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Abstract

In this paper we generalize the partial spread class and completely
describe it for generalized Boolean functions from Fn

2
to Z2t . Explicitly,

we describe gbent functions from Fn
2

to Z2t , which can be seen as
a gbent version of Dillon’s PSap class. For the first time, we also
introduce the concept of a vectorial gbent function from Fn

2
to Zm

q , and
determine the maximal value which m can attain for the case q = 2t.
Finally we point to a relation between vectorial gbent functions and
relative difference sets.

1 Introduction

Let Vn be the n-dimensional vector space over the two-element field F2 and
for an integer q let Zq be the ring of integers modulo q. For a function f
from Vn to Zq the generalized Walsh-Hadamard transform is the complex
valued function

H
(q)
f (u) =

∑

x∈Vn

ζf(x)q (−1)〈u,x〉, ζq = e
2πi
q ,

http://arxiv.org/abs/1511.01705v1


where 〈, 〉 denotes a nondegenerate inner product on Vn (we shall use ζ,

respectively, Hf , instead of ζq, respectively, H
(q)
f , when q is fixed). We will

follow our notations from [8] and denote the set of all generalized Boolean
functions by GBq

n and when q = 2, by Bn. A function f ∈ GBq
n is called

generalized bent (gbent) if |H
(q)
f (u)| = 2n/2 for all u ∈ Vn. Recall that if

q = 2, these functions are called bent.

If f is gbent such that for every u ∈ Vn, we have H
(q)
f (u) = 2n/2ζjuq for

some 0 ≤ ju < q, then - following the notation for bent functions in odd
characteristic (see [1, 6]) - we call f a regular gbent function. Similar as for

bent functions we call f∗ the dual of f , if 2n/2ζ
f∗(u)
q = H

(q)
f (u). With the

same argument as for the conventional bent functions we can see that the
dual f∗ is also gbent and (f∗)∗ = f . Hence regular gbent functions always
appear in pairs. First note that for y ∈ Vn we have

∑

u∈Vn

(−1)〈u,y〉H
(q)
f (u) =

∑

u∈Vn

(−1)〈u,y〉
∑

x∈Vn

ζf(x)q (−1)〈b,x〉 =

∑

x∈Vn

ζf(x)q

∑

u∈Vn

(−1)〈u,x+y〉 = 2nζf(y)q .

With H
(q)
f (u) = 2n/2ζ

f∗(u)
q , we then get

2nζf(y)q = 2n/2
∑

u∈Vn

(−1)〈u,y〉ζf
∗(u)

q .

We finally remark that as shown in [8], gbent functions from Vn to Z2t , t ≥ 1,
which are the functions in which we are most interested in this article, are
always regular. Therefore the dual of a gbent function is always defined and
it is a gbent function, as well.

Since the introduction of Boolean bent functions in [10], bent functions
and generalizations, like bent functions in odd characteristic, negabent func-
tions and the more general class of gbent functions (see e.g. [4, 11, 12, 13]),
attracted a lot of attention. Many classes of bent functions have been pro-
posed, the most famous being the Maiorana-McFarland class and Dillon’s
partial spread (PS) class [3]. In this article we generalize the partial spread
class to gbent functions. In Section 2 we explicitly describe gbent functions
in GB2t

n , which can be seen as a gbent version of Dillon’s PSap bent func-
tions, which form a subclass of the class of partial spread bent functions. In
Section 3 we give a complete characterization of the partial spread class for
gbent functions in GB2t

n . We suggest a concept of vectorial gbent functions
from Fn

2 to Zm
q in Section 4, and determine the maximal value which m can
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attain for q = 2t. We show that our bound for m is attained giving an exam-
ple of vectorial gbent functions arising from the class of partial spread gbent
functions. Finally we point to a relation between vectorial gbent functions
and relative difference sets.

2 PSap gbent functions

In [13] the following construction of gbent functions has been introduced and
referred to as the generalized Dillon class: Let n = 2m, and let U0, U1, . . .,
U2m be a spread of Vn, that is, Ui’s, 0 ≤ i ≤ 2m, are m-dimensional sub-
spaces of Vn with pairwise trivial intersection. For integers k0, k1, . . . , k2m , r
of the set {0, 1, . . . , q − 1} such that

∑2m

i=0 ζ
ki
q = ζrq , we define f : Vn → Zq

as
f(x) = ki if x ∈ Ui and x 6= 0, and f(0) = r. (1)

The gbentness of f follows easily from the fact that for every nonzero u ∈ Vn

we have 〈u, x〉 = 0 for all x ∈ Ut, for exactly one 0 ≤ t ≤ 2m. On the other
spread elements 〈u, x〉 is balanced. If u 6= 0, then

H
(q)
f (u) =

∑

x∈Vn

ζf(x)q (−1)〈u,x〉 =

2m
∑

i=0

∑

x∈Ui

ζkiq (−1)〈u,x〉 −

2m
∑

i=0

ζkiq + ζrq

=

2m
∑

i=0

ζkiq
∑

x∈Ui

(−1)〈u,x〉 = 2n/2ζktq ,

if u ∈ U⊥
t (U⊥ is the orthogonal complement of U , with respect to 〈u, x〉).

If u = 0, then

H
(q)
f (0) =

2m
∑

i=0

ζkiq 2n/2 = 2n/2ζrq .

We observe that f defined in (1) is a regular gbent function and that the
dual f∗ of f is defined via the orthogonal spread (with respect to the inner
product 〈, 〉) as

f∗(x) = ki if x ∈ U⊥
i and x 6= 0, and f∗(0) = r.

For q = 2 the subclass of bent functions obtained with the construction
in (1) using the regular (Desarguesian) spread is called Dillon’s PSap class.
To be precise, we obtain a PS− bent function defined on the regular spread
if r = 0, and if r = 1 we obtain the complement of a PS− bent function,
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which in this case it is a PS+ bent function. For the definition of PS− and
PS+ bent functions we refer to [3].

In bivariate form, that is, as functions from F2m × F2m to F2, the PSap

class has an explicit representation as f(x, y) = G
(

x
y

)

for a balanced func-

tion G : F2m → F2 (we always assume the convention that 1/0 = 0). In
the following theorem we present an explicit representation of functions in
a generalization of Dillon’s PSap class to gbent functions with q = 2k. We

use H for H(2k), and ζ = e
2πi

2k .

Theorem 1. Let Gj : F2m → F2, 0 ≤ j ≤ k − 1, be Boolean functions with

Gj(0) = 0 and
∑

t∈F2m

ζ
∑k−1

j=0
2jGj(t) = 0. Then the function f : F2m × F2m →

Z2k given by

f(x, y) =

k−1
∑

j=0

2jGj (x/y)

is a gbent function with the dual

f∗(x, y) =

k−1
∑

j=0

2jGj (y/x) .

Proof. Using the inner product 〈(x1, y1), (x2, y2)〉 = Trm(x1x2 + y1y2) on
F2m × F2m , for u, v ∈ F2m , with s := y/x we have

Hf (u, v) =
∑

s∈F2m

∑

x∈F2m

x 6=0

ζ
∑k−1

j=0
2jGj(s−1)(−1)Trm(ux+vsx)

+
∑

y∈F2m

(−1)Trm(vy)

=
∑

s∈F2m

ζ
∑k−1

j=0
2jGj(s

−1)
∑

x∈F2m

(−1)Trm(ux+vsx)

−
∑

s∈F2m

ζ
∑k−1

j=0
2jGj(s

−1) +
∑

y∈F2m

(−1)Trm(vy) := I − II + III.

By the assumption on the balanced functions Gj , then II = 0. If v 6= 0,
then III = 0, and consequently

Hf (u, v) = 2mζ
∑k−1

j=0
2jGj(v/u).
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If v = 0, then III = 2m. Consequently, with
∑

x∈F2m
(−1)Trm(ux) = 0 if

u 6= 0, we get Hf (u, 0) = III = 2m. Finally,

Hf (0, 0) = 2m
∑

s∈F2m

ζ
∑k−1

j=0
2jGj(s

−1) + 2m = 2mII + 2m = 2m

by the assumption on the functions Gj . Therefore, in all cases, |Hf (u, v)| =
2m, hence f is gbent. As Hf (u, v) is obtained explicitly for all (u, v), we
also can confirm the formula for the dual.

With G0(x) = Trm(ax) and G1(x) = Trm(bx) for two distinct elements
a, b ∈ F∗

2m we obtain the following corollary.

Corollary 2. Let a, b ∈ F∗
2m , a 6= b, then the function f : F2m × F2m → Z4

f(x, y) = Trm

(

ax

y

)

+ 2Trm

(

bx

y

)

with the convention that 1/0 = 0, is gbent.

Proof. For a function G : F2m → F2 we put Gi := {x ∈ F2m | G(x) = i},
i = 0, 1. With this notation, G0

0 and G0
1 are two distinct hyperplanes of

F2m , which intersect in an (m− 2)-dimensional subspace. Consequently the
condition |G0

0∩G
1
0| = 2m−2 is satisfied, which further implies that |Gj

0∩G
k
1| =

2m−2, for all j, k ∈ {0, 1}, and so,
∑

s∈F2m
iG0(s−1)+2G1(s−1) = 0, and the

previous theorem applies.

3 PS+/− gbent functions

Being defined on a complete spread, for q = 2 with the construction in (1) we
obtain PS− or complements of PS− bent functions. To generate a partial
spread bent function, solely 2m−1 subspaces of dimension m with pairwise
trivial intersection are needed (see [3]). Since, in general, a partial spread
is not contained in a complete spread, many more bent functions are in
the partial spread class. In this section we generalize the concept of partial
spread bent functions to gbent functions f ∈ GBq

n, q = 2t, by completely
characterizing all gbent functions for which

- f is constant on the nonzero elements of every element of a partial
spread {U1, U2, . . . , UA},

- f(0) = ρ for some 0 ≤ ρ ≤ 2t − 1, and
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- f(x) = 0 for x ∈ Vn \
⋃A

k=1 Uk.

Here we always assume that f is constant nonzero on U∗, 1 ≤ k ≤ A.
Otherwise we may switch to an according subspread by deleting some of the
Uk from the partial spread. We remark that such a generalization to bent
functions in odd characteristic has been given in [5, 7].

Since q = 2t is fixed, in this section we again write H for H(q), and put

ζ = e
2πi
2t .

Proposition 3. Let q = 2t, n = 2m and let U1, . . . , UA be elements of a
partial spread of Vn = V2m. For integers k1, k2, . . . , kA of the set {1, . . . , q−
1} and 0 ≤ ρ ≤ q − 1, such that

A
∑

i=1

ζki = A− (2m + 1) + ζρ (2)

we define a function f from Vn to Zq by

f(0) = ρ and f(x) = ki if x ∈ Ui and x 6= 0,

f(x) = 0 if x ∈ Vn \

A
⋃

k=1

Uk.

The function f is gbent, and the dual f∗ of f is obtained with the orthogonal
spread as

f∗(0) = ρ and f(x) = ki if x ∈ U⊥
i and x 6= 0,

f(x) = 0 if x ∈ Vn \
A
⋃

k=1

U⊥
k .

Proof. Let R be the set R = Vn \
⋃A

k=1 Uk, which has cardinality |R| =
2n −A(2m − 1)− 1. Then

Hf (0) =
∑

x∈Vn

ζf(x) =

A
∑

i=1

ζki
∑

x∈Ui
x 6=0

1 + ζρ +
∑

x∈R

1

= (2m − 1)(A− (2m + 1) + ζρ) + ζρ + 2n −A(2m − 1)− 1 = 2mζρ.

To evaluate Hf (u) for u 6= 0, we distinguish two cases. First we suppose that

u is not an element of U⊥
r for any 1 ≤ r ≤ A. Then

∑A
k=1

∑

x∈U∗

k
(−1)〈u,x〉 =
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−A. Therefore, with
∑

x∈Vn
(−1)〈u,x〉 = 0 we have

∑

x∈R(−1)〈u,x〉 = A− 1.
As a consequence,

Hf (u) =
∑

x∈Vn

ζf(x)(−1)〈u,x〉

=

A
∑

i=1

ζki
∑

x∈Ui

(−1)〈u,x〉 −

A
∑

i=1

ζki + ζρ +
∑

x∈R

(−1)〈u,x〉

= −

A
∑

i=1

ζki + ζρ +A− 1

= −[A− (2m + 1) + ζρ] + ζρ +A− 1 = 2m.

Now suppose that u ∈ U⊥
r . In this case

∑A
k=1

∑

x∈U∗

k
(−1)〈u,x〉 = 2m − A,

and hence
∑

x∈R(−1)〈u,x〉 = A− 2m − 1. For Hf (u) we then get

Hf (u) =

A
∑

i=1

ζki
∑

x∈Ui

(−1)〈u,x〉 −

A
∑

i=1

ζki + ζρ − 2m +A− 1

= 2mζkr −A+ 2m + 1− ζρ + ζρ − 2m +A− 1 = 2mζkr .

Observing that Hf (0) = 2mζρ, Hf (u) = 2m if u 6∈ U⊥
r for any 1 ≤ r ≤ A,

and Hf (u) = 2mζkr if u ∈ U⊥
r , we confirm the statement for the dual f∗.

The next corollary confirms that Proposition 3 exactly yields the class
of partial spread bent functions when t = 1.

Corollary 4. For t = 1, the functions in Theorem 3 are exactly the partial
spread bent functions. In particular, with ρ = 0 one obtains the class of the
PS− Boolean bent functions, and with ρ = 1 one obtains the class of the
PS+ Boolean bent functions.

Proof. If t = 1, i.e. q = 2, then k1 = k2 = · · · = kA = 1 and the condition (2)
is
∑A

i=1(−1)1 = A− (2m +1)+ (−1)ρ, or equivalently 2A = 2m+1− (−1)ρ.
Hence A = 2m−1 if ρ = 0, and A = 2m−1 + 1 if ρ = 1. In other words,
if ρ = 0, then the support of the Boolean function f is the union of 2m−1

spread elements excluding the 0, if ρ = 1, then the support of the Boolean
function f is the union of 2m−1+1 spread elements (with the 0). This exactly
defines the class of the PS− Boolean bent functions respectively the class of
the PS+ Boolean bent functions. Conversely, it is easily seen that any PS−

(respectively, PS+) Boolean bent function is of the form of f in Theorem 3
satisfying (2) with A = 2m−1 and ρ = 0 (respectively, A = 2m−1 + 1 and
ρ = 1).
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In the remainder of this section we show that Proposition 3 covers all
gbent functions f ∈ GB2t

n which are constant on the nonzero elements of
every element of a partial spread, f(0) = ρ for some 0 ≤ ρ ≤ 2t − 1, and
f(x) = 0 for the remaining x. We may call this class the class of the partial
spread gbent functions in GB2t

n . In Theorem 8 below, we will represent this
class of gbent functions in a more descriptive way. We will use the following
lemma.

Lemma 5. Let q = 2t, t > 1, ζ = e2πi/q. If ρk ∈ Q, 0 ≤ k ≤ q − 1 and
∑q−1

k=0 ρkζ
k = r is rational, then ρj = ρ2t−1+j , for 1 ≤ j ≤ 2t−1 − 1.

Proof. Since ζ2
t−1+k = −ζk for 0 ≤ k ≤ 2t−1−1, we can write every element

z of the cyclotomic field Q(ζ) as

z =

2t−1−1
∑

k=0

λkζ
k, λk ∈ Q, 0 ≤ k ≤ 2t−1 − 1.

As [Q(ζ) : Q] = ϕ(q) = 2t−1, the set {1, ζ, . . . , ζ2
t−1−1} is a basis of Q(ζ).

Since

0 =

q−1
∑

k=0

ρkζ
k − r = (ρ0 − ρ2t−1 − r) +

2t−1−1
∑

k=1

(ρj − ρ2t−1+j)ζ
k.

the assertion of the lemma follows.

We recall the next result shown in [8].

Proposition 6. All gbent functions in GB2t
n are regular.

With Lemma 5 we can also describe the distribution of the values of a
gbent function in GB2t

n .

Lemma 7. For q = 2t, n = 2m, let f ∈ GBq
n be a gbent function and for

j ∈ Zp denote bj := |f−1(j)|. Then there exists 0 ≤ k ≤ 2t−1 − 1 such that

b2t−1+k = bk ± 2m and b2t−1+j = bj , for 0 ≤ k ≤ 2t−1 − 1, j 6= k.

Proof. By Proposition 6 the gbent function f is regular. Hence for some
0 ≤ k′ ≤ 2t − 1,

Hf (0) =
∑

x∈Vn

ζf(x) =
2t−1
∑

j=0

bjζ
j = 2mζk

′

.

With k′ = k or k′ = 2t−1 + k for some 0 ≤ k ≤ 2t−1 − 1 the claim follows
then from Lemma 5.
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The next theorem is the main result of this section. It completely de-
scribes the class of partial spread gbent functions in GB2t

n .

Theorem 8. Let q = 2t, n = 2m and let U1, . . . , UA be elements of a partial
spread of Vn = V2m. Let f be constant on U∗

k , 1 ≤ k ≤ A, f(0) = ρ for

some 0 ≤ ρ ≤ 2t − 1, and f(x) = 0 for x ∈ Vn \
⋃A

k=1 Uk. We denote by
cj , 1 ≤ j ≤ 2t − 1, the number of spread elements whose nonzero elements

are mapped to j and put
∑2t−1−1

j=1 cj := ∆ and c2t−1 := c̄. If f is gbent, then
f satisfies one of the conditions I, II, III, or IV , depending upon the value
of ρ.

I. ρ = 0, c2t−1+j = cj , 1 ≤ j ≤ 2t−1 − 1, and A = 2m−1 + ∆, c̄ =
2m−1 −∆ = 2m −A.

II. 1 ≤ ρ ≤ 2t−1−1, c2t−1+j = cj , 1 ≤ j ≤ 2t−1−1, j 6= ρ, c2t−1+ρ = cρ−1,
and A = 2m−1 +∆, c̄ = 2m−1 + 1−∆ = 2m + 1−A.

III. ρ = 2t−1, c2t−1+j = cj , 1 ≤ j ≤ 2t−1 − 1, and A = 2m−1 + 1 + ∆,
c̄ = 2m−1 + 1−∆ = 2m + 2−A.

IV. 2t−1 + 1 ≤ ρ ≤ 2t − 1, c2t−1+j = cj , 1 ≤ j ≤ 2t−1 − 1, j 6= ρ,
cρ = cρ−2t−1 +1, and A = 2m−1 +1+∆, c̄ = 2m−1 −∆ = 2m +1−A.

Conversely, every function f : Vn → Z2t described in I, II, III, or IV is a
partial spread gbent function.

Proof. By a straightforward computation, one can easily check that the
conditions in I, II, III, and IV imply (2). Hence by Proposition 3 all such
functions are partial spread gbent functions.

It remains to show that every partial spread gbent function satisfies one
of the conditions I, II, III, or IV . First observe that for every partial spread
gbent function f ∈ GB2t

n , for some 0 ≤ s ≤ 2t − 1 we have

2mζs = Hf (0) = 2n −A(2m − 1)− 1 + ζρ + (2m − 1)
2t−1
∑

j=1

cjζ
j,

or equivalently

(2m − 1)
2t−1
∑

j=1

cjζ
j + ζρ − 2mζs = (2m − 1)[A− (2m + 1)]. (3)

Case s = 0: By equation (3) in this case ζρ + (2m − 1)
∑2t−1

j=1 cjζ
j is an

integer, thus by Lemma 5 the coefficients of ζj and ζj+2t−1

must be equal

9



for 1 ≤ j ≤ 2t−1 − 1. Since in (2m − 1)
∑2t−1

j=1 cjζ
j all coefficients are 0

modulo (2m − 1), we must have ρ = 0 or ρ = 2t−1, i.e. ζρ = ±1, and
cj+2t−1 = cj , 1 ≤ j ≤ 2t−1 − 1. Equation (3) then yields

− (2m − 1)c̄ = (2m − 1)[A − (2m + 1)] + 2m − ζρ. (4)

As the left side is divisible by (2m − 1), on the right side of the equation
we require ζρ = 1, consequently ρ = 0. Dividing by 2m − 1 we then get

c̄ = 2m −A. With A = c̄+ 2
∑2t−1−1

j=1 cj = c̄+ 2∆, we obtain c̄ = 2m−1 −∆

and A = 2m−1 +∆, and we observe that f satisfies I.

Case s = 2t−1: In this case for equation (4) we obtain

−(2m − 1)c̄ = (2m − 1)[A− (2m + 1)]− 2m − ζρ

and hence we require ζρ = −1, consequently ρ = 2t−1 = s. Dividing by
2m − 1 then yields c̄ = 2m + 2 − A, which implies c̄ = 2m−1 + 1 − ∆ and
A = 2m−1 + 1 +∆. Therefore f satisfies III.

Case 1 ≤ s ≤ 2t−1: As the right side of equation (3),

(2m − 1)

2t−1
∑

j=1

cjζ
j + ζρ − 2mζs,

is an integer, the coefficients of ζj and ζj+2t−1

, 1 ≤ j ≤ 2t−1 − 1, must

be the same by Lemma 5. Since in (2m − 1)
∑2t−1

j=1 cjζ
j all coefficients,

in particular those of ζs and ζs+2t−1

, are 0 modulo (2m − 1), we require
that ρ = s or ρ = s + 2t−1. Observing that ζs − 2mζs = (1 − 2m)ζs, but
ζs+2t−1

− 2mζs = −(1 + 2m)ζs = Bζs with B not divisible by 2m − 1, we
conclude that ρ = s. With cj = cj+2t−1 , 1 ≤ j ≤ 2t−1 − 1, j 6= ρ, equation
(3) then yields

−(2m−1)c̄+[(2m−1)cρ−(2m−1)cρ+2t−1−(2m−1)]ζρ = (2m−1)[A−(2m+1)].

Consequently, (2m − 1)(cρ − cρ+2t−1 − 1) = 0, i.e. cρ+2t−1 = cρ − 1, and

c̄ = 2m+1−A. Now A = c̄+
∑2t−1−1

j=1 cj +
∑2t−1

j=2t−1+1 cj = c̄+2∆− 1, from

which we get A = 2m−1 +∆ and c̄ = 2m−1 + 1−∆. Hence f satisfies II.

Similarly one shows that if the parameter s in equation (3) satisfies 2t−1+1 ≤
s ≤ 2t − 1, then f satisfies IV .

We remark that one can also easily show that every function f which is
constant on every U∗

k , for which f(x) = 0 if x ∈ Vn \
⋃A

k=1 Uk and for which
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(2) holds, also satisfies I, II, III, or IV , depending upon the value of f(0).
Consequently also Proposition 3 describes the whole set of partial spread
gbent functions from Vn to Z2t .

Example for q = 4. To construct a partial spread gbent function f from
Vn to Z4 from a partial spread U1, . . . , UA of Vn = V2m, we again denote
the number of spread elements whose nonzero elements are mapped to 1, 2
and 3 by c1, c2 and c3, respectively. Then we can choose

I. f(0) = 0, c1 = A− 2m−1, c2 = 2m−1 − c1 and c3 = c1,

II. f(0) = 1, c1 = A− 2m−1, c2 = 2m−1 − c1 + 1 and c3 = c1 − 1,

III. f(0) = 2, c1 = A− 2m−1 − 1, c2 = 2m−1 − c1 + 1 and c3 = c1,

IV. f(0) = 3, c1 = A− 2m−1 − 1, c2 = 2m−1 − c1 and c3 = c1 + 1.

Remark 9. If q = 2, in which case Theorem 8 describes Dillon’s partial
spread class, then f(0) uniquely determines A (and c1).
For q = 4, the number A of spread elements and f(0) uniquely determine
c1, c2 and c3. Note that we require A ≥ 2m−1 in case I, and A ≥ 2m−1 + 1
in the cases II, III, IV .

4 Vectorial gbent functions

Recall that a function F from Fn
2 to Fm

2 given as

F (x1, x2, . . . , xn) =











f1(x1, x2, . . . , xn)
f2(x1, x2, . . . , xn)

...
fm(x1, x2, . . . , xn)











is called vectorial bent, if every nontrivial linear combination λ1f1 + λ2f2 +
· · · + λmfm is bent. In other words, {f1, f2, . . . , fm} is a basis of an m-
dimensional vector space of bent functions over F2. Classical examples of
vectorial bent functions arise from the Maiorana-McFarland class and the
partial spread class, see for instance [2, 9, 15]. As already shown by Nyberg
in [9, Theorem 3.2], for a vectorial Boolean bent function m can be at most
n/2. We remark that this is different for vectorial bent functions from Fn

p to
Fm
p for an odd prime p, where we have m ≤ n (see again [9]). The vectorial

bent functions (in odd characteristic) with m = n are the widely-noted
planar functions.
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In the following definition we suggest a concept for a vectorial gbent func-
tion. To the best of our knowledge, this is the first treatment of gbentness
for vectorial functions.

Definition 10. For two integers m,n, a function from Fn
2 to Zm

q given as

F (x1, x2, . . . , xn) =











f1(x1, x2, . . . , xn)
f2(x1, x2, . . . , xn)

...
fm(x1, x2, . . . , xn)











is called a vectorial gbent function if {f1, f2, . . . , fm} is a basis of a Zq-module
of gbent functions isomorphic to Zm

q . The functions λ1f1+λ2f2+· · ·+λmfm,
(λ1, λ2, . . . , λm) 6= 0 ∈ Zm

q , are called the component functions of F .

In this section we are once again interested in the case q = 2t. As before

we write Hf for H
(q)
f and we put ζ = e

2πi
2t . In the next theorem we determine

the maximal value which m can attain for a vectorial gbent function from
Fn
2 to Zm

2t . This generalizes Theorem 3.2 in [9] to vectorial gbent functions.

Theorem 11. For q = 2t and an even integer n > 2, let F be a vectorial
gbent function from Fn

2 to Zm
q . Then m ≤ n/(2t).

Proof. For an m-tuple c = (c1, . . . , cm) ∈ Zm
q we denote the component

function c · F = c1f1 + · · ·+ cmfm by Fc. Then

HFc(0) =
∑

x∈Fn
2

ζc·F (x) =
∑

y∈Zm
q

ayζ
c·y,

where ay = |{F (x) = y | x ∈ Fn
2}| for all y ∈ Zm

q . Putting S = 2−n/2
∑

c 6=0HFc(0)
we have

2n/2S =
∑

y∈Zm
q

ay
∑

c 6=0

ζc·y =
∑

y∈Zm
q

y 6=0

ay(−1) + a0(q
m − 1),

where in the last step we use that
∑

c 6=0 ζ
c·y = −1 for all y 6= 0.

With
∑

y∈Zm
q
ay = 2n we get

2n/2S = −
∑

y∈Zm
q

ay + 2tma0 = −2n + 2tma0,

hence
S = −2n/2 + 2tm−n/2a0.
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In the next step we show that S is an odd integer. First note that S is
rational since n is even. Put

ρk = |{c ∈ Zm
q , c 6= 0 : HFc(0) = 2n/2ζk}|.

Recall that by Proposition 6 all component functions Fc are regular. Hence
we have

∑q−1
k=0 ρk = qm − 1 and S =

∑q−1
k=0 ρkζ

k. Because S is rational, by
Lemma 5 we have

qm − 1 = ρ0 + ρ2t−1 + 2

2t−1−1
∑

k=1

ρk

and S = ρ0 − ρ2t−1 . Combining, we obtain that

S = 2ρ0 + 2

2t−1−1
∑

k=1

ρk − qm + 1

is an odd integer. Finally with

a0 = 2n/2−tm(S + 2n/2)

for some odd integer S, we see that n/2 ≥ tm.

In the usual representation of the classical examples of conventional vec-
torial bent functions, like Maiorana-McFarland and partial spread vectorial
bent functions from F2m × F2m to F2m , where m is at most n/2, one takes
advantage from the fact that the vectorial bent functions form vector spaces
isomorphic to F2m as a vector space over F2. This is different for vectorial
gbent functions, hence we cannot use the structure of the finite field in an
analogous way to obtain examples. In view of Theorem 11 we are mostly
interested in vectorial gbent functions from Fn

2 to Zm
2t with m = n/(2t).

We give a construction with generalized Dillon type gbent functions, which
guarantees the existence of such vectorial gbent functions.

Theorem 12. Let n,m, t be integers such that m = n/(2t), and let Us,
0 ≤ s ≤ 2n/2, be the 2n/2 + 1 elements of a spread of Vn. Consider a
bijection φ : {1, 2, . . . , 2n/2} → Zm

2t

φ(s) = (φ1(s), φ2(s), . . . , φm(s))T ,

and define fj : Vn → Z2t, 1 ≤ j ≤ m, by

fj(x) = φj(s) if x ∈ Us, 1 ≤ s ≤ 2n/2, and x 6= 0,

and fj(x) = 0 if x ∈ U0.
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The function F from Vn to Zm
2t given by

F (x) =











f1(x)
f2(x)
...

fm(x)











is a vectorial gbent function.

Proof. We have to show that every component function Fc(x) = c1f1(x) +
c2f2(x) + · · ·+ cmfm(x), c = (c1, c2, . . . , cm) 6= 0 ∈ Zm

2t , is a gbent function.

First observe that if x ∈ Us, 1 ≤ s ≤ 2n/2, and x 6= 0, then

Fc(x) =
m
∑

j=1

cjφj(s) = c · φ(s) =











c1
c2
...
cm











·











φ1(s)
φ2(s)

...
φm(s)











.

For x ∈ U0 we have Fc(x) = 0. For u ∈ Vn, we then obtain

HFc(u) =
2n/2
∑

s=1

∑

x∈Us
x 6=0

ζc·φ(s)(−1)〈u,x〉 +
∑

x∈U0

(−1)〈u,x〉

=

2n/2
∑

s=1

ζc·φ(s)
∑

x∈Us

(−1)〈u,x〉 −

2n/2
∑

s=1

ζc·φ(s) +
∑

x∈U0

(−1)〈u,x〉.

Since φ is a bijection, we have
∑2n/2

s=1 ζc·φ(s) = 0 for all nonzero c ∈ Zm
2t .

Consequently for u 6= 0 we get

HFc(u) =

{

2n/2 : u ∈ U⊥
0 ,

2n/2ζc·φ(s̃) : u ∈ U⊥
s̃ for some 1 ≤ s̃ ≤ 2n/2.

Again using that
∑2n/2

s=1 ζc·φ(s) = 0, we obtain HFc(0) = 2n/2, and the theo-
rem is shown.

Besides from applications in cryptography, one motivation for consider-
ing (vectorial) bent functions is their relation to objects in combinatorics.
For instance, a vectorial bent function from Vn to Fm

2 gives rise to a relative
difference set of Vn × Fm

2 . We conclude this section pointing out a relation
between relative difference sets and vectorial gbent functions as introduced
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in our in Definition 10. First we recall the definition of a relative difference
set. Let G be a group of order µν, let N be a subgroup of G of order ν and
let R be a subset of G of cardinality k. Then R is called a (µ, ν, k, λ)-relative
difference set of G relative to N , if every element g ∈ G \N can be repre-
sented in exactly λ ways as difference r1 − r2, r1, r2 ∈ R, and no nonzero
element of N has such a representation.

Relative difference sets can be described with characters as follows (see
for instance Section 2.4. in [14]).

Proposition 13. Let G be an (abelian) group of order µν and let N be a
subgroup of G of order ν. A subset R of G (with k elements) is an (µ, ν, k, λ)-
relative difference set of G relative to N if and only if for every character χ
of G

|χ(R)|2 =







k2 if χ = χ0,
k − λν if χ 6= χ0, but χ(g) = 1 for all g ∈ N,
k otherwise.

With this characterization of relative difference sets, the relation with
our vectorial gbent functions becomes transparent. Since it is the most
interesting case, we consider a vectorial gbent function from Vn to Fm

2t with
maximal possible m = n/(2t).

Theorem 14. Let q = 2t, and let F be a vectorial gbent function from Vn

to Zm
q , m = n/(2t). Then the set

R = {(x, F (x)) : x ∈ Vn}

is a (2n, 2n/2, 2n, 2n/2)-relative difference set in Vn×Zm
q relative to {0}×Zm

q .

Proof. The theorem essentially follows from Proposition 13 with definition
of vectorial gbent functions (it is the same argument as for the conventional
vectorial bent functions, where t = 1): Note that the group of characters of
Vn×Zm

q consists of the elements χu,c : (x, z) → (−1)〈u,x〉ζc·z, u ∈ Vn, c ∈ Zm
q .

Therefore
χu,c(R) =

∑

x∈Vn

(−1)〈u,x〉ic·F (x) = HFc(u).

(We include now also c = 0.) By the definition of a vectorial gbent function
we then have

|χu,c(R)|2 = |HFc(u)|
2 =







22n for χ0,0,
0 for χu,0, u 6= 0
2n otherwise.
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Hence by Proposition 13, the set R is a (2n, 2n/2, 2n, 2n/2)-relative difference,
relative to {0} × Zm

q .

Remark 15. Differently to the case of bent functions, for a gbent function
f ∈ GB2t

n the set {(x, f(x)) : x ∈ Vn} is in general not a relative difference
set (of Vn×Z2t relative to {0}×Z2t). For instance we may have c̃f = 0 for
a nonzero c̃ ∈ Z2t - f is then not vectorial (defined as in Definition 10 with
m = 1). The character sum that corresponds to χu,c̃ does then not attain
the required value. An example is the gbent function in [13, Theorem 8].
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[2] A. Çeşmelioğlu, W. Meidl, A. Pott, Vectorial bent functions and their
duals, manuscript.

[3] J.F. Dillon, Elementary Hadamard difference sets, Ph.D. dissertation,
University of Maryland, 1974.
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