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Abstract. In this paper, we consider symmetric disjunctive list-decoding (SLD) codes,
which are a class of binary codes based on a symmetric disjunctive sum (SDS) of binary symbols.
By definition, the SDS takes values from the ternary alphabet {0, 1, ∗}, where the symbol ∗
denotes “erasure”. Namely: SDS is equal to 0 (1) if all its binary symbols are equal to 0 (1),
otherwise SDS is equal to ∗. The main purpose of this work is to obtain bounds on the rate of
these codes.

Index terms. Symmetric disjunctive codes, random coding bounds, nonadaptive symmetric
group testing.

1 Statement of Problem and Results

1.1 Notations and Definitions

Let N , t, s, and L be integers, where 2 ≤ s < t, 1 ≤ L ≤ t − s. Let , denote the equality
by definition, |A| – the size of the set A and [N ] , {1, 2, . . . , N} - the set of integers from 1 to
N . The standard symbol bac will be used to denote the largest integer ≤ a.

A binary (N × t)-matrix

X = ‖xi(j)‖, xi(j) = 0, 1, x i , (xi(1), . . . , xi(t)), x (j) , (x1(j), . . . , xN (j)),

i ∈ [N ], j ∈ [t], with N rows x 1, . . . ,xN and t columns x (1), . . . ,x (t) (codewords) is called a
binary code of length N and size t = b2RNc, where a fixed parameter R > 0 is called a rate of

the code X. The number of 1’s in the codeword x(j), i.e., |x (j)| ,
N∑
i=1

xi(j), is called a weight

of x(j), j ∈ [t]. A code X is called a constant weight binary code of weight w, 1 ≤ w < N , if for
any j ∈ [t], the weight |x (j)| = w.

Let u
∨
v denote the disjunctive sum of binary columns u , v ∈ {0, 1}N . If x ,y ∈ {0, 1, ∗}N

are arbitrary ternary columns with components from the alphabet {0, 1, ∗}, then the ternary
column z = (z1, z2, . . . , zN ) ∈ {0, 1, ∗}N ,

zi ,


0, if xi = yi = 0,

1, if xi = yi = 1,

∗, otherwise,

is called a symmetric disjunctive sum [1] of x and y . This operation will be denoted by
`

, that
is z = x

`
y . We say that a binary column u covers a column v (u � v) if u

∨
v = u , and a

ternary column u symmetrically covers a column v (u D v) if u
`
v = u .
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1.2 Symmetric Disjunctive List-Decoding Codes (SLD sL-codes)

Definition 1. [2, 3]. A binary code X is said to be a disjunctive list-decoding code of
strength s with list size L (LD sL-code) if the disjunctive sum of any s codewords of X covers
not more than L − 1 other codewords of X that are not components of the given sum. In
other words, for any two disjoint sets S,L ⊂ [t], |S| = s, |L| = L,S ∩ L = ∅, there exist a row
x i, i ∈ [N ], and a column x (j), j ∈ L, such that

xi(k) = 0 ∀k ∈ S and xi(j) = 1.

Denote by tld(N, s, L) the maximal size of LD sL-codes of length N and by Nld(t, s, L) the
minimal length of LD sL-codes of size t. Define the rate of LD sL-codes:

RL(s) , lim
N→∞

log2 tld(N, s, L)

N
= lim

t→∞

log2 t

Nld(t, s, L)
. (1)

Definition 2. [4, 5, 6]. A binary code X is said to be a symmetric disjunctive list-decoding
code of strength s with list size L (SLD sL-code) if the symmetric disjunctive sum of any s
codewords of X symmetrically covers not more than L − 1 other codewords of X that are not
components of the given sum. In other words, for any two disjoint sets S,L ⊂ [t], |S| = s,
|L| = L, S ∩ L = ∅, there exist a row x i, i ∈ [N ], and a column x (j), j ∈ L, such that

xi(k) = 0 ∀k ∈ S and xi(j) = 1, or

xi(k) = 1 ∀k ∈ S and xi(j) = 0.

Denote by tsld(N, s, L) the maximal size of SLD sL-codes of length N and by Nsld(t, s, L) the
minimal length of SLD sL-codes of size t. Define the rate of SLD sL-codes:

R∗L(s) , lim
N→∞

log2 tsld(N, s, L)

N
= lim

t→∞

log2 t

Nsld(t, s, L)
. (2)

Remark 1. An SLD s1-code is the special case of separating codes [7]. More specifically,
for L = 1, Definition 2 coincides with the definition of (s, 1)-separating code with the alphabet
size q = 2. Some results and applications of (s, 1)-separating binary codes are presented in the
survey [8].

Theorem 1. (Monotonicity properties). The rate of SLD sL-codes satisfies the following
inequalities

R∗L(s+ 1) ≤ R∗L(s) ≤ R∗L+1(s). (3)

Proof of Theorem 1. It immediately follows from Definition 2 that every SLD (s+ 1)L-
code is the corresponding SLD sL-code, so the left inequality in (3) takes place. Simultaneously,
every SLD sL-code is SLD sL+1-code, therefore the right inequality in (3) is true. �

1.3 Applications of Symmetric Disjunctive Codes

Applications of SLD sL-codes relate to the non-adaptive symmetric group testing which is
based on the symmetric disjunctive sum of binary symbols1. Group testing deals with identifi-
cation of defective units in a given pool. We use symmetric group tests, i.e., take a subset of the

1The adaptive symmetric group testing for the search of binomial sample was considered in [1].
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pool and check it. The outcome of a symmetric group test belongs to the ternary alphabet. It is
equal to 0, 1 or ∗, if all tested units are not defective, all units are defective or at least one unit
is defective and at least another one is not defective, respectively. The symmetric group testing
was motivated by applications [1] in electrical devices testing (a) and chemical analysis (b).

(a). Consider the situation, where one need to test electrical devices such as conductors (not
light bulbs that give a visual result) [1]. These conductors are connected both in parallel and in
series and the results for these two arrangements are obtained separately by throwing a switch.
If we get current for the series configuration then all are good. If we get no current for the
parallel configuration then all are defective. In the one remaining case (no current for the series
configuration and current for the parallel configuration), we have at least one good unit and at
least 1 defective unit. Hence for our purposes, this compound test to determine which of these
three situations holds is to be regarded as a single test and we wish to minimize the number of
such tests.

(b). The second possible application is in the chemical analysis of several specimens [1],
where it is known a priori that each specimen contains either A or B but not both, which are
two specific substances of interest. Suppose a mixture of several specimens is formed and then
we split the result into 2 aliquot parts. By using reagent α, which precipitates A and does not
react with B, we can detect “no A” by no precipitate in one of the 2 aliquot parts. Similarly,
by using reagent β, which precipitates B and does not react with A, we can detect “no B” by
no precipitate in the other of the 2 aliquot parts. “Some A and some B” is indicated if both
reagents cause precipitation. Regarding this compound test as a single test, we want to classify
the specimens as containing A or containing B in the smallest number of tests.

Suppose the size of the pool equals t and the number of defected units does not exceed s.
As is the case with LD sL-codes [9], SLD sL-codes can be considered in connection with the
problem of constructing two-stage non-adaptive symmetric group testing procedures. In the first
stage, one does N tests that can be depicted as an binary (N × t)-matrix X = ‖xi(j)‖, where
a column x (j) corresponds to the j-th unit, a row x i corresponds to the i-th test and xi(j) , 1
if and only if the j-th unit is included into the i-th testing group. Then the ternary column
y of the test results equals the symmetric disjunctive sum of the columns which correspond to
the defective units. Let X be SLD sL-code, after decoding of the result column y, i.e. search
of codewords which are symmetrically covered by y, a set of ≤ s + L − 1 elements is selected.
These units are separately tested in the second stage. Note that for s ≥ 2 the rate R∗L(s) of
SLD sL-codes is a monotonically nondecreasing function of L ≥ 1, and its limit

R∗∞(s) = lim
L→∞

R∗L(s)

can be interpreted as the maximum rate of two-stage non-adaptive symmetric group testing
procedures in a search for ≤ s defects with the use of SLD sL-codes.

In papers [4, 5], we suggested another application of SLD codes called reference communi-
cation system. Let a system contain M terminal stations S1, S2, ...,SM and let a multiple-access
channel (MAC) connect these M stations to a central station (CS). Each terminal station has a
source. In every time interval, the source can produce a binary information packet of length K.
Introduce t , 2K and enumerate all 2K possible information packets by integers from 1 to t. The
packets are encoded into binary sequences of length N by a code X = (x (i), i ∈ [t]), where the
codeword x (i), i ∈ [t], is the encoded sequence corresponding to the information packet number
i. Denote by S the set of numbers of generated packets and suppose |S| ≤ s.

3



The CS is interested only in the contents of the received packet and not in the senders.
Using a feedback broadcast channel (FBC) the CS answers all M stations to all requests. The
model of MAC corresponds to the frequency modulation, i.e., the output ternary sequence y is
the symmetric disjunctive sum of the inputs. The scheme of reference communication system is
represented on Figure 1.

S1 S2 SM CS

MAC

FBC

≤ s + L - 1

{x(i), i ∈ S}

y = ∇   x(i)
i ∈ S

Figure 1: Reference communication system

Let the terminal stations use an SLD sL-code X. Since the number of information packets
produced by the terminal stations in the same time interval is not more than s, the CS is able
to recover at most s+ L− 1 packets, which contain s transmitted packets.

Note that the model of MAC can also correspond to the impulse modulation, i.e., the output
binary sequence is the disjunctive sum of the inputs. In this case, it is convenient to use LD
sL-codes for encoding and decoding information packets. The case of impulse modulation was
considered in [5].

Another application of SLD s1-codes concerns with undetermined data [10, 11]. Given an
alphabet A = {a1, a2, ..., at} of basic symbols, to every nonempty subset T ⊆ [t], assign a symbol
aT , which is called undetermined. Its specification is any basic symbol ai, i ∈ T . By a specification
of a sequence of undetermined symbols we mean the result of replacing all its symbols by some
of its specifications. The symbol a[t] that can be specified by any basic symbol is called indefinite
and is denoted by ∗. Let T be a system of subsets T ⊆ [t] and let A∗ = A∗T = {aT | T ∈ T } be
an undetermined alphabet associated with the system.

Consider a problem of coding of undetermined sequences such that the original undetermined
sequence can be completely reconstructed from the encoded sequence. One coding method
refers to a binary representation [10, 11] of undetermined alphabet, which is defined as a pair
(X,X∗) of (N × t)-matrix X with columns x (i) ∈ {0, 1}N , i ∈ [t], and (N × |T |)-matrix X∗

with columns x (T ) ∈ {0, 1, ∗}N , T ∈ T , where x (i) specifies x (T ) in undetermined alphabet
{0, 1, ∗} if and only if i ∈ T . Advantages of such method are linear in t complexity of the
symbol reconstruction and the fact that the mentioned condition allows to know only a small
matrix X for reconstruction of the original undetermined sequence while the matrix X∗ may
contain up to 2t columns. Obviously, an SLD s1-code X = (x (i), i ∈ [t]) and the matrix
X∗ = (

`
i∈T x (i), T ∈ T ) give the fairly compact binary representation of undetermined alphabet

associated with the system T = [t] ∪ {T ⊂ [t]| |T | ≤ s} [11].
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1.4 Relations Between Parameters of LD sL-Codes and SLD sL-Codes

The following evident propositions from [4, 5, 6] associate the rate of LD sL-codes (1) with
the rate of SLD sL-codes (2).

Proposition 1. [4, 5, 6]. Any LD sL-code is the corresponding SLD sL-code.

Proposition 2. [4, 5, 6]. Let X = ‖xi(j)‖ be an SLD sL-code of length N and size t.
Consider (N × t)-matrix X ′ = ‖x′i(j)‖ with elements

x′i(j) ,

{
1, if xi(j) = 0,

0, if xi(j) = 1.

Then the code of length 2N and size t composed of all rows of the codes X and X ′ is an LD
sL-code.

Corollary 1. [4, 5, 6]. The rates of LD sL-codes and SLD sL-codes satisfy inequalities:

RL(s) ≤ R∗L(s) ≤ 2RL(s). (4)

The next obvious proposition allows us to get another upper bound on the rate of SLD
sL-codes.

Proposition 3. Let X be an LD sL-code of length N and size t with a codeword x(j0) of
weight w. Then the code X ′′ of length N − w and size t − 1 constructed from the code X by
removing the codeword x(j0) and all rows xi, for which xi(j0) = 1, is an LD (s− 1)L-code.

Corollary 2. The rate of SLD sL-codes has the following upper bound:

R∗L(s) ≤ RL(s− 1). (5)

Proof of Corollary 2. Let X be an arbitrary SLD sL-code of length N and size t. The
code X1 obtained in Proposition 2 from the code X is a constant weight LD sL-code of length
2N , size t and weight N . Then the code X2 obtained in Proposition 3 from the code X1 is an
LD (s− 1)L-code of length N and size t− 1. Hence as N →∞ the inequality

log2[t− 1]

N
≤ RL(s− 1)(1 + o(1))

holds. It means correctness of (5). �

The best presently known lower and upper bounds on the rate RL(s) were recently obtained
in [12, 13]. The use of the inequalities (4) and (5), the lower bound RL(s) [12] and the upper
bound RL(s) [12] on the rate of LD sL-codes yields the results below.

Theorem 2. (Relationship between R∗L(s) and RL(s))
The following three statements hold.
1. For any fixed s ≥ 2 and L ≥ 1 the rates R∗L(s) and RL(s) have relationship

RL(s) ≤ R∗L(s) ≤ min{ 2RL(s), RL(s− 1) }.

2. For any fixed L ≥ 1 and s→∞

R∗L(s) = RL(s)(1 + o(1)).

3. For any fixed s ≥ 2 and L ≥ 1 the rate of an SLD sL-code satisfies the inequality

RL(s) ≤ R∗L(s) ≤ R∗L(s) , min{ 2RL(s), RL(s− 1) }.

5



1.5 Random Coding Bounds on the Rate of SLD sL-codes

In the given paper, we develop a random coding method based on the ensemble of constant-
weight codes and establish new lower random coding bounds on the rate of SLD sL-codes. Some
of the methods which are used in the proof of the next theorem are presented in [12, 13].

Theorem 3. (Lower random coding bound R∗L(s)).
The following three statements hold.
1. For any fixed L ≥ 1 and s ≥ 2 we have the inequality

R∗L(s) ≥ R∗L(s) , max
0<Q≤1/2

(
h(Q) +

BL(s,Q)

s+ L− 1

)
, (6)

where

h(Q) , −Q log2Q− (1−Q) log2[1−Q],

BL(s,Q) , Q log2

[
p(1− z)

p(1− z) + q(1− z)

]
+ (1−Q) log2

[
p(z)

p(z) + q(z)

]
,

p(z) , zs(z − zs)L,
q(z) , (z − zs)(1− zs − (1− z)s)L,

(7)

and z is the unique root of the equation

Q(p(z) + q(z)) = (1−Q)(p(1− z) + q(1− z)). (8)

2. For fixed L = 1, 2, . . . and s→∞

R∗L(s) ≥ L

s2 log2 e
(1 + o(1)). (9)

3. For fixed s = 2, 3, . . . there exists a limit

R∗∞(s) , lim
L→∞

R∗L(s) = log2

[
(s− 1)s−1

ss
+ 1

]
. (10)

If s→∞, then

R∗∞(s) =
log2 e

es
(1 + o(1)) =

0.5307 . . .

s
(1 + o(1)).

The numerical values of the lower bound (6)-(8) are shown in Table 1, where the argument of
maximum in (6) is denoted by Q∗L(s). Note that the lower bound (6)-(8) improves the random
coding bound obtained in [14] using the ensemble with independent binary symbols of codewords.
In addition one can see that for small values of s ≥ 2 and L ≥ 1, the lower bounds (6)-(8) are
greater than the lower bounds RL(s) on the rate of LD sL-codes from [12].

Note that, for s→∞, the asymptotic lower bound of R∗L(s) (9) coincides with the asymptotic
behavior of the random coding bound on the rate of LD sL-codes [12]. In addition, for L→∞,
the asymptotics of R∗L(s) (10) coincides with the asymptotic behavior of the mentioned above
bound from [12].
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Table 1: Numerical values of the lower bound R∗L(s)

sL 21 22 23 24 25 26

R∗L(s) 0.2075 0.2457 0.2635 0.2744 0.2819 0.2874
Q∗L(s) 0.5000 0.2764 0.2432 0.2297 0.2228 0.2180

sL 31 32 33 34 35 36

R∗L(s) 0.0800 0.1153 0.1348 0.1470 0.1552 0.1611
Q∗L(s) 0.2000 0.1794 0.1686 0.1613 0.1561 0.1524

sL 41 42 43 44 45 46

R∗L(s) 0.0439 0.0684 0.0838 0.0941 0.1014 0.1068
Q∗L(s) 0.1479 0.1391 0.1326 0.1275 0.1234 0.1201

sL 51 52 53 54 55 56

R∗L(s) 0.0279 0.0456 0.0575 0.0660 0.0723 0.0771
Q∗L(s) 0.1209 0.1150 0.1103 0.1064 0.1030 0.1003

sL 61 62 63 64 65 66

R∗L(s) 0.0194 0.0325 0.0420 0.0490 0.0544 0.0587
Q∗L(s) 0.1027 0.0983 0.0947 0.0915 0.0889 0.0865

2 Proof of Theorem 3

This Section contains five lemmas that are only stated. The proofs of Lemma 1-5 are
presented in Appendix.

Proof of Statement 1. Fix L ≥ 1, s ≥ 2 and a parameter Q, 0 < Q ≤ 1/2. The
bound (6)-(8) is obtained by the method of random coding over the ensemble of binary constant-
weight codes [15] defined as the ensemble E(N, t,Q) of binary codes X of length N and size t,
where the codewords are chosen independently and equiprobably from the set consisting of all(

N
bQNc

)
codewords of a fixed weight bQNc. A pair of sets (S,L), |S| = s, |L| = L,S ∩ L = ∅, we

call an (s∗L)-bad pair if h

i∈S
x (i) D

h

j∈L
x (j).

For the ensemble E(N, t,Q), denote by P (N,Q, s, L) the probability of the event “the pair (S,L)
is (s∗L)-bad”. Note that the absence of (s∗L)-bad pair of subsets in the code is the criterion of
SLD sL-code. Hence, similarly to the arguments in the proof of the lower random coding bound
on the rate RL(s) (1) in [12], the rate R∗L(s) (2) satisfies the inequality

R∗L(s) ≥ R∗L(s) ,
1

s+ L− 1
max

0<Q<1
A∗L(s,Q),

A∗L(s,Q) , lim
N→∞

− log2 P (N,Q, s, L)

N
.

(11)

Note that the set of all s∗L-bad pairs of any codeword weight is invariant under the binary
negation operation, it implies the equality P (N,Q, s, L) = P (N, 1 − Q, s, L). Therefore, it is
enough to consider only 0 < Q ≤ 1/2.

To complete the proof of the theorem, it is sufficient to compute the function A∗L(s,Q) (11).

Lemma 1. If there exists a solution z, 0 < z < 1, of the equation (8), then the function

7



A∗L(s,Q) (11) equals

(s+ L− 1)h(Q) + (1−Q) log2

[
p(z)

p(z) + q(z)

]
+Q log2

[
p(1− z)

p(1− z) + q(1− z)

]
, (12)

where the functions h(·), p(·) and q(·) are determined by (7).

Lemma 2. The function

ρ(z) ,
p(z) + q(z)

p(1− z) + q(1− z)
, 0 < z < 1, (13)

continuously maps the interval (0, 1) into the interval (0,+∞) and strictly increases.

By Lemma 2 the equation (8) has the unique solution. Thus, the condition of Lemma 1 is
clear, it means that the bound (6)-(8) is proved. �

Proof of Statement 2. For fixed s ≥ 2 and L ≥ 1, let us interpret equation (8) as a
function QL(s, z) of the argument z, 0 < z < 1, i.e.,

QL(s, z) ,
p(1− z) + q(1− z)

p(1− z) + q(1− z) + p(z) + q(z)
, (14)

where the functions p(·) and q(·) are determined in (7).

Due to existence and uniqueness of the root of the equation (8), continuity and monotonicity
of the function (14) (by Lemma 2), one can rewrite the definition of the random coding bound
(6)-(8) as

R∗L(s) , max
1/2≤z<1

TL(s, z), (15)

where
TL(s, z) , h(QL(s, z)) +BL(s,QL(s, z)). (16)

Let L ≥ 1 be fixed and s→∞. If in definition (16) we put z = 1−λ/s, where the parameter
λ = λL is independent of s, then (15) means that

R∗L(s) ≥ TL
(
s, 1− λ

s

)
. (17)

Lemma 3. For a fixed L ≥ 1 and s→∞, the next asymptotic equality holds:

TL

(
s, 1− λ

s

)
=
L

s2

(
−λ log2[1− e−λ]

)
(1 + o(1)). (18)

Taking derivative one can check that at λ = 1
log2 e

the maximum

max
λ>0

{
−λ log2[1− e−λ]

}
=

1

log2 e
(19)

is attained. Therefore, (17) and (19) imply for the random coding bound (6)-(8) the asymptotic
inequality (9). �

Proof of Statement 3. For fixed s ≥ 2 and L ≥ 1, let us introduce the following function

g(z) , gL(s, z) =
z − zs

1− z − (1− z)s
,

1

2
≤ z < 1. (20)

8



It is clear that g(z) (20) monotonically increases in the interval [1/2, 1), attains 1 at the point
z = 1

2 and has the left limit s− 1 as z → 1.

For large enough parameter L and a fixed parameter c > 0 independent of L, one can see
that the root of equation (

g(z)

1 + g(z)

)L
= c(1− z), 1

2
≤ z < 1, (21)

exists and is unique, since the left-hand side of (21) monotonically increases and the right-hand
side of (21) strictly decreases. Denote this root by zL(s, c).

Let s ≥ 2 be fixed and L→∞.

Lemma 4. The substitution of z = zL(s, c) into the function (16) yields

TL(s, zL(s, c)) · (1 + o(1)) = log2[s+ c]− s+ c− 1

s+ c
log2[s+ c− 1]+

+
1

s+ c
log2

[
(s− 1)s−1

ss

]
, L→∞. (22)

The definition (15) means that

R∗L(s) ≥ TL(s, zL(s, c))(1 + o(1)), L→∞, ∀ c = c(s) > 0. (23)

Calculating the derivative in c, one can check that maximum of the right-hand side of (22)

is attained at the point c = c(s) = ss−(s−1)s

(s−1)s−1 . If we substitute this value c = c(s) into (22), then

the use of (23) establishes for the random coding bound (6)-(8) the inequality

R∗L(s) ≥ log2

[
(s− 1)s−1

ss
+ 1

]
(1 + o(1)), L→∞. (24)

Lemma 5. The asymptotic inequality (24) is an equality.

Statement 3 of Theorem 3 is proved. �

A Proofs of Lemma 1-5

Proof of Lemma 1. Let us use the terminology of types [16]. Consider an arbitrary set
of size s consisting of binary codewords of length N and weight bQNc: (x (1), ...,x (s)), where
x (i) ∈ {0, 1}N , ∀i ∈ [s]. The set forms (N×s)-matrix Xs. Let a , (a1, ..., as) ∈ {0, 1}s. Denote
a type of the matrix Xs by {n(a)}, where n(a), 0 ≤ n(a) ≤ N is the number of a-rows in the
matrix Xs. Obviously, for any matrix Xs we have∑

a

n(a) = N.

By n(0 ) (n(1 )) denote the number of the rows in Xs consisting of all zeros (ones). It allows to
represent P (N,Q, s, L) as

P (N,Q, s, L) =
∑

{n(a)}∈N

N !∏
a n(a)!

(
N − n(0 )− n(1 )

bQNc − n(1 )

)L( N

bQNc

)−s−L
, (25)

9



where the set N consists of all possible types n(a),a ∈ {0, 1}s, such that:

0 ≤ n(a) ≤ N ∀a ∈ {0, 1}s, n(0 ) ≤ N − bQNc, n(1 ) ≤ bQNc,∑
a

n(a) = N,
∑

a : ai=1

n(a) = bQNc ∀ i ∈ [s]. (26)

Let N →∞. For every type n(a), a ∈ {0, 1}s, let us consider the corresponding distribution

τ , {τ(a)} : τ(a) = n(a)
N . Thus, for N → ∞, the set N accords with the set T consisting of

the distributions with the following properties induced by (26):

τ ∈ T ⇐⇒


0 ≤ τ(a) ≤ 1 ∀a ∈ {0, 1}s, τ(0 ) ≤ 1−Q, τ(1 ) ≤ Q,∑

a∈{0,1}s
τ(a) = 1,

∑
a : ai=1

τ(a) = Q ∀ i ∈ [s].

 (27)

Applying the Stirling approximation, we obtain the following logarithmic asymptotic behav-
ior of the summand in the sum (25) for τ ∈ T :

− log2

∑
{n(a)}∈N

N !∏
a n(a)!

(
N − n(0 )− n(1 )

bQNc − n(1 )

)L( N

bQNc

)−s−L
=

= NF (τ,Q)(1 + o(1)), where,

F (τ,Q) ,
∑
a

τ(a) log2[τ(a)]− (1− τ(0 )− τ(1 ))Lh

(
Q− τ(1 )

1− τ(0 )− τ(1 )

)
+

+(s+ L)h(Q).

(28)

For the given Q, let the minimum of the function F (τ,Q) be attained at τQ = {τQ(a)}, then

A∗L(s,Q) , lim
N→∞

− log2 P (s, L,Q,N)

N
= F (τQ, Q) = min

τ∈T
F (τ,Q). (29)

Since F is continuous in the admissible compact space T , finding the minimum of F un-
der constraints (27) with excluded boundaries is sufficient to calculate (29). Let us write the
minimization problem: F → min,

Search domain T: 0 < τ(a) < 1 ∀a ∈ {0, 1}s, τ(1 ) < Q, τ(0 ) < 1−Q, (30)

Restrictions:


∑

a∈{0,1}s
τ(a) = 1,∑

a : ai=1

τ(a) = Q ∀ i ∈ [s],
(31)

Main Function: F (τ,Q) = (28) : T→ R. (32)

To find the extremal distribution τQ we apply the standard Lagrange multipliers method.
Consider the Lagrangian:

Λ , F (τ,Q) + λ0

 ∑
a∈{0,1}s

τ(a)− 1

+

s∑
i=1

λi

( ∑
a :ai=1

τ(a)−Q

)
. (33)
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The necessary conditions for the extremal distribution τQ are:
∂Λ

∂(τ(a)) = log2[τ(a)] + log2 e+ λ0 +
∑s

i=1 λiai = 0, ∀ a ∈ {0, 1}s \ {0 ,1},
∂Λ

∂(τ(0 )) = log2[τ(0 )] + log2 e+ λ0 + L log2

[
1−τ(0 )−τ(1 )

1−Q−τ(0)

]
= 0,

∂Λ
∂(τ(1 )) = log2[τ(1 )] + log2 e+ λ0 +

∑s
i=1 λi + L log2

[
1−τ(0 )−τ(1 )
Q−τ(1 )

]
= 0.

(34)

Let us show that the matrix of second derivatives of the Lagrangian is positive definite.
Indeed, we have

∂2Λ

∂(τ(a))2
=

log2 e

τ(a)
> 0, ∀ a ∈ {0, 1}s \ {0 ,1},

∂2Λ

∂(τ(0 ))2
=

log2 e

τ(0 )
+ L log2 e

Q− τ(1 )

(1− τ(0 )− τ(1 ))(1−Q− τ(0 ))
> 0,

∂2Λ

∂(τ(1 ))2
=

log2 e

τ(1 )
+ L log2 e

1−Q− τ(0 )

(1− τ(0 )− τ(1 ))(Q− τ(1 ))
> 0,

∂2Λ

∂(τ(0 ))∂(τ(1 ))
= −L log2 e

1

1− τ(0 )− τ(1 )
< 0,

and the other elements of the matrix are zeros. That is why, this matrix is positive definite. Note
that the matrix of second derivatives of the function F (τ,Q) coincides with the above matrix.
Therefore [17], F is strictly ∪-convex in the domain T. Moreover, the constraint equations (31)
define an affine subspace G in R2s of dimension (2s − s− 1), that is why F is strictly ∪-convex
in T ∩ G. Hence a local minimum of F in T ∩ G is global and unique. Due to the Karush-
Kuhn-Tacker theorem [17], it is clear that each solution satisfying the system (34) and the
constraints (31) is unique and gives the desired minimum distribution τQ for F (τ,Q).

Note that the symmetry of the problem yields equality: ν , λ1 = λ2 = ... = λs. To prove
this, we need to check that λi = λj for i 6= j. Let ā i , (0, . . . , 1, . . . , 0) be a row of length s,
which has 1 at the i-th position and 0′s at the other positions. A permutation of indices i and
j leads to an equivalent problem. Hence, if τ1

Q is a solution, then τ2
Q is also a solution, where

τ2
Q(a) , τ1

Q(ã) and ã is a row, obtained by permutation of indices i and j from the row a . The

uniqueness of the solution τQ implies that the distribution τ1
Q coincides with the distribution

τ2
Q. In particular, τ1

Q(ā i) = τ2
Q(ā i) = τ1

Q(ā j). From the first equation of (34), it follows that
λi = λj .

Introduce a parameter µ , e2λ0 . Then the equations (34) have the form:
log2 µ+ log2[τ(a)] + ν

∑s
i=1 ai = 0,

log2 µ+ log2[τ(0 )] + L log2

[
1−τ(0 )−τ(1 )

1−Q−τ(0 )

]
= 0,

log2 µ+ log2[τ(1 )] + L log2

[
1−τ(0 )−τ(1 )
Q−τ(1 )

]
+ sν = 0.

(35)

After substitution z , 1
1+2−ν , 0 < z < 1, the first equation of (35) gives

τ(a) =
2−ν

∑
ai

µ
=

1

µzs
(1− z)

∑
aizs−

∑
ai ∀ a ∈ {0, 1}s \ {0 ,1}. (36)
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Substitution (36) into the first and the second equations of the system (31) leads to

1 =
1

µzs

s−1∑
i=1

(
s

i

)
zi(1− z)s−i + τ(0 ) + τ(1 ) =

1− zs − (1− z)s

µzs
+ τ(0 ) + τ(1 ), (37)

Q =
1

µzs

s−1∑
i=1

(
s− 1

i

)
zi(1− z)s−i + τ(1 ) =

1− z − (1− z)s

µzs
+ τ(1 ), (38)

correspondingly. Subtraction (38) from (37) yields

1−Q =
z − zs

µzs
+ τ(0 ). (39)

Due to (37)-(39) the second and third equations of the system (35) are equivalent to

µ

(
1−Q− z − zs

µzs

)(
1− zs − (1− z)s

z − zs

)L
= 1,

µ

(
Q− 1− z − (1− z)s

µzs

)(
1− zs − (1− z)s

1− z − (1− z)s

)L
= 1,

(40)

respectively.

To shorten the formulas let us introduce the functions of the parameters s, L and z:

p(z) , pL(s, z) = zs (z − zs)L ,
q(z) , qL(s, z) = (z − zs)(1− zs − (1− z)s)L,
r(z) , rL(s, z) = zs(1− zs − (1− z)s)L.

(41)

The use of such notations yields the following expressions of µ from the both equations (40):

µ =
1

1−Q
p(z) + q(z)

r(z)
, (42)

µ =
1

Q

p(1− z) + q(1− z)
r(z)

. (43)

Equating of (42) and (43) leads to the equation on the parameter z:

Q(p(z) + q(z)) = (1−Q)(p(1− z) + q(1− z)),

which coincides with the equation (8).

The substitutions (42) into (39) and (43) into (38) give:

τ(0 ) = (1−Q)
p(z)

p(z) + q(z)
,

τ(1 ) = Q
p(1− z)

p(1− z) + q(1− z)
.

(44)
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So, let us calculate the value of F (τ,Q) (28), where the distribution τ is specified by (36)
and (44). At the beginning, we compute the following sum:∑

a : a 6=0 ,1

τ(a) log2[τ(a)] = {by (36)} =

=
s−1∑
i=1

(
s

i

)
1

µzs
(1− z)s−izi

(
log2

[
1

µzs

]
+ i log2 z + (s− i) log2[1− z]

)
=

=
1− zs − (1− z)s

µzs
log2

[
1

µzs

]
+
z − zs

µzs
log2 [zs] +

1− z − (1− z)s

µzs
log2 [(1− z)s] =

= {by (37), (39) and (38)} =

= (1− τ(0 )− τ(1 )) log2

[
1

µzs

]
+ (1−Q− τ(0 )) log2 [zs] + (Q− τ(1 )) log2 [(1− z)s] =

= (1−Q− τ(0 )) log2

[
1

µ

]
+ (Q− τ(1 )) log2

[
(1− z)s

µzs

]
. (45)

Further, the use of (45) implies∑
a : a 6=0 ,1

τ(a) log2[τ(a)]− (1− τ(0 )− τ(1 ))Lh

(
Q− τ(1 )

1− τ(0 )τ(1 )

)
=

= (1−Q− τ(0 ))

(
− log2 µ− L log2

[
1− τ(0 )− τ(1 )

1−Q− τ(0 )

])
+

+ (Q− τ(1 ))

(
− log2 µ− log2

[
zs

(1− z)s

]
− L log2

[
1− τ(0 )− τ(1 )

Q− τ(1 )

])
=

= {by (35)} =

= (1−Q− τ(0 )) log2[τ(0 )] + (Q− τ(1 )) log2 τ(1 ). (46)

Finally, the use of (46) and (44) leads to

F (τ,Q) = (s+ L)h(Q) + (1−Q) log2[τ(0 )] +Q log2[τ(1 )] = (12).

Thus, Lemma 1 is proved. �

Proof of Lemma 2. Let us rewrite the formula (13) using the monotonically increasing
function g(z) (20):

ρ(z) =
zs(g(z))L + (z − zs)(1 + g(z))L

(1− z)s + (1− z − (1− z)s)(1 + g(z))L
. (47)

The devision of the numerator and the denominator of (47) by (z − zs)(1 + g(z))L leads to

ρ(z) =

(
g(z)

1+g(z)

)L
· zs

z−zs + 1

(1−z)s
z−zs ·

1
(1+g(z))L

+ 1
g(z)

,

where the function zs

z−zs is strictly increasing and the function (1−z)s
z−zs is strictly decreasing. Thus,

it is clear that ρ(z) is strictly increasing.
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Note that g(z)→ 1
s−1 as z → 0 and g(z)→ s− 1 as z → 1. Therefore, by (47) the following

limits are true:

lim
z→0+0

ρ(z) = 0,

lim
z→1−0

ρ(z) = +∞.

Lemma 2 is proved. �

Proof of Lemma 3. Let us introduce the following notations:

UL(s, z) ,
p(1− z)

p(1− z) + q(1− z)
,

VL(s, z) ,
p(z)

p(z) + q(z)
.

(48)

Then the function (16) can be represented as

TL(s, z) = −Q log2Q− (1−Q) log2[1−Q] +
1

s+ L− 1
(Q log2 U + (1−Q) log2 V ) , (49)

where the shorthands Q = QL(s, z), U = UL(s, z) and V = VL(s, z) are used.

Computation of two first terms of asymptotic expansions of p(z), q(z), p(1− z), q(1− z) (7)
for z = 1− λ/s and s→∞ leads to the equalities

p(1− z) = p

(
λ

s

)
=

(
λ

s

)s+L
−
(
λ

s

)s(L+1)

,

q(1− z) = q

(
λ

s

)
=
λ(1− e−λ)L

s
+
Lλ3e−λ(1− e−λ)L−1

2s2
+ o

(
1

s2

)
,

p(z) = p

(
1− λ

s

)
= eλ(1− e−λ)L +

λe−λ(1− e−λ)L(λ+ Lλ− 2Leλ − λeλ)

2(eλ − 1)s
+ o

(
1

s

)
,

q(z) = q

(
1− λ

s

)
= (1− e−λ)L +

λe−λ(1− e−λ)L(λ+ Lλ− 2eλ)

2s
+ o

(
1

s

)
.

(50)

Using (50), one can obtain the following asymptotic equalities for the expressions (14),(48)

QL

(
s, 1− λ

s

)
=
λ

s
+

Lλ2

(eλ − 1)s2
+ o

(
1

s2

)
,

UL

(
s, 1− λ

s

)
=

(
λ

s

)s+L−1

(1− e−λ)−L
(

1 + o

(
1

s

))
,

VL

(
s, 1− λ

s

)
= e−λ

(
1 +

λ− Lλ− λ2/2

s
+ o

(
1

s

))
.

(51)

Finally, equalities (51) yield the asymptotic behavior of (49) that coincides with (18). �

Proof of Lemma 4. Let s ≥ 2 be fixed and L→∞. It is obvious that

zL(s, c) = 1 + o(1), and hence,

g(zL(s, c)) = (s− 1)(1 + o(1)).
(52)
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The use of definitions (7) and division of upper and lower parts of fractions (14),(48) by
(1 − z − (1 − z)s) allow us to rewrite expressions Q, U and V (14),(48) in a more convenient
form

QL(s, z) =
(1− z)s + (1− z − (1− z)s)(1 + g(z))L

(1− z)s + (1− zs − (1− z)s)(1 + g(z))L + zs(g(z))L
,

UL(s, z) =
(1− z)s

(1− z)s + (1− z − (1− z)s)(1 + g(z))L
,

VL(s, z) =
zs(g(z))L

zs(g(z))L(z − zs)(1 + g(z))L
.

(53)

The equalities (52)-(53) imply the following asymptotics

QL(s, zL(s, c)) =
1

s+ c
(1 + o(1)),

UL(s, zL(s, c)) =

(
(s− 1)s−1

ss

)L
(1 + o(1)),

VL(s, zL(s, c)) =
1

1 + s
c

(1 + o(1)).

(54)

Next, the substitution (54) into the expression (49) involves (22). �

Proof of Lemma 5. To prove the equality sign in (24), let us denote arbitrary sequence
of argument of maximum (15) by z = zL(s), 1/2 ≤ zL(s) < 1. We will consider some cases and
find a contradictions with (24). First, suggest that the sequence zL(s) is bounded by a constant
d < 1, i.e., 1/2 ≤ zL(s) ≤ d < 1. Then due to (53) the asymptotic equalities

QL(s, zL(s)) =
1

1 + g(z)
(1 + o(1)),

UL(s, zL(s)) =
(1− z)s

1− z − (1− z)s
1

(1 + g(z))L
(1 + o(1)),

VL(s, zL(s)) =
zs

z − zs

(
g(z)

1 + g(z)

)L
(1 + o(1)), L→∞,

(55)

hold. However, the computation of asymptotic behavior of TL(s, zL(s)) (49), using (55), yields
R∗L(s) = TL(s, zL(s)) → 0 as L → ∞. The current case involves the contradiction with (24).
Hence, it is clear without less of generality that zL(s)→ 1 ((52) holds).

Further, let us assume that(
g(z)

1 + g(z)

)L 1

1− z
→ 0, L→∞. (56)

Then using (52) and (56) one can achive the following asymptotic behaviors of (53)

QL(s, zL(s)) =
1

s
(1 + o(1)),

UL(s, zL(s)) =
(1− z)s−1

(1 + g(z))L
(1 + o(1)),

VL(s, zL(s)) =
1

s

(
g(z)

1 + g(z)

)L 1

1− z
(1 + o(1)), L→∞.

(57)
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Nevertheless, the equalities (52) and (57) leads to R∗L(s) = TL(s, zL(s))→ 0 as L→∞. So, the
current case has the contradiction with (24).

Next, let us assume that (
g(z)

1 + g(z)

)L 1

1− z
→∞, L→∞. (58)

The use of (52) and (58) leads to the following asymptotic behavior of (53)

QL(s, zL(s)) =

(
1 + g(z)

g(z)

)L
(1− z)(1 + o(1)),

UL(s, zL(s)) =
(1− z)s−1

(1 + (z))L
(1 + o(1)),

VL(s, zL(s)) = 1 + o(1), L→∞.

(59)

It is obvious that the equalities (52) and (59) yield

TL(s, zL(s)) =
Q(s− 1)

s+ L− 1
log2[1− z] + o(1). (60)

One can see that from the first equality in (59) it follows that

Q = O(1− z).

Therefore, the asymptotic equality (60) implies R∗L(s) = TL(s, zL(s))→ 0 as L→∞. Therefore,
the current case has the contradiction with (24).

Without loss of generality we can conclude that(
g(z)

1 + g(z)

)L
= c(1− z)(1 + o(1)). (61)

Note that (61) is similar to (21). Finally, using (52) and (61) one can obtain the equalities (54).
And we get the formula (22) again. �
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