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Abstract

In this paper we generalize the partial spread class and completely
describe it for generalized Boolean functions from F5 to Zo:. Explicitly,
we describe gbent functions from FJ to Zo:, which can be seen as
a gbent version of Dillon’s PS,;, class. For the first time, we also
introduce the concept of a vectorial gbent function from Fy to Zi", and
determine the maximal value which m can attain for the case g = 2.
Finally we point to a relation between vectorial gbent functions and
relative difference sets.

1 Introduction

Let V,, be the n-dimensional vector space over the two-element field Fy and
for an integer ¢ let Z, be the ring of integers modulo ¢. For a function f
from V,, to Z, the generalized Walsh-Hadamard transform is the complex
valued function
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where (,) denotes a nondegenerate inner product on V,, (we shall use (,
respectively, H ¢, instead of (4, respectively, ”H;q), when ¢ is fixed). We will
follow our notations from [8] and denote the set of all generalized Boolean
functions by GBZ and when ¢ = 2, by B,. A function f € GBY is called
generalized bent (gbent) if |’H§cq)(u)| = 272 for all u € V,,. Recall that if
q = 2, these functions are called bent.

If f is gbent such that for every v € V,,, we have H}q) (u) =2/ 2(3“ for
some 0 < j, < g, then - following the notation for bent functions in odd
characteristic (see [II, [6]) - we call f a regular gbent function. Similar as for
bent functions we call f* the dual of f, if 2”/2@{*(”) = ’H;q) (u). With the
same argument as for the conventional bent functions we can see that the
dual f* is also gbent and (f*)* = f. Hence regular ghent functions always
appear in pairs. First note that for y € V,, we have

Z (_1)<u,y>7_[§;1)(u) _ Z (—1)w) Z ¢f@(—1)be) =

ueVy ueVy, eV,
Z Cé‘(r) Z (—1)(wety) — gngg(y)_
IEGVn uEVTL

With ”H;q) (u) = 2"/245*@), we then get

i) = /2§ (—q)wacf W),

UGVn

We finally remark that as shown in [§], gbent functions from V,, to Za:, t > 1,
which are the functions in which we are most interested in this article, are
always regular. Therefore the dual of a ghent function is always defined and
it is a ghent function, as well.

Since the introduction of Boolean bent functions in [10], bent functions
and generalizations, like bent functions in odd characteristic, negabent func-
tions and the more general class of gbent functions (see e.g. [4], 11l [12], 13]),
attracted a lot of attention. Many classes of bent functions have been pro-
posed, the most famous being the Maiorana-McFarland class and Dillon’s
partial spread (PS) class [3]. In this article we generalize the partial spread
class to gbent functions. In Section 2] we explicitly describe ghent functions
in QB?;, which can be seen as a gbent version of Dillon’s PS,, bent func-
tions, which form a subclass of the class of partial spread bent functions. In
Section [3] we give a complete characterization of the partial spread class for
gbent functions in gB%;. We suggest a concept of vectorial gbent functions
from F3 to Z;' in Section dl and determine the maximal value which m can
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attain for ¢ = 2t. We show that our bound for m is attained giving an exam-
ple of vectorial gbent functions arising from the class of partial spread ghent
functions. Finally we point to a relation between vectorial ghent functions
and relative difference sets.

2 PS,, gbent functions

In [I3] the following construction of ghent functions has been introduced and
referred to as the generalized Dillon class: Let n = 2m, and let Uy, Uy, ...,
Usm be a spread of V,,, that is, U;’s, 0 < i < 2™, are m-dimensional sub-
spaces of V,, with pairwise trivial intersection. For integers ko, k1,...,kom, 7
of the set {0,1,...,q — 1} such that Z?:O C['ji = (g, we define f : V,, — Z,
as

fle)=k; if z€U; and z#0, and f(0)=r. (1)

The gbentness of f follows easily from the fact that for every nonzero u € V,,
we have (u,z) = 0 for all z € Uy, for exactly one 0 < ¢ < 2™. On the other
spread elements (u, z) is balanced. If u # 0, then

2m 2m
M = 2 GUEnT =33 N -GG
1=0

mGVn =0 z€U;

qu Z wth = on/? é%’

zeU;

if uw € Ui~ (U* is the orthogonal complement of U, with respect to (u,z)).
If w =0, then

2m
=0

We observe that f defined in () is a regular ghent function and that the
dual f* of f is defined via the orthogonal spread (with respect to the inner
product (,)) as

ff@)=4k if zcU+ and z#0, and f*(0)=r

For g = 2 the subclass of bent functions obtained with the construction
in (1)) using the regular (Desarguesian) spread is called Dillon’s PSS, class.
To be precise, we obtain a PS™ bent function defined on the regular spread
if » = 0, and if r = 1 we obtain the complement of a PS~ bent function,



which in this case it is a PS™T bent function. For the definition of PS~ and
PS™ bent functions we refer to [3].
In bivariate form, that is, as functions from Fom x Fam to Fg, the PSSy,

class has an explicit representation as f(z,y) =G <%) for a balanced func-

tion G : Fam — Fy (we always assume the convention that 1/0 = 0). In
the following theorem we present an explicit representation of functions in
a generalization of Dillon’s PS,, class to gbent functions with ¢ = 2k We
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use H for 7-[(2k), and ( = e2F .

Theorem 1. Let G : Fom — Fo, 0 < j < k —1, be Boolean functions with
Y520 27G5() ;
G;(0) =0 and Z (#i=0 =" = 0. Then the function f :Fam X Fam —

teFom
Lok given by

k—1 '
= 2G; (x/y)
j=0

18 a gbent function with the dual

k—1
y) =Y 2G;(y/x).
=0

Proof. Using the inner product ((x1,y1),(x2,y2)) = Try,(x122 + y172) on
Fom X Fom, for u,v € Fom, with s := y/x we have

k—1
,Hf(’LL/L)) = Z Z CZ 2JG )(_1)Trm(um+vsm)

s€Fom z€Fom

z#0
+ Z Trm(vy
yEFom

_ kloigy(s™h) Trom (uz+vs)
- X e Y

s€Fom z€Fom

B Z Czk 12JG *1 + Z Trm (vy) =] — II+III

s€Fom yeFom

By the assumption on the balanced functions G, then I = 0. If v # 0,
then 111 = 0, and consequently

Hp(u,v) = 2m¢Zam0 ¥ Ei0/),



If v = 0, then III = 2™. Consequently, with >
u # 0, we get Hs(u,0) =111 =2™. Finally,

(—1)Trm(ue) = @ if

IGFQM

Hp(0,0) =2 3 (Tima G0 Lgm —gmyp4oom — om

s€Fom

by the assumption on the functions G;. Therefore, in all cases, |H ¢(u,v)| =
2™ hence f is gbent. As Hf(u,v) is obtained explicitly for all (u,v), we
also can confirm the formula for the dual. O

With Go(x) = Tr,,(ax) and Gi(z) = Try,(bx) for two distinct elements
a,b € IF5,, we obtain the following corollary.

Corollary 2. Let a,b € F5,., a # b, then the function f :Fom X Fom — Zy

o= () e ()

with the convention that 1/0 = 0, is gbent.

Proof. For a function G : Fom — Fy we put G' := {z € Fom | G(x) = i},
i = 0,1. With this notation, G} and GY are two distinct hyperplanes of
[Fom, which intersect in an (m — 2)-dimensional subspace. Consequently the
condition |GYNG}| = 2™~ is satisfied, which further implies that |G3NGK| =
2m=2 for all j,k € {0,1}, and so, > seFom Go(s™HD+2G1(s™Y) = 0, and the
previous theorem applies. O

3 PS/~ gbent functions

Being defined on a complete spread, for ¢ = 2 with the construction in ({I) we
obtain PS™ or complements of PS™ bent functions. To generate a partial
spread bent function, solely 2! subspaces of dimension m with pairwise
trivial intersection are needed (see [3]). Since, in general, a partial spread
is not contained in a complete spread, many more bent functions are in
the partial spread class. In this section we generalize the concept of partial
spread bent functions to ghent functions f € GBZ, ¢ = 2!, by completely
characterizing all gbent functions for which

- f is constant on the nonzero elements of every element of a partial
spread {Uy,Us,...,Us},

- f(0) = p for some 0 < p < 2! — 1, and



- f(z)=0for z € Vn\U?Zl Uk.

Here we always assume that f is constant nonzero on U*, 1 < k < A.
Otherwise we may switch to an according subspread by deleting some of the
Uy from the partial spread. We remark that such a generalization to bent
functions in odd characteristic has been given in [5l [7].

Since ¢ = 2! is fixed, in this section we again write H for H(?, and put

2mi

(=e2t,

Proposition 3. Let ¢ = 2!, n = 2m and let Uy,..., Uy be elements of a
partial spread of V,, = Vo,,. For integers ki, ka, ..., ka of the set {1,...,q—
1} and 0 < p < q— 1, such that

A

Y= A-@ 1)+ (2)

i=1
we define a function f from 'V, to Zq by

fO)=pand f(z)=Fk if x€U; and x#0,

A
f@)=0 if zeV,\|JU.

k=1

The function f is gbent, and the dual f* of f is obtained with the orthogonal
spread as

ffO)=pand f(x) =k if zcU>+ and z#0,

A
fl@)=0 if zeV,\JU;.
k=1

Proof. Let R be the set R = V,, \ U?:l Uk, which has cardinality |R| =
2" — A(2™ —1) — 1. Then

A
HpO) = fD =3 MY 1P+ Y0
€V, =1 1;675%1 T€ER

=" -DA-2"+1)+ )+ +2" - AR 1) -1 =2"¢".

To evaluate H ¢(u) for u # 0, we distinguish two cases. First we suppose that
u is not an element of U* for any 1 < r < A. Then 22:1 erU;(_1)<u’x> =



—A. Therefore, with ervn(_1)<u ) =0 we have Y, p(—1)®%) = 4 — 1.
As a consequence,

Hyw) = 3 IOy

Z‘EVn

—ZC’“Z ZC T4 (1

zeU; zER

:—Z(’%+<P+A—1

i=1
=—[A-2"+ 1)+ ]+ +A-1=2".

Now suppose that u € Us. In this case Zﬁzl ZIGUZ(—l)W””> =2"— A,
and hence >, p(—1)®) = A — 2™ — 1. For H(u) we then get

A
Z(k S o(=nm N R —2m A1
=1

zeU;
:2mgkr—A+2m+1—gf’+gf’—2m+A_1:2’”4’“.

Observing that H(0) = 2™, Hyp(u) = 2™ if u € U;- for any 1 < r < A,
and H f(u) = 2m¢*r if u € U7, we confirm the statement for the dual f*. O

The next corollary confirms that Proposition Bl exactly yields the class
of partial spread bent functions when ¢ = 1.

Corollary 4. Fort =1, the functions in Theorem [3 are exactly the partial
spread bent functions. In particular, with p = 0 one obtains the class of the
PS™ Boolean bent functions, and with p = 1 one obtains the class of the
PS™ Boolean bent functions.

Proof. Ift =1,i.e. ¢ =2, then k) = kg = --- = kg = 1 and the condition (2]
is Zle(—l)l =A—(2"+41)+(—1)?, or equivalently 24 = 2™ +1—(—1)".
Hence A = 21 if p = 0, and A = 2"~ ! 4 1 if p = 1. In other words,
if p = 0, then the support of the Boolean function f is the union of 27!
spread elements excluding the 0, if p = 1, then the support of the Boolean
function f is the union of 2~!+1 spread elements (with the 0). This exactly
defines the class of the PS™ Boolean bent functions respectively the class of
the PS™ Boolean bent functions. Conversely, it is easily seen that any PS™
(respectively, PS™) Boolean bent function is of the form of f in Theorem
satisfying () with A = 2™~! and p = 0 (respectively, A = 2! + 1 and
p=1). O



In the remainder of this section we show that Proposition [ covers all
. 2t .
gbent functions f € GB; which are constant on the nonzero elements of
every element of a partial spread, f(0) = p for some 0 < p < 2! — 1, and
f(x) =0 for the remaining x. We may call this class the class of the partial
. . t . .

spread gbent functions in QBEL . In Theorem [§ below, we will represent this
class of ghent functions in a more descriptive way. We will use the following
lemma.

Lemma 5. Let = 2!, t > 1, ( = ¥/, [fp, € Q, 0< k< q—1 and
ZZ;E kak =1 1s rational, then pj = pyr-1,, forl1<j<ot-1_1,

Proof. Since C2t71+k = —(Ffor 0 < k <2071 —1, we can write every element
z of the cyclotomic field Q((¢) as

2t=1-1
2= > M MeQo<k<2 o
k=0
As [Q(C) : Q] = p(q) = 2071, the set {1,¢,...,¢2 "1} is a basis of Q(¢).

Since

q—1 ot—1_1
0=>> pr¢* —r=(po—par =)+ D (pj = por-14;)C".
k=0 k=1
the assertion of the lemma follows. O

We recall the next result shown in [8].
Proposition 6. All gbent functions in ng’f; are regular.

With Lemma Bl we can also describe the distribution of the values of a
. . t
gbent function in GB2 .

Lemma 7. For q = 2!, n = 2m, let f € GBL be a gbent function and for
j € Zy, denote b := |f~1(j)|. Then there exists 0 < k < 21 — 1 such that

byi—1yp = by £2™ and byr—1,j = bj, for 0 <k <271 —1,j £k
Proof. By Proposition [ the gbent function f is regular. Hence for some
0<Kk <2t -1,

2t—1

Hp(0) = D ¢TI0 = bi¢d = 2m¢
j=0

€V

With ¥ = k or ¥ = 271 + k for some 0 < k < 2t=1 — 1 the claim follows
then from Lemma O



The next theorem is the main result of this section. It completely de-
t
scribes the class of partial spread gbent functions in GB?2 .

Theorem 8. Let ¢ =2', n=2m and let Uy, ...,Uy be elements of a partial
spread of Vy, = Va,,. Let f be constant on U, 1 < k < A, f(0) = p for
some 0 < p <2 —1, and f(x) =0 for x € V,, \ U?:1 Ui. We denote by
cj, 1 < j <2'—1, the number of spread elements whose nonzero elements
are mapped to j and put 23:11—1 cj = A and cy—1 = c. If f is gbent, then
f satisfies one of the conditions I, 11,111, or IV, depending upon the value
of p.

L p=0,cpa4;=0¢,1<j< 27 1, and A = 2" A € =
2m—l A =2m— A,

I 1<p<27t—1 ey =05, 1< <211, j#p, ey, = ¢p—1,
and A=2""1T4+ A e=2"141-A=2"4+1—A.

IO p =271 egenyj=¢;, 1 <5 <200 — 1 and A = 2" 1+ 14+ A,
c=2"" 141 -A=2"4+2- A

V.2 41 < p <28 =1, ey = ¢, 1 < j <270 -1, # p,
Cp=Cpg-1+1, and A=2""14+14+A, =27

Conversely, every function f :V,, — Zot described in I, 11,111, or IV is a
partial spread gbent function.

Proof. By a straightforward computation, one can easily check that the
conditions in I, 11,111, and IV imply (2]). Hence by Proposition Bl all such
functions are partial spread gbent functions.

It remains to show that every partial spread ghent function satisfies one
of the conditions I, 11,111, or IV . First observe that for every partial spread
gbent function f € QB?:, for some 0 < s < 2! — 1 we have

2t—1
2= Hp(0) =2 = ART - 1) = 1+ 4 (27— 1) Y i,
j=1
or equivalently
2t—1
@27 =1) ) ¢ ¢ —2m¢ =2 - DA - (27 +1)]. (3)
j=1

Case s = 0: By equation (B]) in this case (¥ + (2™ — 1) ijt:_ll ;¢ is an

integer, thus by Lemma [ the coefficients of ¢/ and Cj+2t71 must be equal



for 1 < j < 2071 — 1. Since in (2™ — 1) 23;_11 ¢;j¢? all coefficients are 0
modulo (2™ — 1), we must have p = 0 or p = 271 ie. (P = +1, and

Cjyor-1 =¢j, 1 < j < 2!=1 — 1. Equation (@) then yields
—2"=-De=02"-D[A-2"+1)]+2™ - ¢". (4)

As the left side is divisible by (2 — 1), on the right side of the equation
we require (¥ = 1, consequently p = 0. Dividing by 2" — 1 we then get
c=2"—-A With A=¢c+ 22?;11_1 cj = ¢+ 2A, we obtain ¢ =2m"1 — A
and A =2""1 + A, and we observe that f satisfies I.

Case s = 2!=1: In this case for equation (@) we obtain
—2"—-De=02"-1A-(2"+1)]—-2"-¢*

and hence we require (¥ = —1, consequently p = 2/=! = s. Dividing by
2™ — 1 then yields ¢ = 2" 4+ 2 — A, which implies ¢ = 277! +1 — A and
A =2m"1 114+ A. Therefore f satisfies I11.

Case 1 < s < 2!71: As the right side of equation (&),

2t—1
2 —1) > oI+ ¢ —2m¢,

j=1

is an integer, the coefficients of ¢/ and Cj+2t71, 1 <j <21 — 1, must
be the same by Lemma Since in (2™ — 1)23;_11 ¢j¢7 all coefficients,
in particular those of (* and CS+2t71, are 0 modulo (2™ — 1), we require
that p = s or p = s + 2/~!. Observing that ¢* — 2™¢* = (1 — 2™)¢®, but
C3+2t71 —2m(s = —(1 4 2™)(* = B(® with B not divisible by 2™ — 1, we
conclude that p = s. With ¢; = ¢j 91, 1 < j < 20=1 _ 1, j # p, equation
@) then yields

(@ 1)eH (2~ L)ep— (27— L)cppa 1 (27— 1)]C° = (2"~ D[A— (2" +1)]

Consequently, (2" — 1)(c, — cpp9t-1 — 1) = 0, ie. cpio1 = ¢, — 1, and
c=2"+1—-A. Now A = E+Z§:11_1 cj +Z§;_2171+1 cj = c¢+2A —1, from
which we get A =2""1 + A and ¢ =2""1 4+ 1 — A. Hence f satisfies I1.

Similarly one shows that if the parameter s in equation (3] satisfies 2/ =141 <
s < 2! — 1, then f satisfies IV. O

We remark that one can also easily show that every function f which is
constant on every U}, for which f(z) =0if x € V,, \ U,‘?Zl Uy, and for which
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@) holds, also satisfies I, 11,111, or IV, depending upon the value of f(0).
Consequently also Proposition [3] describes the whole set of partial spread
ghent functions from V,, to Zy:.

FEzxzample for ¢ = 4. To construct a partial spread gbent function f from
V, to Z4 from a partial spread Uq,...,Us of V,, = Vy,,, we again denote
the number of spread elements whose nonzero elements are mapped to 1,2
and 3 by c¢1, ¢ and c3, respectively. Then we can choose

F0)=0,c; =A—-2""1 ¢y =2m"1 _¢; and ¢3 = ¢,
II. f0)=1,c; =A—2""1 g =2""1 —¢; +1and c3 =c; — 1,
ITT. f(0)=2,¢c1=A—-2""1 -1, ¢ =2""1—¢; +1and c3 = ¢y,
IV. f(0)=3,c;=A—-2m"1 1 ¢ =2""1—¢jand c3 = ¢1 + 1.

Remark 9. If ¢ = 2, in which case Theorem [§ describes Dillon’s partial
spread class, then f(0) uniquely determines A (and cy).

For q = 4, the number A of spread elements and f(0) uniquely determine
c1,¢o and c3. Note that we require A > 2™ in case I, and A > 2™ 1 +1
in the cases 11,111, 1V .

4 Vectorial gbent functions

Recall that a function F' from F3 to F3' given as

f1($1,$2,---,$n)

fg(ajl o, ... xn)
F(z1,29,...,2,) = e

fm(x1,x2,...,xn)

is called vectorial bent, if every nontrivial linear combination A1 fi + Ao fo +

-+ A fm is bent. In other words, {f1, f2,..., fm} is a basis of an m-
dimensional vector space of bent functions over Fy. Classical examples of
vectorial bent functions arise from the Maiorana-McFarland class and the
partial spread class, see for instance [2, [0, [15]. As already shown by Nyberg
in [9, Theorem 3.2], for a vectorial Boolean bent function m can be at most
n/2. We remark that this is different for vectorial bent functions from F) to
)t for an odd prime p, where we have m < n (see again [9]). The vectorial
bent functions (in odd characteristic) with m = n are the widely-noted
planar functions.
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In the following definition we suggest a concept for a vectorial gbent func-
tion. To the best of our knowledge, this is the first treatment of ghentness
for vectorial functions.

Definition 10. For two integers m,n, a function from Fy to Zy' given as

fi(zy, o, ... xp)
F(xy,29,...,2p) = fo(@y, 22, 2n)
fm(xl,xg‘, ceyTp)
is called a vectorial gbent function if { f1, fa,..., fm} is a basis of a Zg-module

of gbent functions isomorphic to Zy'. The functions A1 fi+Aafa++ -+ Am fm,

(A1, A2, .05 Am) # 0 € Zg*, are called the component functions of F'.
In this section we are once again interested in the case ¢ = 2¢. As before

271
we write H ¢ for ’chq) and we put ( = e 2¢ . In the next theorem we determine

the maximal value which m can attain for a vectorial gbent function from
I3 to Z5i. This generalizes Theorem 3.2 in [9] to vectorial gbent functions.

Theorem 11. For ¢ = 2! and an even integer n > 2, let F' be a vectorial
gbent function from Fy to Z;*. Then m < n/(2t).

Proof. For an m-tuple ¢ = (c1,...,¢,) € Zj' we denote the component
function ¢+ F = c1f1 + -+ + ¢ fm by Fe. Then

M (0) =Y ¢oF0 = 3" a,¢,

z€F3 yezm

where ay, = {F(z) =y | v € F3}| forally € Z7*. Putting S = 2~n/2 > ez0 HE.(0)

we have
228 = 3" ay Y (V=) ay(~1) +ao(q™ - 1),

yeLT  c#0 yer
y70

where in the last step we use that . ¢V =-1 for all y # 0.
With ZyEZ? ay = 2" we get
277//25 — Z ay +2tma0 — _2n +2tm(l(],
yEZg1
hence

S — _2n/2 + 2tm—n/2a0'

12



In the next step we show that S is an odd integer. First note that S is
rational since n is even. Put

pr={ceZ c#0 1 Hp,(0) =22¢F}|.

Recall that by Proposition [6] all component functions F, are regular. Hence
we have ZZ;E pr=¢"—1and S = EZ;E piCF. Because S is rational, by
Lemma [3] we have
2t-1-1
q" —1=po+py-1+2 Z Pk
k=1
and S = pg — pot—1. Combining, we obtain that

2t-1_1
S =2py+ 2 Z pr—q"+1
k=1

is an odd integer. Finally with
ag = 2n/2—tm(s + 2n/2)
for some odd integer S, we see that n/2 > tm. O

In the usual representation of the classical examples of conventional vec-
torial bent functions, like Maiorana-McFarland and partial spread vectorial
bent functions from Fom X Fom to Fom, where m is at most n/2, one takes
advantage from the fact that the vectorial bent functions form vector spaces
isomorphic to Fom as a vector space over Fo. This is different for vectorial
gbent functions, hence we cannot use the structure of the finite field in an
analogous way to obtain examples. In view of Theorem [II] we are mostly
interested in vectorial gbent functions from Fy to ZIJ} with m = n/(2t).
We give a construction with generalized Dillon type gbent functions, which
guarantees the existence of such vectorial ghent functions.

Theorem 12. Let n,m,t be integers such that m = n/(2t), and let Us,
0 < s < 2V2 be the 2V/2 + 1 elements of a spread of V,,. Consider a
bijection ¢ : {1,2,...,2"2} — 73

d(s) = (1(s), d2(s), - -, D (s))7,
and define f; : V,, = Zigt, 1 < j < m, by
fi(@) = ¢;(s) if v € Uy, 1 <5 <2V2 and x # 0,
and fj(z) =0 if x € Uj.

13



The function F' from V,, to Z; given by

fi(x)
fa()

F(x) =
fm(2)
s a vectorial gbent function.

Proof. We have to show that every component function F.(z) = ¢; fi(x) +
cafo(x) + -+ + cmfm(x), ¢ = (c1,¢2, ..., cm) # 0 € ZI}, is a gbent function.
First observe that if z € Uy, 1 < s < 2"/2_ and x # 0, then

c1 b1(s)
Ui c2 P2(s)
Fu(z) = cigj(s)=c-o(s)=| . |-|
= : :
For z € Uy we have F,.(z) = 0. For u € V,,, we then obtain
on/2
He(w) = 30 3 OO0 4 3 (-1
s=1 xeUg zelUy
x#0
on/2 on/2
= Z CC~¢>(S) Z (_1)(%@ _ Z CC~¢>(S) + Z (_1)<u,w>_
s=1 zeUsg s=1 zelUp

Since ¢ is a bijection, we have Zgl/f ¢¢9) = 0 for all nonzero ¢ € Ly
Consequently for u # 0 we get

M (1) = on/2 : uEUd‘,
FAW) = 2"/2CC'¢(§) : uGUglfor some 1 < § < 2/2,

Again using that Zi/f (¢##) = 0, we obtain Hp,(0) = 2"/2, and the theo-
rem is shown. O

Besides from applications in cryptography, one motivation for consider-
ing (vectorial) bent functions is their relation to objects in combinatorics.
For instance, a vectorial bent function from V,, to Fj" gives rise to a relative
difference set of V,, x F5'. We conclude this section pointing out a relation
between relative difference sets and vectorial gbent functions as introduced

14



in our in Definition First we recall the definition of a relative difference
set. Let G be a group of order uv, let N be a subgroup of G of order v and
let R be a subset of G of cardinality k. Then R is called a (u, v, k, \)-relative
difference set of G relative to N, if every element g € G\ N can be repre-
sented in exactly A\ ways as difference r; — ro, 71,72 € R, and no nonzero
element of N has such a representation.

Relative difference sets can be described with characters as follows (see
for instance Section 2.4. in [I4]).

Proposition 13. Let G be an (abelian) group of order puv and let N be a
subgroup of G of order v. A subset R of G (with k elements) is an (p, v, k, \)-
relative difference set of G relative to N if and only if for every character x

of G

k? if X = Xo,
X(R)P={ k=X ifx# o, butx(g9) =1 for allg € N,
k otherwise.

With this characterization of relative difference sets, the relation with
our vectorial gbent functions becomes transparent. Since it is the most
interesting case, we consider a vectorial gbent function from V,, to Fi; with
maximal possible m = n/(2t).

Theorem 14. Let g = 2¢, and let F be a vectorial gbent function from V,
to Zy', m =n/(2t). Then the set

R={(z,F(x)) : x€V,}
; n on/2 on on/2\_ ; ; ; m ; m
is a (27,272, 2", 2" %) -relative difference set in Vy, X Zy* relative to {0} x Zy".

Proof. The theorem essentially follows from Proposition [[3] with definition
of vectorial gbent functions (it is the same argument as for the conventional
vectorial bent functions, where ¢ = 1): Note that the group of characters of
Vi xZy" consists of the elements Xy : (z,2) — (1)) cez y eV, ce Zy".

Therefore
Xue(R) = Y (=)@ = 2 p (u).
eV,

(We include now also ¢ = 0.) By the definition of a vectorial gbent function
we then have

92n for x0,0,
‘Xu,C(R)F = ‘,HFC(U)P = 0 for xu,0,u # 0
2m otherwise.

15



Hence by Proposition [[3] the set R is a (2", on/2 gn on/ 2)-relative difference,
relative to {0} x Zj". O

Remark 15. Differently to the case of bent functions, for a gbent function
fe ng’%: the set {(x, f(x)) : x € V,,} is in general not a relative difference
set (of Vi, X Zge relative to {0} X Za: ). For instance we may have ¢f =0 for
a nonzero ¢ € Lot - f is then not vectorial (defined as in Definition [I0 with
m = 1). The character sum that corresponds to xy.z does then not attain
the required value. An example is the gbent function in [13, Theorem §].
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