains that the number of pairs (λ0, α) for which M [λ0, α] = 1
is about q. This suggests an alternative implementation of ctr. It can be implemented as a
list of pairs (λ0, α). Whenever an α is obtained such that (f(α))1/2 is in IFq, then (λ0, α)



is appended to ctr, where λ0 is a solution to (6) for this α. After the sieving step for a
divisor is complete, the list ctr is sorted according to λ0. Since the size of ctr will be about
O(q), sorting will require O(q log q) time. One can then perform a pass over ctr obtaining
all possible λ0 such that there are g+ 1 pairs (λ0, α) in ctr. Note that this directly provides
the g + 1 α’s which are the roots of H(x) for this value of λ0.

Parallelism: The loop of α over IFq is completely parallelisable. The computations for
two different α’s can be carried out independently of each other, but, the array ctr will be
shared memory. The only point where a conflict may arise is if two different α’s give rise
to the same value for λ0 leading to a situation where the same position of ctr needs to be
updated. This issue can be tackled using standard techniques for ensuring consistent writes.
The other way in which parallelism can be exploited is by executing the different sieving
steps for different divisors in parallel. This will require separate copies of ctr to be available
for the different sieving steps which will increase the memory requirement. Depending upon
available resources, a suitable method for exploiting parallelism may be determined. We
have not tried to exploit parallelism in our experiments.

4.2 Comparison to Gaudry’s Method

A relation in Gaudry’s method is obtained by decomposing aiD1 + biD2 over the factor
basis, where ai and bi are obtained using a random walk. Each such decomposition involves
g elements of the factor basis and a decomposition is obtained in about g! trials. So, obtaining
q decompositions require about qg! trials. Generating ai+1D1+bi+1D2 from aiD1+biD2 can
be done using a single addition. So, the cost of obtaining a single decomposition consists of
g! additions and g! checking of smoothness of a polynomial of degree at most g. Each relation
in Gaudry’s method involves D1, D2 and g elements of the factor basis. As mentioned in
Section 3.2, the number of non-zero entries in each row of the matrix for the linear algebra
step is g.

In the new method, each sieving step on a divisor results in about q/(g + 1)! decompo-
sitions and to obtain about q decompositions one requires to perform the sieving step on
about (g + 1)! divisors. This leads to a total of about (g + 1)! additions in JC(IFq). Each
sieving step has q iterations where each iteration involves O(g) IFq-operations and a small
number of table look-ups.

The relative efficiencies of the two methods in obtaining q relations is as follows. In
Gaudry’s method, a total of about qg! additions in JC(IFq) and qg! smoothness checking
of (at most) degree g polynomials over IFq are required. The total number of operations
required by the new method consists of about (g + 1)! additions in JC(IFq) and about
O(qg(g + 1)!) IFq-operations. The reduction in the number of additions in JC(IFq) and the
non-requirement of smoothness checking lead to faster decompositions in the new method.
Later we report experimental results which indicate that this is indeed the case.

Each decomposition in the new method results in a relation involving D and g + 1
elements of the factor basis. The linear algebra step is carried out as in Gaudry’s method.
The only difference is that for the new method the number of non-zero entries per row of
the matrix is g + 1. As a result, the linear algebra step for the new method is expected to
require O((g + 1)q2) time which is about the same time as in Gaudry’s algorithm.

4.3 Double Large Prime Variant

In Gaudry’s method, the costs of relation collection and linear algebra are respectively
O(qg!) and O(gq2). On the other hand, the cost of Pollard rho is O(qg/2). So, for g equal to



3 or 4, Gaudry’s method is not faster than Pollard rho. The idea of the double large prime
variant [10] is to reduce the size of the factor basis so that the linear algebra step takes less
time. Using a factor basis of size qr for r < 1, the time for linear algebra is q2r = o(q2).
On the other hand, reducing the size of the factor basis leads to an increase in the time
for finding a single relation. The value of r is chosen so as to balance the cost for relation
collection and linear algebra and to ensure that this overall cost is less than Pollard rho
algorithm. The work [10] shows that for r = 1 − 1/g, the times for relation collection and
linear algebra are balanced.

For the new decomposition method, the sieving technique that we use makes it simple to
apply the double large prime variant. This was mentioned by Joux and Vitse in the context
of sieving for quadratic extensions, but, applies equally well to the current context.

Suppose q is a prime. This assumption is not necessary and it is easy to modify the
method described below to work for non-prime q. We briefly mention this later.

In the double large prime variant, the factor basis consists of “small” primes which are
divisors (P ) − (∞) with x(P ) to be at most some pre-determined bound B. Large primes
are divisors (P ) − (∞) with x(P ) > B. The main idea of the double large prime variant
is to decompose a divisor D into a sum of several “small” primes and at most two large
primes. Ensuring this in general is difficult.

With the sieving method that we have described this becomes easy. For a divisor, the
sieving varies α over all possible q. To implement the double large prime variant, we simply
vary α up to the bound B and increment ctr[λ0] corresponding to the solutions for λ0 as
before. Later, we select λ0 for which ctr[λ0] is g − 1 or more. If this value is g + 1, then as
before, we obtain a relation consisting of only small primes; if the value is g, then since the
degree of H(x) is g + 1, the other root must also be in IFq and this leads to a relation with
a single large prime. If the value of ctr[λ0] is g − 1, then again since the degree of H(x)
is g + 1, for this λ0, the corresponding H(x) has g − 1 roots in IFq. The other factor of
H(x) is quadratic. If this is smooth (which happens with probability 1/2), then we obtain
a decomposition of D consisting of g − 1 small primes and at most 2 large primes.

Consider the matrix M mentioned in Section 4.1 which describes the sieving process.
With the double large prime variant, the number of columns in M reduces from q to B.
As a result, many of the row sums turn out to be zero. So, it will be advantageous to have
some method to ensure that we only check the positions where ctr has positive values. We
discuss two methods to do this.

Indirection: One method is to use indirection. Apart from ctr, we use an additional array
val which is of maximum length q, but the actual length is lesser. The initial length of
val is 0. When (6) results in two solutions λ00 and λ01, these values are appended to val
and its current length increases by 2. The entries ctr[λ00] and ctr[λ01] are incremented as
before. Suppose the final length of val is N . After the pass of α over IFq is over, for each i
in 1, . . . , N , we compare the value of ctr[val[i]] with g − 1. This loops over the N positions
of ctr having positive values. Since, N will be much smaller than q, this saves time.

Associative array: The other method is to implement ctr as an associative array indexed
by elements of IFq, instead of a fixed array of size q. The entries of ctr are of the type (γ, i),
where γ is an element of IFq and i is a positive integer. We use the notation ctr[γ] = i
to denote that the pair (γ, i) is present in the array. By incrementing ctr[γ] we mean the
following: if (γ, i) is present in the array, then it is replaced by (γ, i + 1); and if γ is not
equal to the first component of any pair already in ctr, then the pair (γ, 1) is inserted into
ctr. During the sieving process, suppose (6) gives two values λ00 and λ01 which are in IFq.



Increment ctr[λ00] and ctr[λ01]. After the pass of α over IFq is over, let N be the length of
the associative array ctr. By construction, if (λ0, i) is in ctr, then ctr[λ0] > 0. Now, a pass
is made over the entries of ctr comparing each value with g− 1 as before. Compared to the
indirection method, no array of size q is required, but, in this case, an index structure is
required to implement ctr.

The efficiency of generating relations depends crucially on the value of B. The value of B
in turn determines the value N of the maximum length of ctr. Experimental results indicate
that the associative array based approach is faster if B is small, whereas the indirection
based approach is faster when B is comparatively larger. In a concrete setting, it is advisable
to use the method which is faster.

In general, B will be qr for some r < 1 and so for a fixed genus, the linear algebra step will
take time O(q2r). During relation generation, it will be required to obtain much more than
B relations so that the large primes in the relations can be eliminated to obtain relations
involving only the factor basis elements. A graph based approach is used to achieve this [10].
The algorithm and its analysis are given in [10] and we do not propose any modification of
these details. Our focus here is only the average time for obtaining a single relation with at
most two large primes.

The sieving loop runs over B values of α. This ensures that each sieving loop runs much
faster. Further, while checking the values of ctr, the loop runs over N values which is also
significantly smaller than q. So, overall each sieving step runs much faster than the case for
obtaining relations where only small primes are involved. The catch, however, is that now
each sieving step yields a significantly smaller number of relations. So, the average time
required for obtaining a single relation actually goes up.

Suppose that q is not a prime and that q = pm where p is a prime and m > 1. Then
any element α of IFq can be written as a polynomial α(y) ∈ IFp[y] of degree at most m− 1.
Denote by ‖α‖ the quantity α(p) evaluated over the integers. The bound B = qr is defined
as above. Let D = (P ) − (∞) be a divisor and α = x(P ). Then D is said to be a “small”
prime if ‖α‖ ≤ B. With this modification, the sieving process described above goes through
without any other change. We note, though, that we have not implemented the case of
non-prime q.

5 Experimental Results

In this section, we report the results of some experiments that we conducted with the new
method. For the experiments, we used the Magma Computer Algebra System [20] on a
single core of Intel Xeon CPU @3.07GHz.

5.1 Examples of Decompositions Obtained Using the New Method

We first provide some examples of decompositions using the new method. Consider a hy-
perelliptic curve C of genus g = 7, defined by y2 = x15 + 26412x+ 15471 over the field IFq,
where q = 1048583.

Let

D1 = (x7 + 361878x6 + 853622x5 + 966112x4 + 379368x3 + 578236x2

+369465x+ 201503, 983227x6 + 37594x5 + 655264x4 +

27833x3 + 886828x2 + 931655x+ 25374);

D2 = (x7 + 616043x6 + 290099x5 + 162688x4 + 204670x3 + 551267x2



+390226x+ 747247, 905210x6 + 983958x5 + 329094x4 +

1003866x3 + 225827x2 + 817769x+ 456719).

Suppose a = 672611 and b = 529480. Then by varying λ0, it is possible to obtain q/(g+ 1)!
decompositions of aD1 + bD2. Two such examples are given below.

−aD1 − bD2 = (x+ 404553, 819523) + (x+ 476821, 73840)

+ (x+ 607178, 332244) + (x+ 608877, 68511) + (x+ 647811, 676561) +

(x+ 898698, 42974) + (x+ 958676, 247112) + (x+ 1041752, 736564);

−aD1 − bD2 = (x+ 122108, 276972) + (x+ 178013, 962779)

+ (x+ 189540, 1018873) + (x+ 202334, 504402) + (x+ 658095, 911545)

+ (x+ 726744, 503834) + (x+ 989490, 958207) + (x+ 1046320, 202759).

Consider another pair of values for a and b, say, a = 2405771 and b = 1403025. Then an
example of a decomposition of aD1 + bD2 is as follows.

−aD1 − bD2 = (x+ 185559, 22966) + (x+ 192011, 527282)

+ (x+ 262101, 183920) + (x+ 335423, 773936) + (x+ 393421, 741757)

+ (x+ 432914, 706326) + (x+ 589633, 749516) + (x+ 750866, 142288).

5.2 Some Timing Results

The efficiency of obtaining decompositions in both the new method and Gaudry’s method
depend only on g and q. So, for the experiments we have fixed g and q and have run the
decomposition methods on randomly generated hyperelliptic curves. Further, for simplicity
we have chosen q to be a prime.

We provide timing results of the new decomposition method and Gaudry’s method for
various parameters in Table 1. As discussed earlier, using a factor basis of size q results in
linear algebra requiring time O((g+ 1)q2). For g = 2 or 3, the resulting complexity is more
than that required for Pollard rho. It is due to this reason that we report timing results
for g ≥ 4 in Table 1. The data given in Table 1 is the average of timings of more than a
hundred thousand decompositions for genus up to 8. For genus 9, we have taken the the
average of more than ten thousand decompositions.

For conducting the experiments using the new method, we have used a pre-computed
table to obtain the values of (f(α))1/2 and another pre-computed table to obtain the inverses
of u(α). We have used an array based implementation of ctr as mentioned in Section 4.1.
The smoothness checking required for Gaudry’s method was performed in two stages as
suggested in [8]. To check a polynomial u(x) for smoothness, Swan’s [18] necessary condition

was first applied as a filter; if it passes this test, then the criterion xp mod u(x)
?≡ x was

applied. Factoring was carried out only after this criterion was satisfied.
For the first two primes, the speed-up of the new method is about two times that of

Gaudry’s method. For the third prime, the speed-up for low values of g is also about two
but, increases as g increases.

We next consider the timing results of the new method for obtaining decompositions
with at most two double large primes. These are given in Tables 2, 3 and 4. The total time
for relation collection in the double large prime algorithm involves the cost of maintaining
an LP graph and the cost of finding a cycle in that graph. We have not implemented these



Table 1. Average time in seconds per decomposition for some example hyperelliptic curves.

y2 = x2g+1 + 26412x + 15471 over IFp, p = 1048583 (≈ 220)

Method g = 4 g = 5 g = 6 g = 7 g = 8 g = 9

Our 0.00037 0.0017 0.0125 0.098 0.90 9.28

Gaudry 0.00059 0.0032 0.0204 0.161 1.42 14.08

Speedup 1.59 1.88 1.63 1.64 1.58 1.51

y2 = x2g+1 + 14212x + 47156 over IFp, p = 8388593 (≈ 223)

Method g = 4 g = 5 g = 6 g = 7 g = 8 g = 9

Our 0.00041 0.0019 0.0126 0.103 0.93 9.30

Gaudry 0.00087 0.0045 0.0286 0.223 1.90 18.76

Speedup 2.12 2.36 2.26 2.16 2.04 2.01

y2 = x2g+1 + 26412x + 15471 over IFp, p = 33554467 (≈ 225)

Method g = 4 g = 5 g = 6 g = 7 g = 8 g = 9

Our 0.00043 0.0020 0.0140 0.112 1.01 10.51

Gaudry 0.00083 0.0051 0.0371 0.344 4.98 53.53

Speedup 1.93 2.55 2.65 3.07 4.93 5.09

y2 = x2g+1 + 26412x + 15471 over IFp, p = 268435459 (≈ 228)

Method g = 4 g = 5 g = 6 g = 7 g = 8 g = 9

Our 0.00060 0.0024 0.0146 0.118 1.04 10.99

Gaudry 0.00153 0.0093 0.0677 0.591 5.32 58.14

Speedup 2.55 3.87 4.63 5.00 5.11 5.29

steps. The timings that we provide are indicative of the time required to obtain a single
decomposition using at most two large primes.

As mentioned in [10], the double large prime variant is more relevant for genus 3 and 4
cases. So, we have done our experiments for these two cases only. We note that for g = 3,
in certain cases (18.57% of all genus 3 hyperelliptic curves) the DLP on hyperelliptic curves
can be transferred to that for non-hyperelliptic curves [17] where more efficient algorithms
can be used to solve the DLP [3]. The double large prime variant, on the other hand, is
applicable to all genus 3 hyperelliptic curves and so it is reasonable to still consider timings
for decompositions on such curves.

In practice, the value of B = qr will be chosen so as to balance the costs of relation
collection and linear algebra steps. As mentioned earlier, [10] shows that choosing r = 1−1/g
balances these two costs. In our experiments, for each curve, we use two values of the bound
B determining the size of the factor basis. These values enclose the value q1−1/g.

For these experiments, we have used the implementations of ctr which have been de-
scribed in Section 4.3. From the results, it can be seen that for the double large prime
variant, in comparison to Gaudry’s method the new method performs even better. This
is due to the fact that obtaining a double large prime relation requires many more trials
and the requirement of smoothness check at each trial in Gaudry’s method has a more
pronounced effect.

For g = 4, comparing Table 1 and Tables 2, 3 and 4, it is to be noted that obtaining a
single double large prime relation takes considerably more time. Further, this time goes up
as the value of B goes down. This behaviour is to be expected and our results only confirm
the behaviour.



Table 2. Average time in seconds for one decomposition with at most two large primes. Here p = 8388593 ≈
223 and B is the bound determining ‘small primes’.

y2 = x7 + 14212x + 47156 over IFp

Method B = 215 B = 216

Our 0.0028 0.0016

Gaudry 0.0152 0.0076

Speedup 5.43 4.75

y2 = x9 + 14212x + 47156 over IFp

Method B = 217 B = 218

Our 0.140 0.039

Gaudry 0.403 0.106

Speedup 2.88 2.71

Table 3. Average time in seconds for one decomposition with at most two large primes. Here p = 33554467 ≈
225 and B is the bound determining ‘small primes’.

y2 = x7 + 26412x + 15471 over IFp

Method B = 216 B = 217

Our 0.0064 0.0033

Gaudry 0.0343 0.0171

Speedup 5.35 5.18

y2 = x9 + 26412x + 15471 over IFp

Method B = 218 B = 219

Our 0.646 0.176

Gaudry 2.281 0.573

Speedup 3.53 3.25

Table 4. Average time in seconds for one decomposition with at most two large primes. Here p =
268435399 ≈ 228 and B is the bound determining ‘small primes’.

y2 = x7 + 26412x + 15471 over IFp

Method B = 218 B = 219

Our 0.0134 0.0074

Gaudry 0.1260 0.0642

Speedup 9.40 8.67

y2 = x9 + 26412x + 15471 over IFp

Method B = 220 B = 221

Our 3.16 0.96

Gaudry 15.65 4.22

Speedup 4.95 4.39

6 Conclusion

In this paper, we have described a new method for decomposing a divisor in the Jacobian
of a small genus hyperelliptic curve. In practical terms, the method is faster than the
decomposition method proposed earlier by Gaudry. The speed-up is obtained by using a
sieving method which is based on a method suggested by Joux and Vitse in the context
of curves over fields of extenstion degree two. The sieving method combines well with the
double large prime variant.

Acknowledgement

We would like to thank the reviewers of a previous version for providing comments which
have helped in improving the paper.

References

1. Leonard M. Adleman, Jonathan DeMarrais, and Ming-Deh A. Huang. A subexponential algorithm for
discrete logarithms over the rational subgroup of the jacobians of large genus hyperelliptic curves over
finite fields. In Leonard M. Adleman and Ming-Deh A. Huang, editors, Algorithmic Number Theory,
First International Symposium, ANTS-I, Ithaca, NY, USA, May 6-9, 1994, Proceedings, volume 877 of
Lecture Notes in Computer Science, pages 28–40. Springer, 1994.

2. Claus Diem. The GHS attack in odd characteristic. J. Ramanujan Math. Soc., 18(1):1–32, 2003.
3. Claus Diem and Emmanuel Thomé. Index calculus in class groups of non-hyperelliptic curves of genus

three. J. Cryptology, 21(4):593–611, 2008.



4. Andreas Enge. Computing discrete logarithms in high-genus hyperelliptic Jacobians in provably subex-
ponential time. Math. Comput., 71(238):729–742, 2002.

5. Andreas Enge and Pierrick Gaudry. A general framework for subexponential discrete logarithm algo-
rithms. Acta Arithmetica, 102:83–103, 2002.

6. Ralf Flassenberg and Sachar Paulus. Sieving in function fields. Experimental Mathematics, 8(4):339–349,
1999.

7. Gerhard Frey. How to disguise an elliptic curve (Weil descent). Talk at the 2nd Elliptic Curve Cryp-
tography (ECC) Workshop, 1998.

8. Pierrick Gaudry. An algorithm for solving the discrete log problem on hyperelliptic curves. In Bart
Preneel, editor, Advances in Cryptology - EUROCRYPT 2000, International Conference on the Theory
and Application of Cryptographic Techniques, Bruges, Belgium, May 14-18, 2000, Proceeding, volume
1807 of Lecture Notes in Computer Science, pages 19–34. Springer, 2000.

9. Pierrick Gaudry, Florian Hess, and Nigel P. Smart. Constructive and Destructive Facets of Weil Descent
on Elliptic Curves. J. Cryptology, 15(1):19–46, 2002.

10. Pierrick Gaudry, Emmanuel Thomé, Nicolas Thériault, and Claus Diem. A double large prime variation
for small genus hyperelliptic index calculus. Math. Comput., 76(257):475–492, 2007.

11. Antoine Joux and Vanessa Vitse. Cover and decomposition index calculus on elliptic curves made
practical - application to a previously unreachable curve over Fp6 . In David Pointcheval and Thomas
Johansson, editors, Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012.
Proceedings, volume 7237 of Lecture Notes in Computer Science, pages 9–26. Springer, 2012.

12. Neal Koblitz. Elliptic curve cryptosystesm. Math. Comp., 48(177):203–209, 1987.
13. Neal Koblitz. Hyperelliptic cryptosystems. J. Cryptology, 1(3):139–150, 1989.
14. Alfred Menezes, Yi-Hong Wu, and R. Zuccherato. An elementary introduction to hyperelliptic curves.

Appendix in ‘Algebraic Aspects of Cryptography’ by Neal Koblitz, 1998.
15. Victor S. Miller. Use of elliptic curves in cryptography. In Hugh C. Williams, editor, Advances in

Cryptology - CRYPTO ’85, Santa Barbara, California, USA, August 18-22, 1985, Proceedings, volume
218 of Lecture Notes in Computer Science, pages 417–426. Springer, 1985.

16. Koh-ichi Nagao. Decomposition attack for the Jacobian of a hyperelliptic curve over an extension field.
In Algorithmic number theory, volume 6197 of Lecture Notes in Comput. Sci., pages 285–300. Springer,
Berlin, 2010.

17. Benjamin A. Smith. Isogenies and the discrete logarithm problem in Jacobians of genus 3 hyperelliptic
curves. J. Cryptology, 22(4):505–529, 2009.

18. Richard G. Swan. Factorization of polynomials over finite fields. Pacific Journal of Mathematics,
12(3):1099–1106, 1962.

19. Nicolas Thériault. Index calculus attack for hyperelliptic curves of small genus. In Chi-Sung Laih,
editor, ASIACRYPT, volume 2894 of Lecture Notes in Computer Science, pages 75–92. Springer, 2003.

20. Magma v2.19 7. http://magma.maths.usyd.edu.au/magma/.
21. M. D. Velichka, Michael J. Jacobson Jr., and Andreas Stein. Computing discrete logarithms in the

Jacobian of high-genus hyperelliptic curves over even characteristic finite fields. Math. Comput., 83(286),
2014.


