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On the roots and minimum rank distance of skew cyclic

codes
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Abstract

Skew cyclic codes play the same role as cyclic codes in the theory of error-
correcting codes for the rank metric. In this paper, we give descriptions of these
codes by root spaces, cyclotomic spaces and idempotent generators. We prove that
the lattice of skew cyclic codes is anti-isomorphic to the lattice of root spaces, study
these two lattices and extend the rank-BCH bound on their minimum rank distance
to rank-metric versions of the van Lint-Wilson’s shift and Hartmann-Tzeng bounds.
Finally, we study skew cyclic codes which are linear over the base field, proving that
these codes include all Hamming-metric cyclic codes, giving then a new relation
between these codes and rank-metric skew cyclic codes.

Keywords: Cyclic codes, finite rings, Hamming distance, linearized polynomial
rings, rank distance, skew cyclic codes.
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1 Introduction

Cyclic codes play a very important role in the theory of error-correcting codes in the
Hamming metric. On the other hand, error-correcting codes in the rank metric [7] have
been proven to be crucial in applications to network coding (see [18]). Only a few
families of rank-metric codes are known (for instance [7, 12]) and only for a restricted
choice of parameters. Therefore it is of interest to study new and different families of
codes with good rank-metric parameters, simple algebraic descriptions and fast encoding
and decoding algorithms.

Usual cyclic codes have been considered for the rank metric in [5, 19] and a new
construction, the so-called rank q-cyclic codes, was introduced in [7] for square matrices
and has been generalized in [8] for other lengths. Independently, this notion has been
generalized to skew or qr-cyclic codes in the work by Ulmer et al. in [1, 2, 3], where r
may be different from 1.
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Some Gabidulin codes consisting of square matrices are q-cyclic (see [7, 8]), which
implies that the family of q-cyclic codes includes some maximum rank distance (MRD)
codes. In [7], in [8] and in [1, 2, 3], it is also shown (in increasing order of generality) that
these codes can be represented as left ideals in a quotient ring of linearized polynomials.
Therefore, this construction of rank-metric codes seems to be the appropriate extension
of cyclic codes to the rank metric.

In this paper, we focus on two objectives: First, studying the minimum rank distance
of skew cyclic codes by giving new lower bounds and by relating it with the Hamming
metric. Secondly, studying and relating the lattices of skew cyclic codes and root spaces,
which in particular allows to easily construct skew cyclic codes and compare the sharp-
ness of the obtained bounds.

After some preliminaries in Section 2, the results are organized as follows: In Section
3, we give descriptions of skew cyclic codes by root spaces and cyclotomic spaces. In
Section 4, we prove that the lattices of skew cyclic codes and root spaces are anti-
isomorphic (isomorphic with the orders reversed), and study these lattices. In Section
5, we give bounds on their minimum rank distance, extending the rank-BCH bound
obtained in [3] to rank-metric versions of the Hartmann-Tzeng bound [10] and the van
Lint-Wilson shift bound [21]. Finally, in Section 6, we study skew cyclic codes that are
linear over the base field, proving that classical cyclic codes equipped with the Hamming
metric are a particular case of skew cyclic codes equipped with the rank metric, giving
then new relations between both.

2 Definitions and preliminaries

2.1 Finite field extensions used in this work

Fix from now on a prime power q and positive integers m, n and r, and assume that m
divides rn. We will consider the four finite fields Fq, Fqr , Fqm and Fqrn shown in the
following graph, where F −→ F

′ means that F′ is an extension of F:

Fq

ւ ց
Fqm Fqr

ց ւ
Fqrn

Dimensions of vector spaces over a field F will be denoted by dimF, or just dim if
the field is clear from the context. For a field extension F ⊆ F

′ and a subset A ⊆ F
′n,

we denote by 〈A〉F the F-linear vector space in F
′n generated by A.

2.2 Rank-metric codes and generalized Gabidulin codes

For convenience, all coordinates from 0 to n− 1 or m− 1 will be considered as integers
modulo n or m, respectively. Given c = (c0, c1, . . . , cn−1) ∈ F

n
qm, its rank weight [7]

is defined as wtR(c) = dimFq
(〈c0, c1, . . . , cn−1〉Fq

). Equivalently, if α0, α1, . . . , αm−1 is a
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basis of Fqm over Fq and c =
∑m−1

i=0 αici, where ci ∈ F
n
q , then wtR(c) = dimFq

(〈c0, c1, . . . ,
cm−1〉Fq

).
For an Fqm-linear code C ⊆ F

n
qm, its minimum rank distance is dR(C) = min{wtR(c) |

c ∈ C \ {0}}. We have the Singleton bound [7] dR(C) ≤ n − dim(C) + 1, and we say
that C is maximum rank distance (MRD) if equality holds.

Sometimes we will use a normal basis, that is, a basis of Fqm (or Fqn) over Fq of the
form α,α[1], α[2], . . . , α[m−1] (or α[n−1]), for some α ∈ Fqm , where we use the notation
[i] = qi. Normal bases exist for all values of m (or n). See for instance, [13, Theorem
3.73].

We will consider the following family of MRD codes, usually called Gabidulin codes.
They were originally defined in [7] for r = 1, and generalized for any r in [12]. Assume
that n ≤ m and r and m are coprime, and take a vector β = (β0, β1, . . . , βn−1) ∈ F

n
qm,

where β0, β1, . . . , βn−1 are linearly independent over Fq, and an integer 1 ≤ k ≤ n. We
define the (generalized) Gabidulin code of dimension k in F

n
qm as the Fqm-linear code

Gabk,r(β) with parity check matrix given by

Hk,r(β) =




β0 β1 β2 . . . βn−1

β
[r]
0 β

[r]
1 β

[r]
2 . . . β

[r]
n−1

β
[2r]
0 β

[2r]
1 β

[2r]
2 . . . β

[2r]
n−1

...
...

...
. . .

...

β
[(n−k−1)r]
0 β

[(n−k−1)r]
1 β

[(n−k−1)r]
2 . . . β

[(n−k−1)r]
n−1



.

2.3 Linearized polynomials

Denote by LqrFqm [x] the set of q
r-linearized polynomials (abbreviated as qr-polynomials)

over Fqm (see [7, 15, 16] or [13, Chapter 3]), that is, the polynomials in x of the form

F (x) = F0x+ F1x
[r] + F2x

[2r] + · · ·+ Fdx
[dr],

where F0, F1, . . . , Fd ∈ Fqm, for i = 0, 1, 2, . . . , d. We will denote degqr(F (x)) = d if
Fd 6= 0 and consider the symbolic product ⊗ in LqrFqm[x], defined as follows

F (x)⊗G(x) = F (G(x)),

for any F (x), G(x) ∈ LqrFqm[x] (see [7, 13, 15, 16]). This product is distributive with
respect to usual addition, associative, non-commutative and x is a left and right unit.
Endowed with it and usual addition, LqrFqm [x] is a left and right Euclidean domain, that
is, left and right Euclidean divisions exist (see [15, 16]). The term “product” will mean
“symbolic product”, and we will use the term “conventional” for the usual product.

2.4 Skew cyclic codes: Generator and check polynomials

Definition 1 ([1, 2, 3, 7, 8]). Let C ⊆ F
n
qm be an arbitrary (linear or non-linear) code.

We say that it is skew cyclic or qr-cyclic if the qr-shifted vector

σr,n(c) = (c
[r]
n−1, c

[r]
0 , c

[r]
1 , . . . , c

[r]
n−2) (1)

3



lies in C, for every c = (c0, c1, . . . , cn−1) ∈ C.

Observe that we may assume that 1 ≤ r ≤ m. Moreover, by taking r = m, we
recover the definition of cyclic codes.

Since m divides rn, x[rn] − x commutes with every qr-polynomial in LqrFqm[x] and
we may consider the quotient ring LqrFqm[x]/(x

[rn]−x), isomorphic as Fqm-linear vector
space to F

n
qm by the map γr : F

n
qm −→ LqrFqm [x]/(x

[rn] − x), where

γr(F0, F1, . . . , Fn−1) = F0x+ F1x
[r] + F2x

[2r] + · · · + Fn−1x
[(n−1)r]. (2)

In the rest of the paper, given F (x) ∈ LqrFqm [x], we will use the notation F for the
class of F (x) modulo x[rn] − x, that is, for the element F = F (x) + (x[rn] − x) ∈
LqrFqm [x]/(x

[rn] − x).
For C ⊆ F

n
qm, we define C(x) = γr(C), that is, the image of C by the map γr. The

following characterization is obtained independently in [1, Theorem 1] and [8, Lemma
3]:

Lemma 1 ([1, 8]). A code C ⊆ F
n
qm is Fqm-linear and qr-cyclic if, and only if, C(x) is

a left ideal in LqrFqm [x]/(x
[rn] − x).

Remark 1. In [1, 2, 3], and in [8] for r = 1, left ideals in the rings LqrFq[x]/(L(x)) are
also considered, where L(x) commutes with every other qr-polynomial in LqrFqm [x]. We
will call these codes pseudo-qr-cyclic codes. The results in this paper concerning qr-root
spaces and left ideals in LqrFqm[x]/(x

[rn]−x) may be directly generalized to left ideals in
LqrFq[x]/(L(x)), if L(x) has simple roots and if we replace Fqrn by the splitting field of
L(x). The results are written for L(x) = x[rn] − x for simplicity.

From now on, we will fix a left ideal C(x). The following theorem summarizes the
main properties of the generator and check polynomials of C. These were proven in [2],
in [8] for r = 1, and originally in [7] for r = 1 and m = n:

Theorem 1 (Generator and check polynomials [2, 7, 8]). There exists a unique
qr-polynomial G(x) = G0x+G1x

[r]+ · · ·+Gn−kx
[(n−k)r] over Fqm of degree q(n−k)r that

is monic and of minimal degree among the qr-polynomials whose residue class modulo
x[rn] − x lies in C(x). It satisfies that C(x) = (G). There exists another (unique)
qr-polynomial H(x) = H0x + H1x

[r] + · · · + Hkx
[kr] over Fqm such that x[rn] − x =

G(x)⊗H(x) = H(x)⊗G(x). They satisfy:

1. A qr-polynomial F lies in C(x) if, and only if, G(x) divides F (x) on the right (in
the ring LqrFqm [x]).

2. The qr-polynomials x⊗G,x[r] ⊗G, . . . , x[(k−1)r] ⊗G constitute a basis (over Fqm)
of C(x).

3. The dimension of C (over Fqm) is k = n− degqr(G(x)).

4



4. C has a generator matrix (over Fqm) given by

G =




G0 G1 . . . Gn−k 0 . . . 0

0 G
[r]
0 . . . G

[r]
n−k−1 G

[r]
n−k . . . 0

...
...

. . .
...

...
. . .

...

0 0 . . . G
[(k−1)r]
0 G

[(k−1)r]
1 . . . G

[(k−1)r]
n−k



.

Moreover, if C has another generator matrix G′ with the same form, for the values
G′

i, i = 0, 1, 2, . . . , n− k, then G′
i = G′

n−kGi, for all i.

5. A qr-polynomial F lies in C(x) if, and only if, F ⊗H = 0.

6. C has a parity check matrix (over Fqm) given by

H =




hk hk−1 . . . h0 0 . . . 0

0 h
[r]
k . . . h

[r]
1 h

[r]
0 . . . 0

...
...

. . .
...

...
. . .

...

0 0 . . . h
[(n−k−1)r]
k h

[(n−k−1)r]
k−1 . . . h

[(n−k−1)r]
0



,

where hi = H
[(k−i)r]
i .

7. C⊥ is also qr-cyclic and its generator of minimal degree is H⊥(x) = (hkx +
hk−1x

[r] + · · ·+ h0x
[kr])/h0.

The qr-polynomial G(x) will be called the minimal generator of C(x), and H(x) will
be called the minimal check qr-polynomial of C(x).

2.5 The assumptions on the lengths of skew cyclic codes

To conclude, we see that restricting to the case where m divides rn does not leave any
qr-cyclic code out of study. Assume that N is a positive integer, and take an arbitrary
qr-cyclic code C ⊆ F

N
qm. Define n = lcm(m,N), which satisfies that n = sm = tN for

positive integers s and t, and define ψ : FN
qm −→ F

n
qm by

ψ(c0, c1, . . . , cN−1) = (c0, c1, . . . , cN−1; c0, c1, . . . , cN−1; . . . ; c0, c1, . . . , cN−1),

where we repeat the vector (c0, c1, . . . , cN−1) t times. It holds that ψ is Fqm-linear, one
to one and wtR(c) = wtR(ψ(c)), for all c ∈ F

N
qm . Moreover, if we define σr,n and σr,N as

in Definition 1, then ψ(σr,N (c)) = σr,n(ψ(c)), for all c ∈ F
N
qm , and therefore, C ⊆ F

N
qm is

qr-cyclic if, and only if, so is ψ(C). The same holds for Fq-linearity and Fqm-linearity.
To sum up, every qr-cyclic code can be seen as a code in F

n
qm, where m divides rn.
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3 Root spaces and cyclotomic spaces

In this section we will describe left ideals in LqrFqm [x]/(x
[rn] − x) in terms of qr-root

spaces and qr-cyclotomic spaces, which are a subfamily of the former one and will which
allow to easily construct skew cyclic codes. As in the classical theory of cyclic codes,
we will see that the lattice of qr-cyclic codes is anti-isomorphic (isomorphic with the
orders reversed) to the lattice of qr-root spaces. In Section 5 we will use this qr-root
space description of qr-cyclic codes to extend the rank-BCH bound in [3, Proposition 1]
to more general bounds on the minimum rank distance of qr-cyclic codes.

3.1 The root space associated to a skew cyclic code

A qr-polynomial F (x) over Fqm defines an Fqr -linear map F : Fqrn −→ Fqrn, and in
particular its set of roots or zeroes in Fqrn is an Fqr -linear vector space.

Definition 2 (Root spaces). An Fqr -linear subspace of Fqrn will be called a qr-root
space over Fqm if it is the space of roots in Fqrn of some F (x) ∈ LqrFqm[x].

On the other hand, for a residue class F = F (x) + (x[rn] − x), we define its root
space, denoted as Z(F ), as the root space in Fqrn of F (x).

Finally, define the map ρr between the family of Fqm-linear q
r-cyclic codes in F

n
qm

and the family of qr-root spaces over Fqm in Fqrn by ρr(C) = T , where T = Z(G) and
G(x) is the minimal generator of C(x).

Observe that the second definition is consistent, since if F1 = F2, then F1(x)−F2(x)
is divisible on the right by x[rn] − x, and hence F1(x) and F2(x) have the same roots in
Fqrn . The following lemma is a particular case of [13, Theorem 3.50]:

Lemma 2 ([13]). Given F (x) ∈ LqrFqm[x], assume that the set of its roots T lie in Fqrn

and all roots are simple. Then

degqr (F (x)) = dimFqr
(T ).

The following theorem gathers the basic relations between C and ρr(C):

Theorem 2. Let T = ρr(C) as in Definition 2, then:

1. G(x) =
∏

β∈T (x− β).

2. The dimension of C over Fqm is k = n− dimFqr
(T ).

3. For a qr-polynomial F (x), it holds that F ∈ C(x) if, and only if, F (β) = 0, for all
β ∈ T .

4. Let β1, β2, . . . , βn−k be a basis of T over Fqr . Then the matrix

M(β) =




β1 β
[r]
1 β

[2r]
1 . . . β

[(n−1)r]
1

β2 β
[r]
2 β

[2r]
2 . . . β

[(n−1)r]
2

...
...

...
. . .

...

βn−k β
[r]
n−k β

[2r]
n−k . . . β

[(n−1)r]
n−k
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is a parity check matrix of C over Fqrn.

5. A qr-polynomial G̃ generates C(x) if, and only if, Z(G̃) = T , which holds if, and
only if, G(x) = gcd(G̃(x), x[rn] − x) (on the right).

Proof. First, since G(x) divides x[rn] − x symbolically on the right, it also divides it
conventionally. Therefore, G(x) has simple roots because x[rn]−x has simple roots, and
item 1 follows.

Since the roots of G(x) are simple, item 2 follows directly from the previous lemma
and Theorem 1.

Next, if F ∈ (G), then G(x) divides F (x) on the right and therefore T ⊆ Z(F ). On
the other hand, assume that F (β) = 0, for all β ∈ T . By the Euclidean division, we
have that F (x) = Q(x)⊗G(x)+R(x), with deg(R(x)) < deg(G(x)), but then R(β) = 0,
for all β ∈ T , and hence R(x) = 0. We conclude that F ∈ (G) and item 3 follows. Item
4 follows immediately from item 3.

Finally, assume that G̃ generates C(x). Since G divides G̃ and G̃ divides G on
the right, we have that Z(G̃) = T . Now assume that Z(G̃) = T and define D(x) =
gcd(G̃(x), x[rn] − x). We have that D(x) = A(x) ⊗ G̃(x) + B(x) ⊗ (x[rn] − x), for some
qr-polynomials A(x) and B(x). It follows that T ⊆ Z(D), and since D(x) divides
G̃(x), it holds that T = Z(D). Finally, since D(x) divides x[rn] − x, every root of
D(x) lies in Fqrn and is simple, which implies that D(x) = G(x). Now assume that

G(x) = gcd(G̃(x), x[rn] − x), then G(x) = A(x) ⊗ G̃(x) + B(x) ⊗ (x[rn] − x), for some
qr-polynomials A(x) and B(x). Therefore, G ∈ (G̃), and since G(x) divides G̃(x), it
holds that (G) = (G̃), and item 5 follows.

On the other hand, we have the following equivalent conditions on inclusions of
qr-cyclic codes and qr-root spaces.

Corollary 1. Let C1(x) = (G1) and C2(x) = (G2) be two qr-cyclic codes with T1 =
Z(G1) and T2 = Z(G2), where G1(x) and G2(x) are the minimal generators of C1(x)
and C2(x), respectively. Then C1(x) ⊆ C2(x) if, and only if, G2(x) divides G1(x) on the
right, and this holds if, and only if, T2 ⊆ T1.

Proof. The first equivalence is clear from Theorem 1. Now, if G2(x) divides G1(x) on
the right, then it is obvious that T2 ⊆ T1.

Finally, assume that T2 ⊆ T1, and perform the Euclidean division to obtain G1(x) =
Q(x) ⊗ G2(x) + R(x), with deg(R(x)) < deg(G2(x)). We have that R(β) = 0, for
every β ∈ T2, and by the previous theorem, R ∈ (G2). However, G2(x) is the minimal
generator of C2(x), so it follows that R(x) = 0, that is, G2(x) divides G1(x) on the
right.

The previous corollary and Theorem 2 imply that the map ρr is bijective:

Corollary 2. The map ρr in Definition 2 is bijective.

7



Proof. We first see that it is onto. Take T = Z(F ) a qr-root space over Fqm in Fqrn.
By item 5 in Theorem 2, it holds that Z(G) = T if G(x) is the minimal generator of
C(x) = (F ). Therefore, T = ρr(C). On the other hand, ρr is one to one by the previous
corollary.

In the next section we will see that the family of qr-root spaces over Fqm in Fqrn is
a lattice with sums and additions of vector spaces, and therefore Corollary 1 together
with the previous corollary mean that the map ρr is an anti-isomorphism of lattices (an
isomorphism with the orders reversed).

On the other hand, Theorem 2 gives the following criterion to say whether an Fqr -
linear subspace T ⊆ Fqrn is a qr-root space, in terms of qr-cyclic codes:

Corollary 3. Let T ⊆ Fqrn be Fqr -linear, take one of its bases β1, β2, . . . , βn−k over Fqr ,

and define M(β) as in Theorem 2. Consider C̃ ⊆ F
n
qrn, the Fqrn-linear code with M(β)

as parity check matrix. Then T is a qr-root space over Fqm if, and only if,

dimFqm
(C̃ ∩ F

n
qm) = dimFqrn

(C̃), (3)

which holds if, and only if, C̃ has a basis of vectors in F
n
qm.

Proof. Assume first that T = Z(F ), for some qr-polynomial F (x) over Fqm, and define

C(x) = (F ). By items 4 and 5 in Theorem 2, C = C̃ ∩ F
n
qm , and by item 2 in the same

theorem, dimFqm
(C) = k = dimFqrn

(C̃).

Assume now that dimFqm
(C) = dimFqrn

(C̃), where C = C̃∩Fn
qm. Since C̃ is qr-cyclic,

it follows that C is also qr-cyclic. By definition, T ⊆ Z(G), for the minimal generator
G(x) of C(x). Now, dimFqm

(C) = k by hypothesis, and hence dimFqr
(Z(G)) = n − k

by item 2 in Theorem 2. Also by hypothesis, dimFqr
(T ) = n − k, so it holds that

T = Z(G).

Observe that condition (3) means that C̃ is Galois closed over Fqm . See [14, 20] for
more details on Galois closed vector spaces. The following example shows how to use
this result to see whether a given vector space is a qr-root space.

Example 1. Assume that n = 2m and r = 1, and take a normal basis α, α[1], . . ., α[n−1]

∈ Fqn over Fq. Consider the (Fq-linear) vector subspaces T1, T2 ⊆ Fqn generated by α

and α,α[m], respectively. Define also the codes C̃1, C̃2 ⊆ F
n
qn with parity check matrices

M(α) and M(α,α[m]), respectively, and define Di = (C̃i ∩ F
n
qm)

⊥, i = 1, 2. They satisfy

Di = Tr(C̃⊥
i ), i = 1, 2, by Delsarte’s theorem [4, Theorem 2], where Tr denotes the trace

of the extension Fqm ⊆ Fqn , that is, Tr(x) = x+ x[m].
We will see that T1 is not a q-root space over Fqm, whereas T2 is. Moreover, we will

see that D1 = D2, which has dimension 2 over Fqm and which shows that condition (3)
in the previous corollary is satisfied for T2 but not for T1.

Since dim(T1) = 1, if it were a q-root space, then there would exist b ∈ Fqm with
F (α) = 0, where F (x) = x[1] − bx by Corollary 2. Since x[m] ⊗ F (x) = F (x) ⊗ x[m], it

8



holds that F (α[m]) = 0. This would imply that α,α[m] ∈ T1 and dim(T1) = 1, which is
absurd.

On the other hand, we see that D1 ⊆ D2. Define the vectors α = (α,α[1], . . . ,
α[n−1]) ∈ F

n
qn , v0 = Tr(αα) = αα+ α[m]α[m] and v1 = Tr(α[1]α) = α[1]α+ α[1+m]α[m],

which belong to D1 and also to C̃⊥
2 . Moreover, we see that they are linearly independent

over Fqn and, therefore, they constitute a basis of C̃⊥
2 . This means that D1 = D2 and

dimFqm
(D2) = dimFqn

(C̃⊥
2 ) = 2.

In conclusion, condition (3) is satisfied for T2 but not for T1. By the previous corol-
lary, it holds that T2 is a q-root space over Fqm , and we have seen that T1 is not a q-root
space over Fqm .

3.2 Cyclotomic spaces

Now we turn to a special subclass of qr-root spaces in Fqrn, namely the class of qr-
cyclotomic spaces. These spaces will play the same role as cyclotomic sets in the classical
theory of cyclic codes (see [11, Theorem 4.4.2] and [11, Theorem 4.4.3]), that is, they
generate the lattice of qr-root spaces, and are key concepts to easily construct skew cyclic
codes.

For this we need the concept of minimal qr-polynomial of an element β ∈ Fqrn over
Fqm. The following lemma and definition constitute an extension of [13, Theorem 3.68]
and the discussion prior to it:

Lemma 3. For any β in an extension field of Fqlcm(r,m) , there exists a unique monic
qr-polynomial F (x) ∈ LqrFqm[x] of minimal degree such that F (β) = 0. Moreover,
if L(β) = 0 for another qr-polynomial L(x) over Fqm, then F (x) divides L(x) both
conventionally and symbolically on the right.

Proof. If β ∈ Fqrt, t > 0, then the polynomial F̃ (x) = x[rt] − x lies in LqrFqm[x] and

F̃ (β) = 0. Therefore there exists an F (x) ∈ LqrFqm[x] monic and of minimal degree such
that F (β) = 0. Let L(x) ∈ LqrFqm [x] be such that L(β) = 0, and perform the Euclidean
division to obtain L(x) = Q(x) ⊗ F (x) + R(x), with deg(R(x)) < deg(F (x)). Then
R(β) = 0, and since F (x) is of minimal degree, we have that R(x) = 0, and therefore
F (x) divides L(x) both conventionally and symbolically on the right. This also proves
that F (x) is unique and we are done.

Definition 3. For β in an extension field of Fqlcm(r,m) , the qr-polynomial F (x) in the
previous lemma is called the minimal qr-polynomial of β over Fqm.

Now we may define qr-cyclotomic spaces in Fqrn:

Definition 4 (Cyclotomic spaces). Given β ∈ Fqrn , we define its q
r-cyclotomic space

over Fqm as the Fqr -linear vector space Cqr(β) of roots of the minimal qr-polynomial of
β over Fqm .

Example 2. Let the notation and assumptions be as in Example 1. Since the basis
α[b], (α[b])[1], . . . , (α[b])[n−1] is also normal, in Example 1 we have proven that Cq(α

[b]) =
〈α[b], α[b+m]〉.
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In general, for r = 1 and n = sm, we have the following result:

Proposition 1. If α,α[1], . . . , α[n−1] is a normal basis of Fqn over Fq, then it holds that
Cq(α

[b]) = 〈α[b], α[b+m], . . . , α[b+(s−1)m]〉, for every integer b ≥ 0.

Proof. We may assume that b = 0 without loss of generality. First of all, for every
F (x) ∈ LqrFqm [x], we see that x

[m]⊗F (x) = F (x)⊗x[m] and, therefore F (β) = 0 implies
that F (β[m]) = 0, for any β ∈ Fqn . This means that 〈α,α[m], . . . , α[(s−1)m]〉 ⊆ Cq(α).

The reversed inclusion is proven using Corollary 3 as in Example 1. To that end,
we need to define the vectors vi = Tr(α[i]α) =

∑s−1
j=0 α

[i+jm]α[jm] ∈ F
n
qm, for i =

0, 1, 2, . . . , s − 1, where α = (α,α[1], . . . , α[n−1]) ∈ F
n
qn . The vectors v0,v1, . . . ,vs−1 are

linearly independent over Fqm , since so are the vectors α, α[m], . . . , α[(s−1)m] and the
following matrix is non-singular:




α α[m] α[2m] . . . α[(s−1)m]

α[1] α[1+m] α[1+2m] . . . α[1+(s−1)m]

...
...

...
. . .

...

α[s−1] α[s−1+m] α[s−1+2m] . . . α[s−1+(s−1)m]


 .

Next we see that every qr-root space is a sum of qr-cyclotomic spaces. Since in the
next section we will see that sums and intersections of qr-root spaces are again qr-root
spaces, this means that the subclass of qr-cyclotomic spaces generates the lattice of
qr-root spaces:

Proposition 2. Given a qr-root space T ⊆ Fqrn over Fqm, there exist β1, β2, . . . , βu ∈ T
such that T = Cqr(β1) + Cqr(β2) + · · ·+ Cqr(βu). Moreover, if the qr-cyclotomic spaces
Cqr(βi) over Fqm are minimal and T is not a sum of a strict subset of them, then the
sum is direct.

Proof. Take L(x) ∈ LqrFqm[x] such that T = Z(L). For every β ∈ T , if F (x) is its
minimal qr-polynomial over Fqm , then by Lemma 3, F (x) divides L(x) and, therefore,
Cqr(β) = Z(F ) ⊆ Z(L) = T . This means that T =

∑
β∈T Cqr(β). Since the sum is

finite, the result follows.
Finally, assume that the Cqr(βi) are minimal and T is not a sum of a strict subset of

them. If there exists β ∈ Cqr(βi)∩(
∑

j 6=iCqr(βj)) that is not zero, then by minimality of
Cqr(βi), we have that Cqr(β) = Cqr(βi), and therefore Cqr(βi) ⊆

∑
j 6=iCqr(βj). However,

this means that T is the sum of the spaces Cqr(βj), with j 6= i, which contradicts the
assumptions.

4 The lattices of qr-cyclic codes and q
r-root spaces

It is straightforward to see that sums and intersections of qr-cyclic codes are again qr-
cyclic. In this section we will see that the same holds for qr-root spaces. By Corollary 1,
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both lattices are anti-isomorphic. We will also prove this directly by showing that inter-
sections of qr-cyclic codes correspond to sums of qr-root spaces and viceversa. We will
also study the concept of qr-cyclic complementary of a qr-cyclic code, rank equivalences
and lattice morphisms.

4.1 The lattice anti-isomorphism

Theorem 3. Let C1(x) and C2(x) be two qr-cyclic codes with minimal generators G1(x)
and G2(x), respectively. Set T1 = Z(G1) and T2 = Z(G2). We have that

1. C1(x) ∩ C2(x) is the qr-cyclic code whose minimal generator is given by M(x) =
lcm(G1(x), G2(x)) (on the right), and Z(M) = T1 + T2.

2. C1(x) + C2(x) is the qr-cyclic code whose minimal generator is given by D(x) =
gcd(G1(x), G2(x)) (on the right), and Z(D) = T1 ∩ T2.

In particular, sums and intersections of qr-root spaces are again qr-root spaces, and they
form a lattice anti-isomorphic to the lattice of qr-cyclic codes by the map ρr in Definition
2. Moreover, the lattice of qr-root spaces is generated by the subclass of qr-cyclotomic
spaces.

Proof. Define M(x) as the minimal generator of C1(x) ∩ C2(x). We have that G1(x)
and G2(x) both divide M(x) on the right by Theorem 1, item 1, since M ∈ (G1) and
M ∈ (G2). Now, if F ∈ C1(x) ∩ C2(x), then M(x) divides F (x) on the right for the
same reason. In conclusion, M(x) is the least common multiple on the right of G1(x)
and G2(x).

On the other hand, define D(x) as the greatest common divisor of G1(x) and G2(x)
on the right. By the Euclidean algorithm, we may find a Bézout’s identity on the right
D(x) = Q1(x) ⊗ G1(x) + Q2(x) ⊗ G2(x). This implies that (D) ⊆ C1(x) + C2(x).
Moreover, by definition D(x) divides both G1(x) and G2(x) on the right, and therefore
C1(x) + C2(x) ⊆ (D), and hence they are equal.

To see that D(x) is the minimal generator, take F ∈ (D), then F (x) = Q(x) ⊗
D(x) + P (x) ⊗ (x[rn] − x). But since D(x) divides both G1(x) and G2(x), and these
divide x[rn] − x, then D(x) divides x[rn] − x and hence, it divides F (x).

Finally, we see that T1∪T2 ⊆ Z(M) by Theorem 2, item 3, sinceM ∈ C1(x)∩C2(x).
Therefore, T1 + T2 ⊆ Z(M). On the other hand, since D ∈ C1(x) + C2(x), we see that
T1 ∩ T2 ⊆ Z(D) also by Theorem 2, item 3. By the same theorem, we have that

dim(T1 + T2) + dim(T1 ∩ T2) = dim(T1) + dim(T2) = (n− dim(C1)) + (n − dim(C2))

= (n− dim(C1 ∩C2)) + (n− dim(C1 + C2)) = dim(Z(M)) + dim(Z(D)).

Hence, Z(M) = T1 + T2 and Z(D) = T1 ∩ T2 and we are done.
The last statement of the theorem follows from Proposition 2.
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4.2 Skew cyclic complementaries and idempotent generators

The existence and/or uniqueness of complementaries is an important property of lattices.
In the theory of classical cyclic codes, every cyclic code has a unique complementary
cyclic code when the length and q are coprime [11, Exercise 243]. In this case, every
cyclic code also has an idempotent generator [11, Theorem 4.3.2], which describes very
easily the complementary cyclic code (see [11, Theorem 4.4.6]).

In this subsection we investigate the existence and uniqueness of qr-cyclic comple-
mentaries and idempotent generators of qr-cyclic codes, and relate both.

Observe that, by the fact that the map ρr in Definition 2 is a lattice anti-isomorphism,
two qr-cyclic codes are complementary if, and only if, their corresponding qr-root spaces
are complementary.

Proposition 3. Given qr-cyclic codes C1(x) and C2(x) with minimal generators G1(x)
and G2(x), we have that they are complementary, that is, Fn

qm = C1⊕C2 if, and only if,
G1(x) and G2(x) are coprime (on the right) and degqr(G1(x)) + degqr(G2(x)) = n.

Proof. By Theorem 3, the condition C1(x)+C2(x) = LqrFqm [x]/(x
[rn]−x) is equivalent

to D(x) = x, which means that G1(x) and G2(x) are coprime. By Theorem 1, if C1 and
C2 are complementary, then

degqr(G1(x)) + degqr(G2(x)) = n− dim(C1) + n− dim(C2)

= n− (dim(C1) + dim(C2)− dim(C1 + C2)) = n− dim(C1 ∩C2) = n.

Conversely, if D(x) = x and degqr(G1(x)) + degqr(G2(x)) = n, then C1 + C2 = F
n
qm by

Theorem 3 and dim(C1 ∩C2) = 0 by Theorem 1 as before, and the theorem follows.

In [9, Theorem 6], the existence of an idempotent generator is proven when n is
coprime with q and also with the order of the automorphism α 7→ α[r]. We next prove
the existence in other cases (see Example 3 below), and give other properties.

Theorem 4. Let C(x) be a left ideal with minimal generator G(x) and check qr-
polynomial H(x). The following holds

1. An element E ∈ C(x) is idempotent (that is, E ⊗ E = E) and generates C(x) if,
and only if, it is a unit on the right in this ideal.

2. Given a qr-polynomial F (x) and an idempotent generator E of C(x), it holds that
F ∈ C(x) if, and only if, F = F ⊗E. In particular, x−E(x) is a check polynomial
for C(x).

3. For any idempotent generator E of C(x), the qr-polynomial x−E is also idempotent
and (x− E) is a complementary for C(x).

4. Assume that G and H are coprime on both sides. That is, we may obtain Bézout
identities on both sides

x = G⊗G1 +H ⊗H1 = G2 ⊗G+H2 ⊗H,
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in the ring LqrFqm[x]/(x
[rn] − x). Let E = x−H2 ⊗H and E′ = x−H ⊗H1. It

holds that E = E′, and it is an idempotent generator for C(x).

Proof. Items 1 and 2 are proven as in the classical case (see [11, Section 4.3]). For item
3, we have that (x − E) + (E) is the whole quotient ring. On the other hand, take
F ∈ (x − E) ∩ (E). By item 1, E and x − E are units on the right in the ideals that
they generate. Therefore, F = F ⊗E and F = F ⊗ (x−E) = F − F ⊗E = F − F = 0.
It follows that (x−E) ∩ (E) = {0}, and item 3 is proven.

We now prove item 4. We have that E = G2⊗G, E
′ = G⊗G1 and G⊗H = H⊗G = 0

by Theorem 1. Therefore E′ = E ⊗ E′ = E, and it is idempotent. On the other hand,
E ∈ (G) and G = G⊗ E′ ∈ (E′), and therefore C(x) = (G) = (E).

From the previous theorem and proposition, we deduce the following for a left ideal
C(x) with minimal generator G(x) and check qr-polynomial H(x):

Corollary 4. The qr-cyclic codes (G) and (H) are complementary if, and only if, G(x)
and H(x) are coprime. In that case, if E is the idempotent described in item 4 in the
previous theorem, then (x− E) = (H).

Remark 2. Recall from Theorem 2, item 5, that in particular, the minimal generator
of a left ideal can be efficiently obtained from the idempotent generator.

Example 3. Let q = 2, n = m = 3 and r = 1, consider the primitive element α ∈ F23

such that α3 + α + 1 = 0, and the q-polynomials G(x) = x[2] + α4x[1] + α6x and
H(x) = x[1] + αx, as in [8, Example 2]. By Euclidean division on both sides, we find
that

x = x⊗G(x) + (x[1] + αx)⊗H(x) = G(x)⊗ x+H(x)⊗ (x[1] + αx).

Then E = E′ = G. In this case the idempotent generator coincides with the minimal
generator. Observe also that here the order of the automorphism α 7→ α[1] is 3, and
hence is not coprime with n. Therefore, Theorem 4 covers other cases than [9, Theorem
6].

On the other hand, we see that the q-polynomial x − E = x[2] + α4x[1] + α2x =
(x[1] + αx) ⊗ H(x) is an idempotent generator of (H), which is a complementary for
C(x), as stated in the previous corollary.

4.3 Rank equivalences and lattice automorphisms

To conclude the section, we study rank equivalences and automorphisms of lattices of
the family of qr-cyclic codes. A rank equivalence ϕ : Fn

qm −→ F
n
qm is an Fqm-linear

vector space isomorphism with wtR(ϕ(c)) = wtR(c) (see [14] for more details on rank
equivalences). For convenience, we define the rank weight of F ∈ LqrFqm[x]/(x

[rn] − x)
as

wtR(F ) = wtR(F0, F1, . . . , Fn−1) = wtR(γ
−1
r (F )), (4)

where γr is as in (2). Since the map ρr in Definition 2 is a lattice anti-isomorphism
by Theorem 3, every automorphism of the lattice of Fqm-linear q

r-cyclic codes induces
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an automorphism of the lattice of qr-root spaces over Fqm . In particular, every ring
automorphism of LqrFqm[x]/(x

[rn] − x) induces such a lattice automorphism.
We study the following class of ring automorphisms:

Definition 5. For every a = 0, 1, 2, . . . , rn− 1, we define the morphism ϕa : LqrFqm [x]/
(x[rn] − x) −→ LqrFqm [x]/(x

[rn] − x) by ϕa(F ) = x[rn−a] ⊗ F ⊗ x[a].

We observe that this map is well-defined and corresponds to rising to the power qrn−a

in F
n
qm (and ϕ0 is the identity). That is, if F = F0x+ F1x

[r] + · · ·+ Fn−1x
[(n−1)r], then

x[rn−a] ⊗ F ⊗ x[a] = F
[rn−a]
0 x+ F

[rn−a]
1 x[r] + · · ·+ F

[rn−a]
n−1 x[(n−1)r].

We gather the main properties of the maps ϕa in the next proposition:

Proposition 4. For every a, a′ = 0, 1, 2, . . . , rn− 1, the map ϕa satisfies:

1. ϕa is a ring isomorphism. Viewed as map ϕa : Fn
qm −→ F

n
qm, it is Fq-linear and

Fqm-semilinear.

2. ϕa = ϕa′ if, and only if, a and a′ are congruent modulo m.

3. ϕ0 = Id and ϕa ◦ϕa′ = ϕa′ ◦ϕa = ϕa+a′ . In particular, ϕa ◦ϕn−a = ϕn−a ◦ϕa = Id.

4. For every qr-polynomial F (x), it holds that wtR(F ) = wtR(ϕa(F )) (see (4)), that
is, ϕa is a rank equivalence.

5. ϕa maps left ideals to left ideals and, in general, maps qr-cyclic codes to qr-cyclic
codes.

6. ϕa maps idempotents to idempotents.

Proof. The first three items are straightforward calculations. The last two items follow
from these first three items.

Finally, if c = (c0, c1, . . . , cn−1) ∈ F
n
qm , then the dimension of the vector space gener-

ated by c0, c1, . . . , cn−1 in Fqm is the same as the dimension (over Fq) of the vector space
generated by cq0, c

q
1, . . . , c

q
n−1, since rising to the power q is an Fq-linear automorphism

of Fqm. Therefore, wtR(c0, c1, . . . , cn−1) = wtR(c
q
0, c

q
1, . . . , c

q
n−1).

Since ϕa corresponds to rising to the power qrn−a, we see that it also preserves rank
weights, and item 4 follows.

Remark 3. By item 6 in the previous proposition and Theorem 2, item 5, we may
obtain the minimal generator of a qr-cyclic code equivalent to a given one if we know
the minimal generator or an idempotent of this latter code.

On the other hand, these are the only maps coming from ring automorphisms of
LqrFqm [x]/(x

[rn] − x) having the following reasonable properties: they commute with
the qr-shifting operators (1), are Fq-linear and leave the field Fqm invariant (Fqm is a
subring of LqrFqm [x]/(x

[rn] − x) by considering any α ∈ Fqm as the polynomial αx).
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Proposition 5. For a = 0, 1, 2, . . . , rn − 1, if we view ϕa as a map ϕa : Fn
qm −→ F

n
qm ,

then it holds that
σr,n ◦ ϕa = ϕa ◦ σr,n,

where σr,n is as in (1). Moreover, if ϕ is an Fq-linear ring automorphism of LqrFqm [x]/
(x[rn] − x) satisfying this condition and leaving Fqm invariant, then ϕ = ϕa for some
a = 0, 1, 2, . . . , rn− 1.

Proof. The fact that a ring automorphism ϕ commutes with σr,n is equivalent to the
condition

ϕ(x[1] ⊗ F ) = x[1] ⊗ ϕ(F ), (5)

for all F ∈ LqrFqm [x]/(x
[rn] − x), which is satisfied if ϕ = ϕa.

On the other hand, since ϕ(αx + βx) = ϕ(αx) + ϕ(βx) and ϕ(αx ⊗ βx) = ϕ(αx) ⊗
ϕ(βx), for all α, β ∈ Fqm, we have that ϕ is an automorphism of the field Fqm when
restricted to constant polynomials αx.

Moreover, if α ∈ Fq, by Fq-linearity it holds that ϕ(αx) = αx ⊗ ϕ(x) = αx. Hence
Fq is fixed by the automorphism induced by ϕ in Fqm. Therefore, there exists an a =
0, 1, 2, . . . ,m − 1 such that ϕ(αx) = α[nr−a]x, for all α ∈ Fqm. This together with (5)
means that ϕ = ϕa and we are done.

Finally, we see that the lattice automorphism induced by ϕa in the lattice of qr-
spaces over Fqm corresponds to the one induced by the field automorphism of Fqrn given
by β 7→ β[a]. In particular, by item 2 in Proposition 4, two of these automorphisms of
the lattice of qr-root spaces over Fqm , for a and a′, respectively, are equal if, and only if,
a and a′ are congruent modulo m. In short:

Proposition 6. For all a = 0, 1, 2, . . . , nr−1 and all F ∈ LqrFqm[x]/(x
[rn]−x), it holds

that Z(ϕa(F )) = Z(F )[a]. In particular, Z(F )[a] = Z(F )[a
′] if a and a′ are congruent

modulo m.

5 Bounds on the minimum rank distance

In this section we will give lower bounds on the minimum rank distance of qr-cyclic
codes. The simplest bound on the minimum Hamming distance of classical cyclic codes
is the BCH bound, which has been adapted to a bound on the minimum rank distance
of qr-cyclic codes in [3, Proposition 1]. In this section, we will give two extensions of
this bound analogous to the Hartmann-Tzeng bound [10] in the form of [21, Theorem
2], and another one analogous to the bound in [21, Theorem 11], also known as the shift
bound.

5.1 The rank-shift and rank-Hartmann-Tzeng bounds

We start by giving the definition of independent sequence of Fqr -linear vector subspaces
of Fqrn with respect to some Fqr -linear subspace S ⊆ Fqrn .
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Definition 6. Given Fqr -linear subspaces S, I0, I1, I2, . . . ⊆ Fqrn , we say that the se-
quence I0, I1, I2, . . . is independent with respect to S if the following hold:

1. I0 = {0}.

2. For i > 0, either

(a) Ii = Ij ⊕ 〈β〉, for some 0 ≤ j < i, Ij ⊆ S and β /∈ S, or

(b) Ii = I
[br]
j , for some 0 ≤ j < i and some integer b ≥ 0.

We say that a subspace I ⊆ Fqrn is independent with respect to S if it is a space in a
sequence that is independent with respect to S.

The van Lint-Wilson or shift bound [21, Theorem 11] for the rank metric becomes
then as follows. Observe that it is a bound on the rank weight (see (4)) of a given
qr-polynomial in LqrFqm [x]/(x

[rn] − x) in terms of its roots.

Theorem 5 (Rank-shift bound). Let F ∈ LqrFqm[x]/(x
[rn]−x) and S = Z(F ) = {β ∈

Fqrn | F (β) = 0}, as in Definition 2. If I ⊆ Fqrn is an Fqr-linear subspace independent
with respect to S, then

wtR(F ) ≥ dimFqr
(I),

where wtR(F ) is as in (4).

Proof. Define the vector F = (F0, F1, . . . , Fn−1) ∈ F
n
qm if F = F0x + F1x

[r] + · · · +

Fn−1x
[(n−1)r] (recall (2)). Now writeF =

∑m−1
i=0 αiFi, whereFi ∈ F

n
q , for i = 0, 1, . . . ,m−

1 and α0, α1, . . . , αm−1 is a basis of Fqm over Fq. Define w = wtR(F ), and recall from
Subsection 2.2 that w = dimFq

(〈F0,F1, . . . ,Fm−1〉Fq
).

Let A be a w × n matrix over Fq whose rows generate the vector space 〈F0,F1, . . . ,
Fm−1〉Fq

. Since A is full-rank, there exists a w× n matrix A′ over Fq such that AA′T =
I. On the other hand, by definition of A, there exist xi ∈ F

w
q with Fi = xiA, for

i = 0, 1, . . . ,m− 1. It follows that

F(A′TA) =
m−1∑

i=0

αixiA(A
′TA) =

m−1∑

i=0

αixi(AA
′T )A =

m−1∑

i=0

αixiA = F.

On the other hand, for an Fqr -linear subspace J ⊆ Fqrn , define the Fqrn-linear sub-
space of Fw

qrn given by

V (J) = 〈{(β, β[r], β[2r], . . . , β[(n−1)r])AT | β ∈ J}〉Fqrn
⊆ F

w
qrn .

We will prove that dimFqrn
(V (I)) = dimFqr

(I), and hence it will follow that w ≥
dimFqr

(I).
By definition, there exists a sequence I0, I1, I2, . . . ⊆ Fqrn of Fqr -linear subspaces that

is independent with respect to S and I = Ii, for some i. We will prove by induction on
i that dimFqrn

(V (Ii)) = dimFqr
(Ii).
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For i = 0, we have that I0 = {0} and V (I0) = {0}, and the statement is true.
Fix i > 0 and assume that it is true for all 0 ≤ j < i. The space Ii may be obtained

in two different ways, according to Definition 6:
First, assume that Ii = Ij ⊕ 〈β〉, with 0 ≤ j < i, Ij ⊆ S and β /∈ S. Therefore,

dimFqr
(Ii) = dimFqr

(Ij)+1. It follows that dimFqrn
(V (Ii)) ≤ dimFqrn

(V (Ij))+1. Assume
that dimFqrn

(V (Ii)) = dimFqrn
(V (Ij)). This means that

(β, β[r], β[2r], . . . , β[(n−1)r])AT ∈ V (Ij).

On the other hand, for every γ ∈ S, it holds that

0 = F (γ) = F(γ, γ[r], . . . , γ[(n−1)r])T = (FA′T )(A(γ, γ[r], . . . , γ[(n−1)r])T ).

Since (β, β[r], β[2r], . . . , β[(n−1)r])AT is a linear combination (over Fqrn) of vectors in
V (Ij), it follows that

0 = (FA′T )(A(β, β[r], . . . , β[(n−1)r])T ) = F(β, β[r], . . . , β[(n−1)r])T = F (β),

which means that β ∈ S, a contradiction. Thus dimFqrn
(V (Ii)) = dimFqrn

(V (Ij)) + 1
and the result holds in this case.

Now assume that Ii = I
[br]
j , for some integer b ≥ 0 and 0 ≤ j < i. Since rising to the

power qr in Fqrn is an Fqr -linear vector space automorphism, we have that dimFqr
(Ii) =

dimFqr
(Ij). On the other hand, rising to the power qr in F

w
qrn is an Fqrn-semilinear vector

space automorphism, which also preserve dimensions over Fqrn . Since V (Ii) = V (Ij)
[br],

we have that dimFqrn
(V (Ii)) = dimFqrn

(V (Ij)) and the result holds also in this case.

Future research on other possible generalizations of the rank-BCH bound could be
trying to obtain rank versions of the bounds in [6, 17], to cite some. We next give a toy
example to illustrate the previous bound:

Example 4. Let r = 1, n = m = 2. Take a vector F = (F0, F1) ∈ F
2
q2
. We next see that

the previous bound gives the exact value of wtR(F). Observe that wtR(γF) = wtR(F),
for all non-zero γ ∈ Fq2 , and hence we may assume F = (1, α) for some α ∈ Fq2 . Let

S = Z(F ) ⊆ Fq2 , for F (x) = x[1] + αx, and distinguish two cases:

1. wtR(F) = 1, that is, α ∈ Fq: We have that S = {0} if α = 0, and S = 〈β〉, for some
non-zero β ∈ Fq2 if α 6= 0. We may start constructing an independent sequence by
I1 = 〈γ〉, for some γ ∈ Fq2 \ S. We see that these (and I0 = {0}) are all subspaces
independent with respect to S, and hence we may only construct an independent
space of dimension 1.

2. wtR(F) = 2, that is, α ∈ Fq2 \Fq: In this case, S = 〈β〉, for some β ∈ Fq2 . Then β
and βq are linearly independent over Fq since βq + αβ = 0 and α /∈ Fq.

Define I1 = 〈βq〉, then I2 = Iq1 = 〈β〉 and finally I3 = I2 ⊕ 〈βq〉 = 〈β, βq〉. It
holds that dim(I3) = 2, hence the previous bound is an equality: 2 = wtR(F) ≥
dim(I3) = 2.
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As a consequence of the previous theorem, we may give the following bound, analo-
gous to the Hartmann-Tzeng bound as it appears in [21, Theorem 2]:

Corollary 5 (Rank-HT bound). Take integers c > 0, δ > 0 and s ≥ 0, with δ + s ≤
min{m,n} and d = gcd(c, n) < δ, and let α ∈ Fqrn be such that A = {α[(i+jc)r] | 0 ≤
i ≤ δ − 2, 0 ≤ j ≤ s} is a linearly independent (over Fqr) set of vectors, not necessarily
pairwise distinct.

If F ∈ LqrFqm[x]/(x
[rn] − x) satisfies that A ⊆ T = Z(F ), then wtR(F ) ≥ δ + s

(recall (4)). In particular, if C = ρ−1
r (T ), with ρr as in Definition 2, then

dR(C) ≥ δ + s.

Proof. First, since δ+s ≤ n, we have that ds < δs ≤ n, and n/d is the order of c modulo
n. Hence, the elements jcr, for j = 0, 1, 2, . . . , s, are all distinct modulo rn.

On the other hand, we may assume that A is maximal with the given structure. That
is, there exists 0 ≤ i ≤ δ − 2 with α[(i+(s+1)c)r] /∈ T and there exists 0 ≤ j ≤ s such that
α[(δ−1+jc)r] /∈ T . From the proof, we will see that we may assume for simplicity that
j = 0, and by repeatedly raising to the power qr, we will also see that we may assume
that i = δ − 2.

We will now define a suitable sequence I0, I1, I2, . . . ⊆ Fqrn of Fqr -linear spaces inde-
pendent with respect to S = T , and with dimFqr

(Ii) ≥ δ+ s for some i ≥ 0. We start by

I0 = {0}, and I2i+1 = I2i ⊕ 〈α[(δ−2+(s+1)c)r]〉 and I2i+2 = I
[(n−c)r]
2i+1 , for i = 0, 1, 2, . . . , s.

We see by induction that J1 = I2s+2 is generated by the set

{α[(δ−2+jc)r] | 0 ≤ j ≤ s}.

Next, define J2i+1 = J2i ⊕ 〈α[(δ−1)r]〉 and J2i = J
[(n−1)r]
2i−1 , for i = 1, 2, . . . , δ − 1.

Finally, again by induction we see that J2δ−1 is generated by the set

{α[ir] | 0 ≤ i ≤ δ − 1} ∪ {α[jcr] | 1 ≤ j ≤ s}, (6)

whose elements are all distinct by the first two paragraphs in the proof: First, these
two sets are disjoint. If α[jcr] = α[ir], for some 1 ≤ i ≤ δ − 1 and 1 ≤ j ≤ s, then by
considering jc, jc+1, . . . , jc+δ−2, we see that α[(δ−1)r] ∈ T , a contradiction. Now, if two
elements in the set on the left are equal, then we see again that α[(δ−1)r] ∈ T . Finally, if
two elements in the set on the right are equal, we may now see that α[(δ−2+(s+1)c)r] ∈ T ,
which is again a contradiction.

Since there are δ + s elements in the set (6) and they are linearly independent by
hypothesis, the result follows from the previous theorem.

By taking s = 0 and c = 1, we see that the rank version of the BCH bound obtained
in [3, Proposition 1] is a corollary of the previous bound:

Corollary 6 (Rank-BCH bound [3, Proposition 1]). Take an integer δ > 0, with
δ ≤ min{m,n}, and let α ∈ Fqrn be such that α,α[r], α[2r], . . . , α[(δ−2)r] are linearly
independent over Fqr .
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If F ∈ LqrFqm [x]/(x
[rn] − x) satisfies that T = Z(F ) contains the previous elements,

then wtR(F ) ≥ δ (recall (4)). In particular, if C = ρ−1
r (T ), with ρr as in Definition 2,

then
dR(C) ≥ δ.

Thanks to the lattice study of the previous two sections and, in particular, thanks
to Proposition 1, we can see that it is not difficult to find examples where the rank-HT
bound beats the rank-BCH bound, as in the classical case:

Example 5. Consider r = 1, n = 2m and m = 31, and take a normal basis α,α[1], . . . ,
α[61] of Fq62 over Fq. Take c = 5, δ = 4 and s = 3, and the q-root space

T = (Cq(α) ⊕ Cq(α
[1])⊕ Cq(α

[2]))⊕ (Cq(α
[5])⊕ Cq(α

[6])⊕ Cq(α
[7]))

⊕(Cq(α
[10])⊕ Cq(α

[11])⊕ Cq(α
[12]))⊕ (Cq(α

[15])⊕ Cq(α
[16])⊕Cq(α

[17])).

By Proposition 1, we have that Cq(α
[i]) has {α[i], α[31+i]} as a basis, and hence has

dimension 2. Therefore, the code C = ρ−1
r (T ) has dimension 62 − 24 = 38. The rank-

BCH bound states that dR(C) ≥ 4, whereas the rank-HT bound improves it giving
dR(C) ≥ 7.

5.2 Rank-BCH codes from normal bases are generalized Gabidulin

codes

As a consequence of the bound in Corollary 6, a family of qr-cyclic codes with a designed
minimum rank distance is defined in [3, Section 3], in analogy with classical BCH codes.
By means of difference equations and Casoratian determinants, rank-BCH codes are
defined in [3] as qr-cyclic codes with prescribed minimum rank distance and generator
polynomial of minimal degree.

We will give an alternative description in terms of qr-cyclotomic spaces, which will
allow us to prove that, when m = n and r and n are coprime, rank-BCH codes from
normal bases are generalized Gabidulin codes, as in Subsection 2.2, which are MRD.

Definition 7. Given 1 ≤ δ ≤ m, we say that the qr-cyclic code C(x) over Fqm is a
rank-BCH code of designed minimum rank distance δ if the corresponding qr-root space
T over Fqm (see Definition 2) is

T = Cqr(α) + Cqr(α
[r]) + Cqr(α

[2r]) + · · ·+ Cqr(α
[(δ−2)r]),

where α ∈ Fqrn and α,α[r], α[2r], . . . , α[(δ−2)r] are linearly independent over Fqr .

The following result follows immediately from Corollary 6:

Proposition 7. The rank-BCH code C(x) in the previous definition satisfies that

dR(C) ≥ δ.
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If m = n and r and n are coprime, the Gabidulin codes Gabk,r(β) defined using
a normal basis (see Subsection 2.2) are rank-BCH codes also using normal bases, and
viceversa, and all of them are MRD codes. Hence the family of rank-BCH codes include
MRD codes. We will use [12, Lemma 2], which is the following:

Lemma 4 ([12, Lemma 2]). If r and n are coprime and α0, α1, . . . , αn−1 ∈ Fqn are
linearly independent over Fq, then they are also linearly independent over Fqr , considered
as elements in Fqrn.

Theorem 6. Assume m = n and r and n are coprime. Take a normal basis α,α[1], . . . ,
α[n−1] ∈ Fqn = Fqm and 1 ≤ δ ≤ n. Then the corresponding rank-BCH code C(x), as
in Definition 7, is the generalized Gabidulin code Gabk,r(α) (see Subsection 2.2), where
α = (α,α[r], . . . , α[(n−1)r]) and k = n− δ + 1.

Proof. Since m = n, we have that α ∈ Fqm, and hence Cqr(α
[i]) = 〈α[i]〉Fqr

, for all
i = 0, 1, 2, . . . , n − 1. Therefore, the qr-root space T corresponding to C(x) is T =
〈α,α[r], . . . , α[(δ−2)r]〉Fqr

, whose dimension over Fqr is δ − 1 by the previous lemma.

Hence, by item 4 in Theorem 2, the matrix M(α,α[r], . . . , α[(δ−2)r]) is a parity check
matrix of C over Fqm. However, this is also the parity check matrix of the above men-
tioned Gabidulin code of dimension k, Hk,r(α), if k = n − δ + 1 (see Subsection 2.2).
Therefore both are equal and the theorem follows.

6 General Fq-linear skew cyclic codes: Connecting Hamming-

metric cyclic codes and rank-metric skew cyclic codes

To conclude, we will give some first steps in the general study of Fq-linear q
r-cyclic codes

in F
n
qm.
Its main interest for our purposes is that they include both the family of skew cyclic

codes in the rank metric, which are the main topic of this paper, and the classical family
of cyclic codes in the Hamming metric, as we will prove in the first subsection.

Moreover, as we will see in the second subsection, some Fqm-linear q
r-cyclic codes in

the rank metric with m = n actually are obtained from cyclic codes in the Hamming
metric via Fq-linear q

r-cyclic codes, which will allow us to compare their parameters and
give a negative criterion of MRD skew cyclic codes in terms of MDS cyclic codes.

6.1 Hamming-metric cyclic codes are rank-metric skew cyclic codes

Assume in this subsection that m = n, fix a basis α0, α1, . . . , αn−1 of Fqn over Fq and
define the map E : Fn

q −→ F
n
qn by

E(c0, c1, . . . , cn−1) = (c0α0, c1α1, . . . , cn−1αn−1). (7)

This map is one to one, Fq-linear and wtH(c) = wtR(E(c)), where wtH(c) denotes the
Hamming weight of the vector c. Therefore, the codes C ⊆ F

n
q and E(C) ⊆ F

n
qn behave

equally, where we consider the Hamming metric for C and the rank metric for E(C).
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Assume also in this subsection that n and r are coprime and α0, α1, . . . , αn−1 satisfies
that αi = α[ir], for i = 0, 1, 2, . . . , n − 1, where α,α[1], . . . , α[n−1] is a normal basis. In
this case, classical cyclic codes correspond to qr-cyclic codes.

Theorem 7. With the assumptions as in the previous paragraph, an arbitrary (linear
or non-linear) code C ⊆ F

n
q is cyclic if, and only if, the code E(C) ⊆ F

n
qn is qr-cyclic.

Moreover, C is Fq-linear if, and only if, so is E(C), and the Hamming-metric
behaviour of C is the same as the rank-metric behaviour of E(C), since wtH(c) =
wtR(E(c)), for all c ∈ F

n
q .

Proof. Let c = (c0, c1, . . . , cn−1) ∈ C and E(c) = (d0, d1, . . . , dn−1) ∈ E(C). Then

E(cn−1, c0, c1, . . . , cn−2) = (cn−1α, c0α
[r], . . . , cn−2α

[(n−1)r])

= ((cn−1α
[(n−1)r])q

r

, (c0α)
qr , . . . , (cn−2α

[(n−2)r])q
r

) = (dq
r

n−1, d
qr

0 , . . . , d
qr

n−2),

and the result follows, since the linearity claim is trivial from the linearity of E.

6.2 MRD skew cyclic codes and MDS cyclic codes

We will now relate MRD Fqn-linear q
r-cyclic codes in F

n
qn with classical MDS Fq-linear

cyclic codes in F
n
q . We first need some properties of Fq-linear q

r-cyclic codes. The
following lemma is proven in the same way as Lemma 1:

Lemma 5. A code C ⊆ F
n
qm is Fq-linear and q

r-cyclic if, and only if, C(x) satisfies that
G−H ∈ C(x) and F ⊗G ∈ C(x), for all F (x) ∈ LqrFq[x] and all G,H ∈ C(x).

Definition 8. A subset C(x) ⊆ LqrFqm[x]/(x
[rn] − x) satisfying the conditions in the

previous lemma is called an Fq-left ideal.

By Theorem 7 and Lemma 5, classical cyclic codes for the Hamming metric can be
seen as Fq-left ideals in LqrFqn [x]/(x

[rn] − x) for the rank metric, provided that n and r
are coprime.

We observe that Fq-left ideals are finitely generated. That is, every Fq-left ideal is of
the form C(x) = (G1, G2, . . . , Gt)Fq

, where we define

(G1, G2, . . . , Gt)Fq
=

{
t∑

i=1

Qi ⊗Gi | Qi(x) ∈ LqrFq[x]

}
.

However, not all Fq-left ideals are principal, that is, of the form (G)Fq
, for some G(x) ∈

LqrFqm [x]. The following proposition relates the dimension of an Fq-left ideal and its
number of generators. We also describe generators of the vector space C over Fq as in
Theorem 1:

Proposition 8. Let C(x) be an Fq-left ideal with C(x) = (G1, G2, . . . , Gt)Fq
. It holds

that:
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1. C(x) is generated by x[j] ⊗Gi as an Fq-linear vector space, for j = 0, 1, . . . , n − 1
and i = 1, 2, . . . , t. In particular, a basis of C over Fq may be obtained from the
set of vectors

(G
[jr]
i,n−j, G

[jr]
i,n−j+1, . . . , G

[jr]
i,n−j−1),

for the previous i and j, where Gi(x) = Gi,0x+Gi,1x
[r] + · · · +Gi,n−1x

[n−1].

2. The dimension of C (over Fq) satisfies dim(C(x)) ≤ tn.

3. There exist F1, F2, . . . , Fmn ∈ C(x) such that C(x) = (F1, F2, . . . , Fmn)Fq
.

Proof. The first item follows from the fact that x[j] ⊗ Gj corresponds to the vector

(G
[jr]
i,n−j , G

[jr]
i,n−j+1, . . . , G

[jr]
i,n−j−1). The second item follows from this first item, and the

third item follows from the fact that dim(C) ≤ mn.

Now we see that classical cyclic codes actually correspond to principal Fq-left ideals.
For that purpose, let the assumptions be as in Theorem 7 and define the operators
L,E : Fq[x]/(x

n − 1) −→ LqrFqn [x]/(x
[rn] − x) as

L(f0 + f1x+ · · ·+ fn−1x
n−1) = f0x+ f1x

[r] + · · · + fn−1x
[(n−1)r], and

E(g0 + g1x+ · · ·+ gn−1x
n−1) = g0αx+ g1α

[r]x[r] + · · ·+ gn−1α
[(n−1)r]x[(n−1)r],

where fi, gi ∈ Fq, for i = 0, 1, . . . , n − 1.

Proposition 9. With the assumptions as in Theorem 7, for all f(x), g(x) ∈ Fq[x] /(x
n−

1), it holds that
L(f(x))⊗ E(g(x)) = E(f(x)g(x)). (8)

In particular, if [g(x)] denotes the ideal in Fq[x]/(x
n − 1) generated by g(x), then

E([g(x)]) = (E(g(x)))Fq
. (9)

This means that, if C ⊆ F
n
q is cyclic, then E(C)(x) is a principal Fq-left ideal generated

by E(g(x)) if g(x) generates the ideal in Fq[x]/(x
n − 1) corresponding to C.

Proof. If f(x) = f0 + f1x+ · · ·+ fn−1x
n−1 and g(x) = g0 + g1x+ · · · + gn−1x

n−1, then

L(f(x))⊗ E(g(x)) =

n−1∑

i=0




n−1∑

j=0

fi−jgj(α
[jr])[(i−j)r]


x[ir]

=

n−1∑

i=0




n−1∑

j=0

fi−jgj


α[ir]x[ir] = E(f(x)g(x)),

and Equation (8) follows. The second part (9) follows immediately from (8).
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On the other hand, if C(x) = (G1, G2, . . . , Gt)Fq
, then the Fqm-linear code generated

by C(x) is
C(x)Fqm

= (G1, G2, . . . , Gt) = (D),

where D is the greatest common divisor of G1, G2, . . . , Gt in the quotient ring LqrFqm [x]/
(x[rn]−x). Therefore, dR(C(x)) ≥ dR((D)), and the qr-root space T = Z(D) = Z(G1)∩
Z(G2)∩ . . .∩Z(Gt) may be used to give bounds on the minimum rank distance of C(x),
using for example the bounds in Section 5.

Now we come to the main result in this subsection, where we see that the Fqn-linear
code generated by a classical cyclic code is again principal, with the same minimal
generator and corresponding dimension, but its minimum rank distance is lower than
the minimum Hamming distance of the original cyclic code. In particular, this gives a
negative criterion for MRD skew cyclic codes in terms of MDS cyclic codes.

Theorem 8. With the assumptions as in Theorem 7, if g(x) ∈ Fq[x]/(x
n − 1) is the

minimal generator of the Fq-linear cyclic code C ⊆ F
n
q and Ĉ = 〈E(C)〉Fqn

, then Ĉ is
the Fqn-linear q

r-cyclic code corresponding to

Ĉ(x) = (E(g(x))).

Moreover, E(g(x)) is the minimal generator of Ĉ(x), and:

1. dR(Ĉ) ≤ dH(C), dimFqn
(Ĉ) = dimFq

(C).

2. If Ĉ is MRD, then C is MDS.

Proof. It is well-known that the shifted vectors in F
n
q ,

(g0, g1, . . . , gn−k, 0, . . . , 0), (0, g0, g1, . . . , gn−k, 0, . . . , 0), . . . ,

(0, . . . , 0, g0, g1, . . . , gn−k)

constitute a basis of C, where g(x) = g0 + g1x + · · · + gn−kx
n−k and gn−k 6= 0. By

Proposition 8 and Proposition 9, the qr-shifted vectors in F
n
qn ,

(g0α, g1α
[r], . . . , gn−kα

[(n−k)r], 0, . . . , 0),

(0, g0α
[r], g1α

[2r], . . . , gn−kα
[(n−k+1)r], 0, . . . , 0), . . .

(0, . . . , 0, g0α
[(n−k−1)r], g1α

[(n−k)r], . . . , gn−kα
[(n−1)r])

generate Ĉ as an Fqn-linear vector space. Since gn−k 6= 0, it follows that these vectors
are linearly independent over Fqn . Hence the result follows from Theorem 1 and the fact

that dH(C) = dR(E(C)) ≥ dR(〈E(C)〉Fqn
) = dR(Ĉ).

Example 6. Consider the repetition cyclic code C ⊆ F
n
q generated by (1, 1, . . . , 1) and

assume r = 1. Then E(C) is the Fq-linear code generated by (α,α[1], . . . , α[n−1]), and

hence the Fqn-linear code generated by E(C) is Ĉ, also generated by the same vector.
It holds that dimFq

(C) = 1, dH(C) = n and C is MDS. On the other hand,

dimFqn
(Ĉ) = 1, dR(Ĉ) = n and Ĉ is MRD.
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Example 7. Assume that r = 1 and n is even, and consider the cyclic code C ⊆
F
n
q generated by (1, 0, 1, 0, . . . , 0) and (0, 1, 0, 1, . . . , 1). Then Ĉ is the Fqn-linear code

generated by (α, 0, α[2], 0, . . . , 0) and (0, α[1], 0, α[3], . . . , α[n−1]).
It holds that dimFq

(C) = 2, dH(C) = n/2. On the other hand, dimFqn
(Ĉ) = 2,

dR(Ĉ) = n/2. Hence both have the same parameters and none reach the Singleton
bounds for the corresponding metrics. Moreover, the minimal generator of C is g(x) =
1+x2+x4+ · · ·+xn−2, whereas the minimal generator of Ĉ is E(g(x)) = αx+α[2]x[2]+
α[4]x[4] + · · ·+ α[n−2]x[n−2].
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