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Abstract

Skew cyclic codes play the same role as cyclic codes in the theory of error-
correcting codes for the rank metric. In this paper, we give descriptions of these
codes by root spaces, cyclotomic spaces and idempotent generators. We prove that
the lattice of skew cyclic codes is anti-isomorphic to the lattice of root spaces, study
these two lattices and extend the rank-BCH bound on their minimum rank distance
to rank-metric versions of the van Lint-Wilson’s shift and Hartmann-Tzeng bounds.
Finally, we study skew cyclic codes which are linear over the base field, proving that
these codes include all Hamming-metric cyclic codes, giving then a new relation
between these codes and rank-metric skew cyclic codes.
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1 Introduction

Cyclic codes play a very important role in the theory of error-correcting codes in the
Hamming metric. On the other hand, error-correcting codes in the rank metric [7] have
been proven to be crucial in applications to network coding (see [I8]). Only a few
families of rank-metric codes are known (for instance [7), [12]) and only for a restricted
choice of parameters. Therefore it is of interest to study new and different families of
codes with good rank-metric parameters, simple algebraic descriptions and fast encoding
and decoding algorithms.

Usual cyclic codes have been considered for the rank metric in [5, 19] and a new
construction, the so-called rank g-cyclic codes, was introduced in [7] for square matrices
and has been generalized in [8] for other lengths. Independently, this notion has been
generalized to skew or ¢"-cyclic codes in the work by Ulmer et al. in [Il 2] 3], where r
may be different from 1.
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Some Gabidulin codes consisting of square matrices are g-cyclic (see [7, [§]), which
implies that the family of g-cyclic codes includes some maximum rank distance (MRD)
codes. In [7], in [§] and in [I}, 2 3], it is also shown (in increasing order of generality) that
these codes can be represented as left ideals in a quotient ring of linearized polynomials.
Therefore, this construction of rank-metric codes seems to be the appropriate extension
of cyclic codes to the rank metric.

In this paper, we focus on two objectives: First, studying the minimum rank distance
of skew cyclic codes by giving new lower bounds and by relating it with the Hamming
metric. Secondly, studying and relating the lattices of skew cyclic codes and root spaces,
which in particular allows to easily construct skew cyclic codes and compare the sharp-
ness of the obtained bounds.

After some preliminaries in Section [2 the results are organized as follows: In Section
Bl we give descriptions of skew cyclic codes by root spaces and cyclotomic spaces. In
Section [ we prove that the lattices of skew cyclic codes and root spaces are anti-
isomorphic (isomorphic with the orders reversed), and study these lattices. In Section
Bl we give bounds on their minimum rank distance, extending the rank-BCH bound
obtained in [3] to rank-metric versions of the Hartmann-Tzeng bound [10] and the van
Lint-Wilson shift bound [21]. Finally, in Section [l we study skew cyclic codes that are
linear over the base field, proving that classical cyclic codes equipped with the Hamming
metric are a particular case of skew cyclic codes equipped with the rank metric, giving
then new relations between both.

2 Definitions and preliminaries

2.1 Finite field extensions used in this work

Fix from now on a prime power ¢ and positive integers m, n and r, and assume that m
divides rn. We will consider the four finite fields F,, Fyr, Fym and Fg» shown in the
following graph, where F — ' means that F’ is an extension of [F:

Fq
e p
Fym Fyr
p v
]Fq’l‘ﬂ

Dimensions of vector spaces over a field F will be denoted by dimp, or just dim if
the field is clear from the context. For a field extension F C F’ and a subset A C F'™,
we denote by (A)r the F-linear vector space in F'™ generated by A.

2.2 Rank-metric codes and generalized Gabidulin codes

For convenience, all coordinates from 0 to n — 1 or m — 1 will be considered as integers
modulo n or m, respectively. Given ¢ = (co,c1,...,¢,-1) € Fgm, its rank weight [7]
is defined as wtgr(c) = dimp,({(co, c1,...,ca1)r,). Equivalently, if ag,a1,...,an_1 is a



basis of Fym over F, and ¢ = Z;ZBI aic;, where ¢; € Fy, then wtg(c) = dimg, ((co, c1, . . .,
Cn—1)F,)-

For an [Fym-linear code C' C Fym, its minimum rank distance is dg(C) = min{wtg(c) |
c € C'\ {0}}. We have the Singleton bound [7] dg(C) < n — dim(C) + 1, and we say
that C' is maximum rank distance (MRD) if equality holds.

Sometimes we will use a normal basis, that is, a basis of Fgm (or Fgn) over [, of the
form a, oV, ol ... alm=1 (or a["_l}), for some a € F,m, where we use the notation
[i] = ¢'. Normal bases exist for all values of m (or n). See for instance, [13, Theorem
3.73].

We will consider the following family of MRD codes, usually called Gabidulin codes.
They were originally defined in [7] for » = 1, and generalized for any r in [12]. Assume
that n < m and r and m are coprime, and take a vector 3 = (o, B1,...,08n-1) € Fim,
where 9, 81, ..., Bp—1 are linearly independent over [y, and an integer 1 < k < n. We
define the (generalized) Gabidulin code of dimension k in Fg» as the Fym-linear code
Gaby, »(8) with parity check matrix given by

/80 Bl 52 N Bn—l

ﬁé”] ﬁ[g]} ﬁé’]} N B’g}_f

Hk,r(ﬂ) = BO /81 2 anl
IB[(n k: 1)r Bg(nf‘kfl)r] 52 n— k 1)r] B IB[(n k: 1)r]

2.3 Linearized polynomials

Denote by L,-Fgm[z] the set of ¢"-linearized polynomials (abbreviated as ¢"-polynomials)
over Fym (see [7, [15], 16] or [I3] Chapter 3]), that is, the polynomials in « of the form

F(z) = Fox + Frall + Byal? oo Fypldr],
where Fo, F1,...,Fy € Fym, for i = 0,1,2,...,d. We will denote deg,-(F(z)) = d if
Fj # 0 and consider the symbolic product ® in L,F,m|[z], defined as follows
Fr) @ G(z) = F(G(x)),

for any F(z),G(x) € LyFym|x] (see [7, 13, 15, 16]). This product is distributive with
respect to usual addition, associative, non-commutative and z is a left and right unit.
Endowed with it and usual addition, £,-F,m [z] is a left and right Euclidean domain, that
is, left and right Euclidean divisions exist (see [15] [16]). The term “product” will mean
“symbolic product”, and we will use the term “conventional” for the usual product.

2.4 Skew cyclic codes: Generator and check polynomials

Definition 1 ([1} 2, [3} [7, 8]). Let C' C Fyin be an arbitrary (linear or non-linear) code.
We say that it is skew cyclic or ¢"-cyclic if the ¢"-shifted vector

Frm(c) = () (1)



lies in C, for every ¢ = (¢, ¢1,...,cn—1) € C.

Observe that we may assume that 1 < r < m. Moreover, by taking r = m, we
recover the definition of cyclic codes.

Since m divides rn, 2™ — z commutes with every ¢"-polynomial in Ly Fgm|x] and
we may consider the quotient ring L, F m[x]/(zl" —2), isomorphic as F,m-linear vector
space to Fyn by the map v, : Fym — LgrFym[z]/ (2l — 2), where

Vo (Fo, Fiy ooy Fyo1) = Fox + Frall 4 Roalrl oo By 2ln= D (2)

In the rest of the paper, given F(z) € LyF,m[x], we will use the notation F' for the
class of F(z) modulo zI"™ — z, that is, for the element F = F(z) + (z[™ — ) €
Ly Fym(z]/ (2l — 2).

For C C Fym, we define C(z) = v,(C), that is, the image of C' by the map .. The
following characterization is obtained independently in [I, Theorem 1] and [§, Lemma

3]:

Lemma 1 ([1, B]). A code C C Fyn is Fym-linear and q"-cyclic if, and only if, C(x) is
a left ideal in Ly Fgm [x]/(xl) — ).

Remark 1. In [1,[2,[3], and in [§] for r =1, left ideals in the rings LoyFqlx]/(L(z)) are
also considered, where L(x) commutes with every other q"-polynomial in LyFym[z]. We
will call these codes pseudo-q"-cyclic codes. The results in this paper concerning q"-root
spaces and left ideals in Ly Fym[x] /(2™ — ) may be directly generalized to left ideals in
LyFylz]/(L(x)), if L(z) has simple roots and if we replace Fgrn by the splitting field of
L(z). The results are written for L(z) = zI'™ — x for simplicity.

From now on, we will fix a left ideal C'(z). The following theorem summarizes the
main properties of the generator and check polynomials of C. These were proven in [2],
in [§] for r = 1, and originally in [7] for r = 1 and m = n:

Theorem 1 (Generator and check polynomials [2, [7, 8]). There exists a unique
q"-polynomial G(x) = Gox + Grzl + - - + Gzl "=F] pper Fym of degree ¢ 0" that
18 monic and of minimal degree among the q"-polynomials whose residue class modulo
2 — 2 lies in C(x). It satisfies that C(x) = (G). There exists another (unique)
q"-polynomial H(z) = Hox + Hizll + -« + Hpzl"l over Fym such that gl — g =
G(zr)® H(z) = H(x) ® G(x). They satisfy:

1. A q"-polynomial F lies in C(z) if, and only if, G(x) divides F(x) on the right (in
the ring LgrFgm[z]).

2. The ¢"-polynomials x @ G,z @ G, ..., zl5=V"l @ G constitute a basis (over Fym)
of C(x).

3. The dimension of C' (over Fym ) is k = n — deg, (G(x)).



4. C has a generator matriz (over Fym ) given by

GO G1 C Gn—k 0 . 0
- (e e I/ I 0
0 0 .. G gl gl

Moreover, if C has another generator matriz G' with the same form, for the values
G, 1=0,1,2,...,n—k, then G, = G/, _,G;, for all i.

5. A q"-polynomial F lies in C(z) if, and only if, F ® H = 0.

6. C has a parity check matriz (over Fym) given by

hy hip_1 ... ho 0 0
R )
00 aek e ek
where h; = Hl[(k_im.
7. C* is also q"-cyclic and its generator of minimal degree is H-(x) = (hpx +

hp_ gzl 4+ 4 hox[kﬂ)/ho_

The ¢"-polynomial G(z) will be called the minimal generator of C'(z), and H (z) will
be called the minimal check ¢"-polynomial of C(z).

2.5 The assumptions on the lengths of skew cyclic codes

To conclude, we see that restricting to the case where m divides rn does not leave any
q"-cyclic code out of study. Assume that IV is a positive integer, and take an arbitrary
q"-cyclic code C' C Fé\fn. Define n = lem(m, N), which satisfies that n = sm = tN for
positive integers s and ¢, and define 1) : Fé\fn — Fym by

1/1(00,01, e ,CN—l) = (CQ,Cl,. ..,CN—-1;€C0,C1y.-.yCN—-15-.-5C0,C1, ... ,CN_l),

where we repeat the vector (co,c1,...,cy—1) t times. It holds that 1 is Fym-linear, one
to one and wtg(c) = wtg(¢(c)), for all ¢ € FJ,.. Moreover, if we define oy, and oy as
in Definition [ then ¥ (0y. n(c)) = 074 (¢(c)), for all ¢ € FX,, and therefore, C C FL, is
q"-cyclic if, and only if, so is ¢)(C). The same holds for F-linearity and Fgm-linearity.
To sum up, every ¢"-cyclic code can be seen as a code in Fgm, where m divides rn.



3 Root spaces and cyclotomic spaces

In this section we will describe left ideals in L, Fym[z]/(zI'™ — 2) in terms of ¢"-root
spaces and ¢"-cyclotomic spaces, which are a subfamily of the former one and will which
allow to easily construct skew cyclic codes. As in the classical theory of cyclic codes,
we will see that the lattice of ¢"-cyclic codes is anti-isomorphic (isomorphic with the
orders reversed) to the lattice of ¢"-root spaces. In Section [}l we will use this ¢"-root
space description of ¢"-cyclic codes to extend the rank-BCH bound in [3, Proposition 1]
to more general bounds on the minimum rank distance of ¢"-cyclic codes.

3.1 The root space associated to a skew cyclic code

A ¢"-polynomial F(z) over Fym defines an Fyr-linear map F : Fgrn — Fgrn, and in
particular its set of roots or zeroes in Fyrn is an [Fyr-linear vector space.

Definition 2 (Root spaces). An F-linear subspace of Fy» will be called a ¢"-root
space over Fym if it is the space of roots in Fyrn of some F(z) € LyrFgm|[x].

On the other hand, for a residue class F = F(z) + (z[™ — z), we define its root
space, denoted as Z(F), as the root space in Fgrn of F(z).

Finally, define the map p, between the family of Fym-linear ¢"-cyclic codes in Fgn
and the family of ¢"-root spaces over Fgm in Fgrn by p,.(C) = T, where T' = Z(G) and
G(z) is the minimal generator of C'(z).

Observe that the second definition is consistent, since if Fy = Fy, then F;(z) — Fy(x)
is divisible on the right by 2" — z, and hence Fj(z) and Fy(z) have the same roots in
[Fgrn. The following lemma is a particular case of [I3, Theorem 3.50]:

Lemma 2 ([13]). Given F(x) € LyFqm|x], assume that the set of its roots T lie in Fyrn
and all roots are simple. Then

degy (F(x)) = dims,, (T).

The following theorem gathers the basic relations between C' and p,(C):
Theorem 2. Let T = p,(C) as in Definition[2, then:

1. G(x) = TTperle — B).

2. The dimension of C' over Fym is k = n — dimg,_,. (T).

3. For a q"-polynomial F(x), it holds that F € C(x) if, and only if, F(8) =0, for all
peT.

4. Let B1,B2,...,Bn—k be a basis of T' over Fyr. Then the matrix

51 Bgr} ?r} N ﬁg(nfl)r}

[7] [27] [(n=1)r]
6 B
Mm@y =| T
Buix BT gL gleonr
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is a parity check matriz of C' over Fyrn.

5. A ¢ -polynomial G generates C(x) if, and only if, Z (é) =T, which holds if, and
only if, G(z) = ged(G(x), z™ — ) (on the right).

Proof. First, since G(z) divides 2™ — 2 symbolically on the right, it also divides it
conventionally. Therefore, G(x) has simple roots because zl™ — 2 has simple roots, and
item 1 follows.

Since the roots of G(z) are simple, item 2 follows directly from the previous lemma
and Theorem [

Next, if F' € (G), then G(x) divides F(x) on the right and therefore 7' C Z(F'). On
the other hand, assume that F(8) = 0, for all 5 € T. By the Euclidean division, we
have that F(z) = Q(z) ® G(z) + R(x), with deg(R(z)) < deg(G(z)), but then R(5) =0
for all 5 € T, and hence R(x) = 0. We conclude that F' € (G) and item 3 follows. Item
4 follows immediately from item 3.

Finally, assume that G generates C'(x). Since G divides G and G divides G on
the right, we have that Z(G) = T. Now assume that Z(G) = T and define D(z) =
ged(G(z), 2™ — ). We have that D(z) = A(z) ® G(x) + B(z) ® (z" — ), for some
¢"-polynomials A(z) and B(z). It follows that T' C Z(D), and since D(z) divides
G(z), it holds that T = Z(D). Finally, since D(z) divides z[™ — z, every root of
D(z) lies in Fgr» and is simple, which implies that D(z) = G(z). Now assume that
G(z) = ged(G(z), 2l — ), then G(z) = A(z) ® G(z) + B(z) ® («I™ — ), for some
¢"-polynomials A(z) and B(z). Therefore, G € (G), and since G(z) divides G(x), it
holds that (G) = (G), and item 5 follows. O

On the other hand, we have the following equivalent conditions on inclusions of
q"-cyclic codes and ¢"-root spaces.

Corollary 1. Let Cy(z) = (G1) and Ca(z)
Z(Gy) and Ty = Z(G3), where Gi(x) and Gs
and Co(x), respectively. Then C1(x) C Ca(x)
right, and this holds if, and only if, T5 C T7.

= (G3) be two q"-cyclic codes with Ty =
(x) are the minimal generators of Ci(x)
if, and only if, Go(z) divides G1(x) on the

Proof. The first equivalence is clear from Theorem [l Now, if Ga(z) divides Gi(x) on
the right, then it is obvious that 7o C T7.

Finally, assume that 75 C T, and perform the Euclidean division to obtain G1(x) =
Q(z) ® Go(x) + R(x), with deg(R(z)) < deg(Gz2(x)). We have that R(8) = 0, for
every 3 € Ty, and by the previous theorem, R € (G2). However, Go(x) is the minimal
generator of Cy(x), so it follows that R(z) = 0, that is, Ga(x) divides G(z) on the
right. O

The previous corollary and Theorem 2 imply that the map p, is bijective:

Corollary 2. The map p, in Definition[3 is bijective.



Proof. We first see that it is onto. Take T" = Z(F') a ¢"-root space over Fym in Fyrn.
By item 5 in Theorem [2 it holds that Z(G) = T if G(z) is the minimal generator of
C(z) = (F). Therefore, T'= p,(C). On the other hand, p, is one to one by the previous
corollary. U

In the next section we will see that the family of ¢"-root spaces over Fym in Fyrn is
a lattice with sums and additions of vector spaces, and therefore Corollary [ together
with the previous corollary mean that the map p, is an anti-isomorphism of lattices (an
isomorphism with the orders reversed).

On the other hand, Theorem [2 gives the following criterion to say whether an [Fyr-
linear subspace T' C Fym is a ¢"-root space, in terms of ¢"-cyclic codes:

Corollary 3. Let T' C Fyrn be Fyr-linear, take one of its bases 51, B2, ..., fn—r over Fyr,
and define M(B) as in Theorem[d. Consider C' C Fyn, the Fyrn-linear code with M(3)
as parity check matriz. Then T is a q"-root space over Fym if, and only if,

dimg,, (C NF) = dimg,,, (C), (3)

which holds if, and only if, C has a basis of vectors in Fm.

Proof. Assume first that 7' = Z(F'), for some ¢"-polynomial F'(z) over Fym, and define
C(z) = (F). By items 4 and 5 in Theorem 2, C' = C' N [Fym, and by item 2 in the same
theorem, dimg,, (C)=k= dimg,,, (5)

Assume now that dimg,,, )= dimp,,, (5), where C' = C NFgm. Since C is q"-cyclic,
it follows that C' is also ¢"-cyclic. By definition, ' C Z(G), for the minimal generator
G(z) of C(x). Now, dimp,,, (C') = k by hypothesis, and hence dimg, (Z(G)) =n —k
by item 2 in Theorem 1 Also by hypothesis, dimg,.(7) = n — k, so it holds that
T = Z(G). O

Observe that condition (B)) means that C is Galois closed over Fym. See [14], 20] for
more details on Galois closed vector spaces. The following example shows how to use
this result to see whether a given vector space is a ¢"-root space.

Example 1. Assume that n = 2m and r = 1, and take a normal basis «, alV), ..., al*=1
€ Fyn over F,. Consider the (Fy-linear) vector subspaces 171,75 C Fyn generated by

and «, o™ respectively. Define also the codes 6’1, Cy C Fi» with parity check matrices

M(a) and M(a, ol™), respectively, and define D; = (C; N Ff;m)L, i =1,2. They satisfy
D; = Tr(af), i = 1,2, by Delsarte’s theorem [4, Theorem 2], where Tr denotes the trace
of the extension Fym C Fyn, that is, Tr(z) = 2 + zl™.

We will see that T is not a g-root space over F,m, whereas T3 is. Moreover, we will
see that D1 = Do, which has dimension 2 over F,m and which shows that condition (33)
in the previous corollary is satisfied for T5 but not for 77.

Since dim(77) = 1, if it were a g-root space, then there would exist b € Fym with
F(a) = 0, where F(z) = z!Y — bz by Corollary Bl Since "™ @ F(z) = F(z) ® zI™, it



holds that F(al™) = 0. This would imply that o, al™ € T} and dim(7}) = 1, which is
absurd.

On the other hand, we see that D; C Dsy. Define the vectors a = (a,a[l], ceey
alr=1) € Fyn, vo = Tr(aa) = aa + a™al™ and v = Tr(aMa) = alla + allt™al™l,
which belong to D; and also to 5; Moreover, we see that they are linearly independent
over Fyn and, therefore, they constitute a basis of 5’% This means that Dy = Dy and
dimg,, (D2) = dimg, (C5) = 2.

In conclusion, condition (@) is satisfied for 75 but not for 7;. By the previous corol-
lary, it holds that 75 is a g-root space over Fym, and we have seen that 77 is not a g-root
space over Fgm.

3.2 Cyclotomic spaces

Now we turn to a special subclass of ¢"-root spaces in Fgr», namely the class of ¢"-
cyclotomic spaces. These spaces will play the same role as cyclotomic sets in the classical
theory of cyclic codes (see [II, Theorem 4.4.2] and [II, Theorem 4.4.3]), that is, they
generate the lattice of ¢"-root spaces, and are key concepts to easily construct skew cyclic
codes.

For this we need the concept of minimal ¢"-polynomial of an element 3 € Fgrn over
Fym. The following lemma and definition constitute an extension of [I3, Theorem 3.68]
and the discussion prior to it:

Lemma 3. For any [ in an extension field of F cmerm), there exists a unique monic
q"-polynomial F(x) € LyFynm(z] of minimal degree such that F(B) = 0. Moreover,
if L(B) = 0 for another q"-polynomial L(x) over Fym, then F(x) divides L(x) both
conventionally and symbolically on the right.

Proof. If 8 € Fgre, t > 0, then the polynomial ﬁ(x) = z[" — 2 lies in Ly Fym|x] and
F(B) = 0. Therefore there exists an F () € Ly Fgm[x] monic and of minimal degree such
that F/(8) = 0. Let L(x) € Ly Fgm|[x] be such that L(5) = 0, and perform the Euclidean
division to obtain L(z) = Q(z) ® F(x) + R(z), with deg(R(z)) < deg(F(z)). Then
R(B) = 0, and since F'(z) is of minimal degree, we have that R(xz) = 0, and therefore
F(z) divides L(z) both conventionally and symbolically on the right. This also proves
that F'(z) is unique and we are done. O

Definition 3. For 8 in an extension field of F icm(r.m), the ¢"-polynomial F'(z) in the
previous lemma is called the minimal ¢"-polynomial of 3 over Fym.

Now we may define ¢"-cyclotomic spaces in Fgrn:

Definition 4 (Cyclotomic spaces). Given 3 € Fyn, we define its ¢"-cyclotomic space
over Fym as the Fgr-linear vector space Cy(3) of roots of the minimal ¢"-polynomial of
B over Fym.

Example 2. Let the notation and assumptions be as in Example [[I Since the basis
alfl (alPh (a1 s also normal, in Example [l we have proven that C,(al’) =
<a[b} , alotml ).



In general, for r = 1 and n = sm, we have the following result:

Proposition 1. If o, oV, ... al" Y is a normal basis of Fyn over Fg, then it holds that
Cy(altly = (altl albtml  qlb+s=0mly - for every integer b > 0.

Proof. We may assume that b = 0 without loss of generality. First of all, for every

F(z) € Ly Fym[z], we see that 2" @ F(x) = F(x)®2!™ and, therefore F(3) = 0 implies

that F(8™) =0, for any 8 € Fyn. This means that (o, o™, ... ol=Umy C O, ().
The reversed inclusion is proven using Corollary Bl as in Example [l To that end,

we need to define the vectors v; = Tr(alla) = Zj;é alittimlaliml ¢ Fym, for i =
0,1,2,...,s — 1, where a = (a,am, . ,a["_”) € Fyn. The vectors vo,vy,...,vs_1 are
linearly independent over F =, since so are the vectors c, alm . al=Dmland the

following matrix is non-singular:

o a[m] apm] . a[(sfl)m}
ol alltm] qli+2ml i+ (s—1)m]
a[s.—l] a[s—.l—f—m} a[s—i-‘,—Qm} o a[s—l—i—.(s—l)m]

O

Next we see that every ¢"-root space is a sum of ¢"-cyclotomic spaces. Since in the
next section we will see that sums and intersections of ¢"-root spaces are again ¢"-root
spaces, this means that the subclass of ¢"-cyclotomic spaces generates the lattice of
q"-root spaces:

Proposition 2. Given a q"-root space T' C Fyrn over Fym, there exist 51, 2,...,5, €T
such that T = Cyr (B1) + Cqr (B2) + - - + Cyr (Bu). Moreover, if the q"-cyclotomic spaces
Cyr(Bi) over Fym are minimal and T is not a sum of a strict subset of them, then the
sum is direct.

Proof. Take L(xz) € Ly Fgm|x] such that T = Z(L). For every g € T, if F(x) is its
minimal ¢"-polynomial over F,m, then by Lemma [ F(x) divides L(z) and, therefore,
Cy(B) = Z(F) C Z(L) = T. This means that ' = } 5.7 Cyr(B). Since the sum is
finite, the result follows.

Finally, assume that the Cyr(f;) are minimal and 7" is not a sum of a strict subset of
them. If there exists 8 € Cyr (8;)N(3_;.2; Cqr (B5)) that is not zero, then by minimality of
Cqr(B;), we have that Cgr(8) = Cyr(8;), and therefore Cyr (8;) € 3°,2; Cor(B;). However,
this means that T' is the sum of the spaces Cyr(8;), with j # 4, which contradicts the
assumptions. ]

4 The lattices of ¢"-cyclic codes and ¢"-root spaces

It is straightforward to see that sums and intersections of ¢"-cyclic codes are again ¢"-
cyclic. In this section we will see that the same holds for ¢"-root spaces. By Corollary [I],
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both lattices are anti-isomorphic. We will also prove this directly by showing that inter-
sections of ¢"-cyclic codes correspond to sums of ¢"-root spaces and viceversa. We will
also study the concept of ¢"-cyclic complementary of a ¢"-cyclic code, rank equivalences
and lattice morphisms.

4.1 The lattice anti-isomorphism

Theorem 3. Let Ci(x) and Ca(z) be two ¢"-cyclic codes with minimal generators G(x)
and Go(x), respectively. Set Ty = Z(G1) and Ty = Z(G2). We have that

1. Ci(x) N Cy(x) is the q"-cyclic code whose minimal generator is given by M(x) =
lem (G (z), Go(x)) (on the right), and Z(M) =Ty + T5.

2. C1(z) + Ca(x) is the ¢"-cyclic code whose minimal generator is given by D(z) =
ged(G1(x), Ga(z)) (on the right), and Z(D) =Ty N T5.

In particular, sums and intersections of q"-root spaces are again q"-root spaces, and they
form a lattice anti-isomorphic to the lattice of q"-cyclic codes by the map p, in Definition
2. Moreover, the lattice of q"-root spaces is generated by the subclass of q"-cyclotomic
spaces.

Proof. Define M (x) as the minimal generator of Ci(x) N Cy(z). We have that Gi(z)
and Ga(z) both divide M (x) on the right by Theorem [, item 1, since M € (G;) and
M € (G2). Now, if ' € Ci(x) N Ca(z), then M(x) divides F(z) on the right for the
same reason. In conclusion, M (z) is the least common multiple on the right of G;(x)
and Ga(z).

On the other hand, define D(z) as the greatest common divisor of G1(z) and Ga(x)
on the right. By the Euclidean algorithm, we may find a Bézout’s identity on the right
D(z) = Qi(z) ® Gi(x) + Q2(z) ® Ga2(x). This implies that (D) C Ci(z) + Ca(x).
Moreover, by definition D(z) divides both G1(x) and Ga(x) on the right, and therefore
Ci(z) + Co(x) C (D), and hence they are equal.

To see that D(x) is the minimal generator, take F' € (D), then F(z) = Q(z) ®
D(z) 4+ P(z) ® (zI'™ — z). But since D(z) divides both Gy(z) and G(z), and these
divide 2" — z, then D(z) divides 2™ — z and hence, it divides F(z).

Finally, we see that 71 UTy C Z(M) by Theorem[2] item 3, since M € Ci(x)NCa(z).
Therefore, T1 + T C Z(M). On the other hand, since D € Cy(z) + Cy(x), we see that
Ty NTy C Z(D) also by Theorem 2] item 3. By the same theorem, we have that

= (n — dim(Cy N C2)) + (n — dim(Cy + Cy)) = dim(Z(M)) + dim(Z(D)).

Hence, Z(M) =T, + T, and Z(D) = T} N'T, and we are done.
The last statement of the theorem follows from Proposition [2 O
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4.2 Skew cyclic complementaries and idempotent generators

The existence and /or uniqueness of complementaries is an important property of lattices.
In the theory of classical cyclic codes, every cyclic code has a unique complementary
cyclic code when the length and ¢ are coprime [I1], Exercise 243]. In this case, every
cyclic code also has an idempotent generator [I1, Theorem 4.3.2], which describes very
easily the complementary cyclic code (see [II, Theorem 4.4.6]).

In this subsection we investigate the existence and uniqueness of ¢"-cyclic comple-
mentaries and idempotent generators of ¢"-cyclic codes, and relate both.

Observe that, by the fact that the map p, in Definition[2lis a lattice anti-isomorphism,
two ¢"-cyclic codes are complementary if, and only if, their corresponding ¢"-root spaces
are complementary.

Proposition 3. Given ¢"-cyclic codes Ci(x) and Ca(x) with minimal generators Gi(x)
and Ga(z), we have that they are complementary, that is, Fym = C1 @ Cy if, and only if,
G1(x) and Ga(z) are coprime (on the right) and deg,(G1(z)) + deg, (G2(x)) = n.

Proof. By Theorem [] the condition Cy(x) 4+ Co(x) = Ly Fym[z]/ (2™ —2) is equivalent
to D(z) = x, which means that G (z) and Ga(x) are coprime. By Theorem [ if C; and
Cy are complementary, then

deg,r(G1(x)) + deg, (Ga(x)) = n — dim(Cy) + n — dim(Cy)
=n — (dim(C}) 4+ dim(Cs) — dim(Cy + C3)) = n — dim(Cy N Cy) = n.

Conversely, if D(z) = x and deg,(G1(x)) + deg, (Ga(x)) = n, then C; + Cy = Fym by
Theorem [Bland dim(C; N Cy) = 0 by Theorem [Il as before, and the theorem follows. [

In [9, Theorem 6], the existence of an idempotent generator is proven when n is
coprime with ¢ and also with the order of the automorphism « — al"l. We next prove
the existence in other cases (see Example [ below), and give other properties.

Theorem 4. Let C(z) be a left ideal with minimal generator G(x) and check q"-
polynomial H(z). The following holds

1. An element E € C(x) is idempotent (that is, E ® E = E) and generates C(x) if,
and only if, it is a unit on the right in this ideal.

2. Given a q"-polynomial F(x) and an idempotent generator E of C(x), it holds that
F € C(x) if, and only if, F = FQE. In particular, x — E(x) is a check polynomial
for C(z).

3. For any idempotent generator E of C(x), the ¢"-polynomial x—FE is also idempotent
and (x — E) is a complementary for C(x).

4. Assume that G and H are coprime on both sides. That is, we may obtain Bézout
identities on both sides

r=GRG+HRH =G, G+ Hy® H,
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in the ring Ly Fyn[z]/(xM™ —2). Lt E=2 -~ Hy® H and B' =x — H® Hy. It
holds that E = E', and it is an idempotent generator for C(z).

Proof. Ttems 1 and 2 are proven as in the classical case (see [I1] Section 4.3]). For item
3, we have that (z — E) + (E) is the whole quotient ring. On the other hand, take
F e (x—E)N(E). By item 1, E and # — E are units on the right in the ideals that
they generate. Therefore, F=F@ Fand F=F®(x—E)=F-F®FE=F—F =0.
It follows that (x — E) N (E) = {0}, and item 3 is proven.

We now prove item 4. We have that £ = Go®G, E' = GG and GRH = HRG =0
by Theorem [l Therefore F' = E ® E' = E, and it is idempotent. On the other hand,
E € (G)and G =G ® E' € (E'), and therefore C(z) = (G) = (E). O

From the previous theorem and proposition, we deduce the following for a left ideal
C(z) with minimal generator G(x) and check ¢"-polynomial H (z):

Corollary 4. The q"-cyclic codes (G) and (H) are complementary if, and only if, G(x)
and H(x) are coprime. In that case, if E is the idempotent described in item 4 in the
previous theorem, then (x — E) = (H).

Remark 2. Recall from Theorem [2, item &5, that in particular, the minimal generator
of a left ideal can be efficiently obtained from the idempotent generator.

Example 3. Let ¢ =2, n =m = 3 and r = 1, consider the primitive element o € Fo3
such that o® + a +1 = 0, and the g-polynomials G(z) = 2 + otz + oSz and
H(z) = 2zl + az, as in [8, Example 2]. By Euclidean division on both sides, we find
that

=2 G+ @M +ar) @ Hz) = Ga) @ 2+ H(z) @ (! + ax).

Then £ = E' = G. In this case the idempotent generator coincides with the minimal
generator. Observe also that here the order of the automorphism a — «al!l is 3, and
hence is not coprime with n. Therefore, Theorem [ covers other cases than [9, Theorem
6].

On the other hand, we see that the g-polynomial z — F = 22+ a2l 4 o2 =
(! + ax) ® H(z) is an idempotent generator of (H), which is a complementary for
C(z), as stated in the previous corollary.

4.3 Rank equivalences and lattice automorphisms

To conclude the section, we study rank equivalences and automorphisms of lattices of
the family of ¢"-cyclic codes. A rank equivalence ¢ : Fim — Fim is an Fym-linear
vector space isomorphism with wtr(p(c)) = wtr(c) (see [14] for more details on rank
equivalences). For convenience, we define the rank weight of F' € L, Fym[z]/(x" — )
as

WtR(F) :WtR(FQ,Fl,...,Fn_l) :WtR(’yfl(F)), (4)

where 7, is as in ([2). Since the map p, in Definition Bl is a lattice anti-isomorphism
by Theorem [3] every automorphism of the lattice of Fym-linear ¢"-cyclic codes induces
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an automorphism of the lattice of ¢"-root spaces over Fym. In particular, every ring
automorphism of £, Fym[2]/(2™ — 2) induces such a lattice automorphism.
We study the following class of ring automorphisms:

Definition 5. For every a =0,1,2,...,7n — 1, we define the morphism ¢, : LyrFqm[z]/
(2l — 2) — LT ym[2]/ (2 — 2) by 0o (F) = 2~ @ F @ 2.

We observe that this map is well-defined and corresponds to rising to the power ¢""~¢

in Fim (and g is the identity). That is, if F' = Fox + Fialh o4 By 2[=Dr] then
gl o Feald = F(gmfa]x + Fl[mfa]x[r] +-+ Firflfa}x[(”flm.

We gather the main properties of the maps ¢, in the next proposition:

Proposition 4. For every a,a’ =0,1,2,...,rn — 1, the map @, satisfies:

1. @4 is a ring isomorphism. Viewed as map pq : Fgm — Fym, it is Fy-linear and
Fym -semilinear.

2. 0a = pa if, and only if, a and o' are congruent modulo m.

3. o =1d and @a0py = a0 ps = Pata - In particular, a0 Pn_q = Pn—q 0P, = 1d.

4. For every q"-polynomial F(x), it holds that wtr(F) = wtr(va(F)) (see {{])), that
18, Yq 1S a rank equivalence.

5. wa maps left ideals to left ideals and, in general, maps q"-cyclic codes to q"-cyclic
codes.

6. v, maps tdempotents to idempotents.

Proof. The first three items are straightforward calculations. The last two items follow
from these first three items.

Finally, if ¢ = (g, ¢1,...,¢p-1) € [Fym, then the dimension of the vector space gener-
ated by co,c1,...,cp—1 in Fgm is the same as the dimension (over F,) of the vector space
generated by ¢f,c{,..., ¢l _,, since rising to the power ¢ is an Fy-linear automorphism
of Fym. Therefore, wtg(co,c1, ..., cn-1) = wtr(cl,cf,....cl_).

’y n—1
Since @, corresponds to rising to the power ¢~ ¢

, we see that it also preserves rank
weights, and item 4 follows. O

Remark 3. By item 6 in the previous proposition and Theorem [3, item 5, we may
obtain the minimal generator of a q"-cyclic code equivalent to a given one if we know
the minimal generator or an idempotent of this latter code.

On the other hand, these are the only maps coming from ring automorphisms of
Ly Fym[z]/(z™) = 2) having the following reasonable properties: they commute with
the ¢"-shifting operators (II), are Fy-linear and leave the field Fym invariant (Fgm is a
subring of L, Fym[z]/(z" — z) by considering any a € Fym as the polynomial o).
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Proposition 5. Fora =0,1,2,...,rn — 1, if we view @, as a map pq : Fgm — Fpm,
then it holds that

Ormn © Pa = Pa ©O0rn,

where oy, is as in (d). Moreover, if ¢ is an Fy-linear ring automorphism of LgrFqm[x]/
(az[m] — x) satisfying this condition and leaving Fym invariant, then ¢ = ¢, for some
a=0,1,2,...,rn — 1.

Proof. The fact that a ring automorphism ¢ commutes with o, is equivalent to the
condition

plal o F) = 2 @ p(F), ()

for all F € LFym[z]/(x'™ — 2), which is satisfied if ¢ = ,.

On the other hand, since p(az + fz) = p(azx) + ¢(Bfz) and p(ar ® fz) = p(ax) @
¢(Bx), for all o, € Fym, we have that ¢ is an automorphism of the field Fym» when
restricted to constant polynomials az.

Moreover, if a € Fy, by Fy-linearity it holds that p(az) = ar ® ¢(z) = ax. Hence
[F, is fixed by the automorphism induced by ¢ in Fym. Therefore, there exists an a =
0,1,2,...,m — 1 such that p(azx) = alrm=adg for all a € Fgm. This together with (&)
means that ¢ = ¢, and we are done. U

Finally, we see that the lattice automorphism induced by ¢, in the lattice of ¢"-
spaces over [Fgm corresponds to the one induced by the field automorphism of [F - given
by B — glal. In particular, by item 2 in Proposition [, two of these automorphisms of
the lattice of ¢"-root spaces over Fym, for a and a/, respectively, are equal if, and only if,
a and a' are congruent modulo m. In short:

Proposition 6. For alla =0,1,2,...,nr—1 and all F € LyFym[z]/(zl™ —2), it holds
that Z(pa(F)) = Z(F). In particular, Z(F)l* = Z(F)l“) if a and o' are congruent
modulo m.

5 Bounds on the minimum rank distance

In this section we will give lower bounds on the minimum rank distance of ¢"-cyclic
codes. The simplest bound on the minimum Hamming distance of classical cyclic codes
is the BCH bound, which has been adapted to a bound on the minimum rank distance
of ¢"-cyclic codes in [3, Proposition 1]. In this section, we will give two extensions of
this bound analogous to the Hartmann-Tzeng bound [10] in the form of [2I, Theorem
2], and another one analogous to the bound in [2I, Theorem 11], also known as the shift

bound.

5.1 The rank-shift and rank-Hartmann-Tzeng bounds

We start by giving the definition of independent sequence of F,--linear vector subspaces
of Fgrn with respect to some Fyr-linear subspace S C Fgrn.
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Definition 6. Given F,--linear subspaces 5, Ig, I1,1l2,... C Fgn, we say that the se-
quence Ig, I1, Io, ... is independent with respect to .S if the following hold:

1. Iy = {0}.

2. For ¢ > 0, either
(a) I; =1; ® (), for some 0 < j <, I[; CSand &S, or
(b) I; = I][br], for some 0 < j < ¢ and some integer b > 0.

We say that a subspace I C F;m is independent with respect to S if it is a space in a
sequence that is independent with respect to S.

The van Lint-Wilson or shift bound [2I, Theorem 11] for the rank metric becomes
then as follows. Observe that it is a bound on the rank weight (see [))) of a given
¢"-polynomial in L, Fym[z]/(zI"™ — ) in terms of its roots.

Theorem 5 (Rank-shift bound). Let F € L Fym[z]/(zI"™ —2) and S = Z(F) = {8 €
Fyrn | F(B) = 0}, as in Definition [ If I C Fyrn is an Fyr-linear subspace independent
with respect to S, then

wtr (F) > dimg,, (1),

where wtg (F) is as in ().

Proof. Define the vector F = (Fo, F1,...,Fy1) € Fpm if F' = Foz + Fizlh 4+ 4
Fp_ 120~ (recall @))). Now write F = z;”:_ol a;F, where F; € Fy, fori =0,1,...,m—
1 and ag,aq,..., Q1 is a basis of Fym over Fy. Define w = wtg(F'), and recall from

Subsection 2.2 that w = dimg, ((Fo,F1,...,Fp_1)F,).

Let A be a w x n matrix over F, whose rows generate the vector space (Fo,Fy,...,
Fp—1)r,. Since A is full-rank, there exists a w x n matrix A" over F, such that AAT =
I. On the other hand, by definition of A, there exist x; € Fy with F; = x;A, for
1=0,1,...,m— 1. It follows that

m—1 m—1 m—1
F(ATA) = Z aix; A(ATA) = Z ixi(AATA = Z a;x;A =F.
=0 1=0 1=0

On the other hand, for an [Fyr-linear subspace J C F;rn, define the Fyrn-linear sub-
space of i given by

V(J) = ({88,827, BN AT | B e T} C Fin,

We will prove that dimg,,(V(I)) = dimg, (/), and hence it will follow that w >
dim]qu (I) .

By definition, there exists a sequence Iy, 1, I2, ... C Fgrn of Fyr-linear subspaces that
is independent with respect to S and I = I;, for some i. We will prove by induction on

7 that dim]qu (V(Iz)) = dim]qu (IZ)
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For i = 0, we have that [y = {0} and V(Ip) = {0}, and the statement is true.

Fix i > 0 and assume that it is true for all 0 < j < i. The space I; may be obtained
in two different ways, according to Definition

First, assume that I; = I; & (), with 0 < j < ¢, I; C S and § ¢ S. Therefore,
dimg, . (1;) = dimg,, (;)+1. It follows that dimg ., (V (I;)) < dimg,,.,. (V (I;))+1. Assume
that dimg,,.. (V' (1;)) = dimg,_,, (V' (I;)). This means that

(8,87, 521, .., plr AT € V(1))
On the other hand, for every v € .S, it holds that
0=F(y) =F(y,A", ... AT = (FAT) (A, A1, A7 DT,

Since (8,8, 821 .. pl=DYAT is a linear combination (over Fyrn) of vectors in
V (1), it follows that

0= (FAT)(A(B, B, ...l DTy = F(B, 8, ... gl DT = F(p),

which means that § € S, a contradiction. Thus dimg,,.,(V([;)) = dimg_., (V(;)) + 1
and the result holds in this case.

Now assume that [; = I][br], for some integer b > 0 and 0 < j < 4. Since rising to the
power ¢" in Fgrn is an Fgr-linear vector space automorphism, we have that dimg,, (L;) =
dimp,, (Z;). On the other hand, rising to the power ¢" in Fgrn is an Fgrn-semilinear vector
space automorphism, which also preserve dimensions over Fyrn. Since V(I;) = V(I j)[br],
we have that dimg .. (V' (1;)) = dimg,,., (V/(1;)) and the result holds also in this case. [

Future research on other possible generalizations of the rank-BCH bound could be
trying to obtain rank versions of the bounds in [6] [I7], to cite some. We next give a toy
example to illustrate the previous bound:

Example 4. Let r = 1, n = m = 2. Take a vector F = (Fy, F}) € IF%Q. We next see that
the previous bound gives the exact value of wtg(F). Observe that wtg(vF) = wtr(F),
for all non-zero v € F 2, and hence we may assume F = (1,a) for some o € F2. Let
S=Z(F)CFgp, for F(z) = 2 4+ az, and distinguish two cases:

1. wtg(F) = 1, that is, a € F;: We have that S = {0} if « = 0, and S = (), for some
non-zero 3 € Fy2 if v # 0. We may start constructing an independent sequence by
Iy = (v), for some v € F2 \ S. We see that these (and Iy = {0}) are all subspaces
independent with respect to S, and hence we may only construct an independent
space of dimension 1.

2. wtr(F) = 2, that is, a € F2 \ F;: In this case, S = (8), for some 8 € F2. Then 3
and (¢ are linearly independent over Fy since 59+ aff =0 and a ¢ F,,.

Define I; = (89), then I, = I{ = (B) and finally Is = L, & (89) = (B,5%). It
holds that dim(/3) = 2, hence the previous bound is an equality: 2 = wtg(F) >
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As a consequence of the previous theorem, we may give the following bound, analo-
gous to the Hartmann-Tzeng bound as it appears in [2I, Theorem 2J:

Corollary 5 (Rank-HT bound). Take integers ¢ >0, 6 > 0 and s > 0, with § + s <
min{m,n} and d = ged(c,n) < &, and let o € Fyn be such that A = {al(+i97] | 0 <
i <0—2,0<j<s} isalinearly independent (over Fyr) set of vectors, not necessarily
pairwise distinct.

If F € LypFymlz)/ (2 — 2) satisfies that A C T = Z(F), then wtr(F) > § + s
(recall {)). In particular, if C = p;1(T), with p, as in Definition[d, then

dr(C) > + s.

Proof. First, since 6+ s < n, we have that ds < ds < n, and n/d is the order of ¢ modulo
n. Hence, the elements jer, for j =0,1,2,...,s, are all distinct modulo rn.

On the other hand, we may assume that A is maximal with the given structure. That
is, there exists 0 <7 < § — 2 with alli+(s+1)o)r] ¢ T and there exists 0 < j < s such that
al(@=1+je)r] ¢ T. From the proof, we will see that we may assume for simplicity that
7 = 0, and by repeatedly raising to the power ¢", we will also see that we may assume
that i =6 — 2.

We will now define a suitable sequence Iy, I, I3, ... C Fgrn of Fyr-linear spaces inde-
pendent with respect to S =T', and with dimg,, (I;) > d + s for some i > 0. We start by
IO = {0}, and IQZ'J,_l = IQZ‘ D <a[(572+(s+1)c)r}> and IQH_Q = Iggi_lc)r], for i = 07 1, 2, ey S

We see by induction that J; = Iosy9 is generated by the set

{alO=2H70r1 | 0 < 5 < s}.

Next, define Joj11 = Jo; @ <0z[(5_1)r]> and Jy; = Jggi;l)r], fori=1,2,...,06 — 1.
Finally, again by induction we see that Jos_1 is generated by the set

(i [0<i<s— 1 u{aliol 1< <8, (6)

whose elements are all distinct by the first two paragraphs in the proof: First, these
two sets are disjoint. If alierl = a["], for some 1 <i<§—1and 1 < j < s, then by
considering je, je+1, ..., je+8—2, we see that /O~ € T a contradiction. Now, if two
elements in the set on the left are equal, then we see again that a0~V € T Finally, if
two elements in the set on the right are equal, we may now see that alO=2+(s+)or] ¢ .
which is again a contradiction.

Since there are 0 + s elements in the set (€) and they are linearly independent by
hypothesis, the result follows from the previous theorem. O

By taking s = 0 and ¢ = 1, we see that the rank version of the BCH bound obtained
in [3, Proposition 1] is a corollary of the previous bound:

Corollary 6 (Rank-BCH bound [3, Proposition 1]). Take an integer 6 > 0, with
d < min{m,n}, and let o € Fypn be such that a, ol o2 ol e linearly
independent over Fr.
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If F € Ly Fynlz]/(xl™ — x) satisfies that T = Z(F) contains the previous elements,
then wtr(F) > 6 (recall {)). In particular, if C = p, (T), with p, as in Definition 3,
then

dr(C) > 4.

Thanks to the lattice study of the previous two sections and, in particular, thanks
to Proposition [Il we can see that it is not difficult to find examples where the rank-HT
bound beats the rank-BCH bound, as in the classical case:

Example 5. Consider r = 1, n = 2m and m = 31, and take a normal basis o, al!, ...
al6l of [Fye2 over Fy. Take ¢ =5, = 4 and s = 3, and the g-root space

T = (Cyla) & Cq(a[l]) @ Cq(a[z])) ©® (Cq(a[5]) @ Cq(a[(ﬂ) @ Cq(am))

8(Cy(a") & Cy(al") & Cy(al)) & (Cy (o)) & Cy(al') & Cy (al!T)).

By Proposition @ we have that C,(al!) has {all, a1} as a basis, and hence has
dimension 2. Therefore, the code C' = p, }(T') has dimension 62 — 24 = 38. The rank-
BCH bound states that dr(C) > 4, whereas the rank-HT bound improves it giving
dr(C) > 1.

5.2 Rank-BCH codes from normal bases are generalized Gabidulin
codes

As a consequence of the bound in Corollary [6 a family of ¢"-cyclic codes with a designed
minimum rank distance is defined in [3, Section 3|, in analogy with classical BCH codes.
By means of difference equations and Casoratian determinants, rank-BCH codes are
defined in [3] as ¢"-cyclic codes with prescribed minimum rank distance and generator
polynomial of minimal degree.

We will give an alternative description in terms of ¢"-cyclotomic spaces, which will
allow us to prove that, when m = n and r and n are coprime, rank-BCH codes from
normal bases are generalized Gabidulin codes, as in Subsection 2.2, which are MRD.

Definition 7. Given 1 < § < m, we say that the ¢"-cyclic code C(z) over Fym is a
rank-BCH code of designed minimum rank distance ¢ if the corresponding ¢"-root space
T over Fym (see Definition [2)) is

T =Cy(a) + Cyr (a[r]) + qu(a[%]) o4 Cyr (a[((S—?)T]),
where o € Fyrn and a, alfl a2l al0=2)1] gre linearly independent over Fr.

The following result follows immediately from Corollary

Proposition 7. The rank-BCH code C(x) in the previous definition satisfies that

dr(C) > 6.
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If m = n and r and n are coprime, the Gabidulin codes Gaby () defined using
a normal basis (see Subsection 22)) are rank-BCH codes also using normal bases, and
viceversa, and all of them are MRD codes. Hence the family of rank-BCH codes include
MRD codes. We will use [I2, Lemma 2], which is the following:

Lemma 4 ([12, Lemma 2]). If r and n are coprime and ag, 1, ..., an—1 € Fgn are
linearly independent over IFy, then they are also linearly independent over IFyr, considered
as elements in Fyrn.

Theorem 6. Assume m =n and r and n are coprime. Take a normal basis o, !, ..,
aln=1 ¢ Fyn = Fgm and 1 < 6 < n. Then the corresponding rank-BCH code C(z), as
in Definition[7, is the generalized Gabidulin code Gaby, (o) (see Subsection[2.2), where
o= (o, =Dy and k=n—6+1.

Proof. Since m = n, we have that a € Fym, and hence Cyr(all) = <Oém>]FqT, for all
i =0,1,2,...,n — 1. Therefore, the ¢"-root space T corresponding to C(z) is T =
(o, el .. ,a[(‘S_Q)TDqu, whose dimension over F, is § — 1 by the previous lemma.
Hence, by item 4 in Theorem 2] the matrix M(a, o), ... al®=27) is a parity check
matrix of C' over Fym. However, this is also the parity check matrix of the above men-
tioned Gabidulin code of dimension k, Hy, (), if K = n — 3§ + 1 (see Subsection [22]).
Therefore both are equal and the theorem follows. O

6 General I -linear skew cyclic codes: Connecting Hamming-
metric cyclic codes and rank-metric skew cyclic codes

To conclude, we will give some first steps in the general study of F,-linear ¢"-cyclic codes
in Fgm.

Its main interest for our purposes is that they include both the family of skew cyclic
codes in the rank metric, which are the main topic of this paper, and the classical family
of cyclic codes in the Hamming metric, as we will prove in the first subsection.

Moreover, as we will see in the second subsection, some [Fm-linear ¢"-cyclic codes in
the rank metric with m = n actually are obtained from cyclic codes in the Hamming
metric via [Fy-linear ¢"-cyclic codes, which will allow us to compare their parameters and
give a negative criterion of MRD skew cyclic codes in terms of MDS cyclic codes.

6.1 Hamming-metric cyclic codes are rank-metric skew cyclic codes

Assume in this subsection that m = n, fix a basis ag, a1, ..., a,—1 of Fyn over F, and
define the map E : Fjy — Fgn by

E(Co, Cly... ,Cn—l) = (C()Oéo, ClQ1,y ... ,cn_lan_l). (7)

This map is one to one, Fy-linear and wty(c) = wtr(E(c)), where wty(c) denotes the
Hamming weight of the vector c. Therefore, the codes C' C Fy and E(C) C Fy. behave
equally, where we consider the Hamming metric for C' and the rank metric for E(C).
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Assume also in this subsection that n and r are coprime and «ag, a1, ..., a,_1 satisfies
that oy = o), for i = 0,1,2,...,n — 1, where a,alV), ..., a1 is a normal basis. In
this case, classical cyclic codes correspond to ¢"-cyclic codes.

Theorem 7. With the assumptions as in the previous paragraph, an arbitrary (linear
or non-linear) code C' C ¥y is cyclic if, and only if, the code E(C) C Ty is q"-cyclic.

Moreover, C is Fy-linear if, and only if, so is E(C), and the Hamming-metric
behaviour of C is the same as the rank-metric behaviour of E(C), since wtp(c) =
wtr(E(c)), for all c € Fy.

Proof. Let ¢ = (co,c1,...,¢n—1) € C and E(c) = (do,dy,...,dp—1) € E(C). Then

BE(Cn_1,¢0,C1s ... Cn_2) = (cn_10, coal™, ... ep_oal= 1]
= ((cn_la[("*l)r])qrj (coa)qT, ceey (cn_Qa[(n72)r])qT) = (dg:_17 dgr, e ,dg:_Q),
and the result follows, since the linearity claim is trivial from the linearity of F. O

6.2 MRD skew cyclic codes and MDS cyclic codes

We will now relate MRD Fn-linear ¢"-cyclic codes in Fy. with classical MDS F-linear
cyclic codes in Fy. We first need some properties of Fg-linear ¢"-cyclic codes. The
following lemma is proven in the same way as Lemma [T}

Lemma 5. A code C C Fym is Fy-linear and q"-cyclic if, and only if, C(x) satisfies that
G—-HeC(z) and F® G € C(x), for all F(z) € LyFylx] and all G, H € C(x).

Definition 8. A subset C(z) C L, Fym[x]/(xI"™ — z) satisfying the conditions in the
previous lemma is called an [Fy-left ideal.

By Theorem [ and Lemma [l classical cyclic codes for the Hamming metric can be
seen as I -left ideals in £, Fyn[x] /(2™ — 2) for the rank metric, provided that n and r
are coprime.

We observe that F-left ideals are finitely generated. That is, every F,-left ideal is of
the form C(z) = (G1,Ga,...,Gy)r,, where we define

t
(Gl,GQ,... ,Gt)IE‘q = {Z Qz ®Gi ‘ Qz(.%') c Equq[w]} .

i=1

However, not all IF,-left ideals are principal, that is, of the form (G)g,, for some G(xz) €
Ly Fymz]. The following proposition relates the dimension of an Fy-left ideal and its
number of generators. We also describe generators of the vector space C' over F, as in
Theorem [T}

Proposition 8. Let C(x) be an Fy-left ideal with C(x) = (G1,Ga,...,Gi)r,. It holds
that:
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1. C(x) is generated by 2V ® G; as an Fy-linear vector space, for j =0,1,...,n —1
and i = 1,2,...,t. In particular, a basis of C' over Fy, may be obtained from the
set of vectors

L GO,

i,n—j—1

[ir] 7]
(G Ginljts-
for the previous i and j, where Gi(x) = G, ox + Gi,lx[r] 4 Gm_lx["*u.
2. The dimension of C' (over ) satisfies dim(C(x)) < tn.
3. There exist F1, Fy, ..., Fup € C(x) such that C(x) = (F1, Fa, ..., Fpn)r, -

Proof. The first item follows from the fact that zUl @ G corresponds to the vector
(G[ﬁ"} Gl alirl )

in—i»Gin_j+1>-- -+ Gin_j_1). The second item follows from this first item, and the
third item follows from the fact that dim(C) < mn. O

Now we see that classical cyclic codes actually correspond to principal F-left ideals.
For that purpose, let the assumptions be as in Theorem [7 and define the operators
LE :Fylz]/(z" — 1) — LyFynfz]/ (2™ — 2) as

L(fo+ fix+ -+ foaz™ Y = foxr + frzl + - 4 f, 12l and
where f;,9; € Fy, fori =0,1,...,n — 1.

Proposition 9. With the assumptions as in Theorem[7, for all f(x), g(z) € Fylz] /(2" —
1), it holds that

L(f(x)) ® E(g(z)) = E(f(x)g()). (8)
In particular, if [g(x)] denotes the ideal in Fy[z]/(z™ — 1) generated by g(x), then
E(lg(2)]) = (E(9(x)))r,- (9)

This means that, if C C Fy is cyclic, then E(C)(x) is a principal Fy-left ideal generated
by E(g(z)) if g(x) generates the ideal in Fy[z]/(z™ — 1) corresponding to C.

Proof. If f(x) = fo+ fix+ -+ fo12" ! and g(x) = go + g1z + -+ + gn—12" ', then

n—1 [n—1

L(f(2)) ® E(g(2)) = Y | S fimjgi(al =l | gl

i—=0 \ j=0
n—1 [n—1 ' '
=Y D finigs | M2l = E(f(2)g()),
i=0 \ j=0
and Equation (§]) follows. The second part (@) follows immediately from (8]). O
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On the other hand, if C'(z) = (G1, Ga, ..., Gy)r,, then the Fym-linear code generated

by C(x) is

C’(ﬂ:)]qu = (Gl, GQ, cee ,Gt) = (D),
where D is the greatest common divisor of G, Ga, . .., Gy in the quotient ring L Fm [z]/
(2] — ). Therefore, dr(C(z)) > dr((D)), and the ¢"-root space T = Z(D) = Z(G1)N
Z(G2)N...NZ(Gy) may be used to give bounds on the minimum rank distance of C(x),
using for example the bounds in Section [

Now we come to the main result in this subsection, where we see that the [Fy»-linear
code generated by a classical cyclic code is again principal, with the same minimal
generator and corresponding dimension, but its minimum rank distance is lower than
the minimum Hamming distance of the original cyclic code. In particular, this gives a
negative criterion for MRD skew cyclic codes in terms of MDS cyclic codes.

Theorem 8. With the assumptions as in Theorem [7, if g(x) € Fy[z]/(z™ — 1) is the
minimal generator of the Fy-linear cyclic code C' C Fy and C' = (E(C))F,n, then C is
the Fyn-linear q"-cyclic code corresponding to

Moreover, E(g(x)) is the minimal generator of C(z), and:

~

1. dg(C) < dy(C), dimg,, (C) = dimg, (C).

2. If C is MRD, then C is MDS.
Proof. 1t is well-known that the shifted vectors in Fy,

(907917"'7gn7k707"'70)7(07907917"'7gn7k707"'70)7"'7

(07"'707907917"'7.9”*]?)

constitute a basis of C, where g(z) = go + g12 + - -+ + go_r2" * and g,_r # 0. By
Proposition § and Proposition [3 the ¢"-shifted vectors in Fyn,

(9004, glam, o agn—ka[(n_k)r], Oa oo ?0),
(0, goa[r},gla[zr], . ,gn_ka[("_kﬂ)r},O, ooy 0), .
(0,...,0, goa[("_k_l)r},gla[("_k)r}, o 7gnika[(n—1)7‘])

generate C as an [Fyn-linear vector space. Since g, # 0, it follows that these vectors
are linearly independent over F,». Hence the result follows from Theorem [l and the fact

that dy (C) = dr(E(C)) > dr((E(C))F,) = dR(é). O
Example 6. Consider the repetition cyclic code C' C Fy generated by (1,1,...,1) and
assume r = 1. Then E(C) is the Fy-linear code generated by (o, 0l al*=1) and

hence the F n-linear code generated by E(C) is C , also generated by the same vector.
It holds that dimp (C) = 1, dg(C) = n and C is MDS. On the other hand,

dim]}rqn(é) =1, dg(C) =n and C is MRD.
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Example 7. Assume that » = 1 and n is even, and consider the cyclic code C' C
Iy generated by (1,0,1,0,...,0) and (0,1,0,1,...,1). Then C is the Fyn-linear code
generated by (o, 0,a?,0,...,0) and (0,1, 0,0l ... al=1]).

It holds that dimp, (C') = 2, dg(C) = n/2. On the other hand, diqun(é) = 2,
dR(é) = n/2. Hence both have the same parameters and none reach the Singleton
bounds for the corresponding metrics. Moreover, the minimal generator of C' is g(x) =
1422424+ -+ 272, whereas the minimal gencrator of C is E(g(z)) = az + a2z +
ol oo 4 gln=2lpn-2]
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