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Abstract

Providing an efficient revocation mechanism for identity-based encryption (IBE) is very important
since a user’s credential (or private key) can be expired or revealed. Revocable IBE (RIBE) is an exten-
sion of IBE that provides an efficient revocation mechanism. Previous RIBE schemes essentially use the
complete subtree (CS) scheme of Naor, Naor and Lotspiech (CRYPTO 2001) for key revocation. In this
paper, we present a new technique for RIBE that uses the efficient subset difference (SD) scheme of Naor
et al. instead of using the CS scheme to improve the size of update keys. Following our new technique,
we first propose an efficient RIBE scheme in prime-order bilinear groups by combining the IBE scheme
of Boneh and Boyen and the SD scheme and prove its selective security under the standard assumption.
Our RIBE scheme is the first RIBE scheme in bilinear groups that has O(r) number of group elements in
an update key where r is the number of revoked users. Next, we also propose another RIBE scheme in
composite-order bilinear groups and prove its full security under static assumptions. Our RIBE schemes
also can be integrated with the layered subset difference (LSD) scheme of Halevy and Shamir (CRYPTO
2002) to reduce the size of a private key.
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1 Introduction

Identity-based encryption (IBE) is a new paradigm of public-key encryption (PKE) that uses the identity
string of a user for the public key of the user [5, 6, 40, 42]. IBE and its extensions like hierarchical IBE
(HIBE) [5, 12, 16], attribute-based encryption (ABE) [3, 14, 37], predicate encryption (PE) [8, 17, 21], and
functional encryption (FE) [7, 13] opened new applications of encryption systems such as the delegation of
decryption capability, access control in encrypted data, searches on encrypted data, and functional evaluation
on encrypted data. If an IBE scheme is used in real-world applications, an efficient revocation mechanism
for IBE that can handle dynamic credentials of users is needed since a user’s credential can be revealed or
expired. Revocable IBE (RIBE) is an extension of IBE that can handle the dynamic credentials of users by
providing an efficient revocation mechanism. An ideal revocation method in IBE is that a sender just creates
a ciphertext without worrying about the revocation of a receiver and only the receiver needs to check the
revocation of his credential to decrypt the ciphertext.

Boneh and Franklin [6] proposed the first RIBE scheme by representing an identity as ID‖T where ID
is the real identity and T is a current time, but it is inefficient and not scalable because all non-revoked users
should update their private keys from a trusted center by establishing secure channels. A scalable RIBE
scheme was introduced by Boldyreva, Goyal, and Kumar [4]. They defined the first formal definition of
RIBE and proposed a selectively secure RIBE scheme by combining the fuzzy IBE (FIBE) scheme of Sahai
and Waters [37] and the complete subtree (CS) scheme of Naor et al. [29]. In their RIBE scheme, each user
receives a (long-term) private key SKID for an identity ID from a trusted center where SKID is associated
with path nodes in a binary tree, and the center periodically broadcasts an update key UKT,R on current time
T for non-revoked users that are not in R where UKT,R is associated with minimum covering subsets in the
binary tree. If a user with SKID is not revoked in R on time T , then he can drive a (short-term) decryption key
DKID,T from SKID and UKT,R to decrypt a ciphertext CTID,T . After the work of Boldyreva et al., fully secure
RIBE schemes [26, 39], a revocable HIBE (RHIBE) scheme [38], and revocable-storage ABE (RS-ABE)
schemes [18, 36] were proposed.

Although efficient RIBE schemes and their extended schemes were proposed, the main design principle
of these constructions essentially follows that of Boldyreva et al. [4] that uses the CS scheme of Naor et
al. [29] for key revocation. The CS scheme is one instance of the general subset cover framework of Naor
et al. and there are other efficient subset cover schemes like the subset difference (SD) scheme [29] and the
layered subset difference (LSD) scheme [15]. Therefore, we ask the following natural question in this paper.

“Can we build an efficient RIBE scheme by using the SD scheme (or the LSD scheme) instead
of using the CS scheme?”

If it is possible, then the size of an update key can be reduced from O(r log(Nmax/r)) to O(r) group elements
by slightly increasing the size of a private key where Nmax is the maximum number of users and r is the
number of revoked users. Reducing the size of an update key is an important issue in RIBE since an update
key should be broadcasted to all users for each time period whereas a private key is given to a user at the
first time only.

1.1 Our Results

In this paper, we give the affirmative answer for the above question by presenting a new technique that
combines an IBE scheme and the SD scheme. The followings are our results:

New Technique for RIBE. We first present a new technique for RIBE that combines an IBE scheme and
the SD scheme instead of using the CS scheme. The CS scheme was easily integrated with an IBE scheme
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since an assigned key for a subset in the CS scheme is independent of each other [29]. However, it is
unclear how to integrate the SD scheme with an IBE scheme since an assigned key for a subset in the SD
scheme is dependent on other keys [29]. We use a random polynomial of degree one to solve the complex
key assignment problem in the SD scheme, and then integrate the SD scheme with an IBE scheme by
using the observation that the SD scheme is related with a single member revocation scheme which can be
implemented by a random polynomial of degree one. However, this idea does not directly lead to a secure
scheme because of collusion attacks. To provide the security against collusion attacks, we personalize the
private key components with an identity ID and constrain the usage of update key components by time T .
The technical details are discussed below in this section.

RIBE with Selective Security. Following our new technique for RIBE, we construct an RIBE scheme in
prime-order bilinear groups by combining the IBE scheme of Boneh and Boyen [5] and the SD scheme of
Naor et al. [29], and then we prove its security in the selective revocation list model under the standard
assumption. In our RIBE scheme, the number of group elements in the public parameters, a private key, an
update key, and a ciphertext is O(1), O(log2 Nmax), O(r), and O(1) respectively where Nmax is the maximum
number of users and r is the number of revoked users. Compared with the previous RIBE schemes [4,26,39]
that have O(r log(Nmax/r)) group elements in an update key, our RIBE scheme just has O(r) group elements
in an update key. If the LSD scheme of Halevy and Shamir [15] is used instead of the SD scheme, then
the number of group elements in a private key is reduced from O(log2 Nmax) to O(log1.5 Nmax). The detailed
comparison of RIBE schemes is given in Table 1.

RIBE with Full Security. Next, we propose another RIBE scheme in composite-order bilinear groups by
combining the IBE scheme of Lewko and Waters [25] and the SD scheme, and then we prove its security
in the full model under static assumptions. To prove the security in the full model, we use the dual system
encryption technique of Waters [25, 43]. However, the original dual system encryption technique that was
used to prove the security of IBE and HIBE is not directly applicable to an RIBE scheme since the adversary
of RIBE can request a private key for a challenge identity ID∗ and an update key for a challenge time T ∗

that were not allowed in the security model of IBE. Additionally, the complex key assignment of the SD
scheme introduces another difficulties in the proof of using the dual system encryption technique. To solve
these problems, we carefully redesign the semi-functional types of each key and hybrid games for the dual
system encryption.

1.2 Our Techniques

The CS scheme can be easily integrated with an IBE scheme to construct an RIBE scheme since it assigns a
random independent key for each subset in CS [4,26,39]. That is, the master key gα of RIBE is split into two
shares gγi and gα−γi to build a private key and an update key respectively where γi is a random independent
key for a subset Si, and these shares are easily reconstructed as gα = gγi ·gα−γi . In contrast, the SD scheme
cannot be easily integrated with an IBE scheme to construct an RIBE scheme since it assigns a dependent
key for each subset in SD by using a pseudo-random generator [29]. That is, if a dependent key generated by
a pseudo-random generator is raised to an exponent, then the dependency between group elements cannot be
computed without solving the discrete logarithm problem. In the SD scheme, a subset Si, j that is associated
with two nodes vi and v j of a binary tree is defined as the set of leaf nodes that belong to Ti \Tj where Ti is a
subtree rooted at vi and Tj is a subtree rooted at v j. To overcome the complex and dependent key assignment
of the SD scheme by using a pseudo-random generator, we use the observation that a subset Si, j in SD can be
interpreted as single member revocation. That is, if we define a group label GL as the set of subsets Si, j such
that vi is the same and the depth d j of v j is also the same, then the subset Si, j can be interpreted as this subset
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Table 1: Comparison of revocable identity-based encryption schemes

Scheme PP Size SK Size UK Size CT Size Decrypt Cost Model Assumption

BF [6] 1kp 1kp (Nmax− r)kp 2kp 1P RO, AD BDH

BGK [4] 5kp 2log(Nmax)kp 2r log(Nmax/r)kp 4kp 4P + 4E SE DBDH

LV [26] 2λkp 3log(Nmax)kp 3r log(Nmax/r)kp 5kp 3P + 7E AD mDBDH

SE [39] 2λkp 2log(Nmax)kp 2r log(Nmax/r)kp 4kp 3P + 6E AD DBDH

Ours (SD) 5kp log2(Nmax)kp 2rkp 4kp 3P + 10E SRL DBDH

Ours (SD) 6kc log2(Nmax)kc 2rkc 4kc 3P + 10E AD Static

Ours (LSD) 5kp log1.5(Nmax)kp 4rkp 4kp 3P + 10E SRL DBDH

Ours (LSD) 6kc log1.5(Nmax)kc 4rkc 4kc 3P + 10E AD Static

We let λ be a security parameter, Nmax be the number of maximum users, r be the number of revoked users,
kp(kc) be the element bit size of prime-order (composite-order) groups. For security model, we use symbols RO
for random oracle model, AD for adaptive model, SE for selective model, and SRL for selective revocation list
model. We also use symbols P for a pairing operation and E for an exponentiation.

Si, j is almost the same as GL except that one member node v j is excluded (or revoked). This observation was
implicitly made by Lee et al. [20] and they used this observation to construct a public-key trace and revoke
scheme by combining the SD scheme and a single-revocation encryption scheme in bilinear groups (without
using a pseudo-random generator). Unfortunately, the technique of Lee et al. cannot be used to construct
an RIBE scheme since two key shares should be reconstructed without using bilinear map operations in
RIBE. Alternatively, we employ the polynomial-based revocation scheme of Naor and Pinkas [31]. That is,
a revocation scheme that uses a random polynomial of degree one can be used to revoke a single user, and
the polynomial-based secret sharing scheme works well in exponents because of the linear reconstruction
property.

In the SD scheme, a collection S is defined as the set of subsets Si, j where vi and v j is a node in a tree
and v j is a descendant of vi. As mentioned before, each subset Si, j can be categorized as a group label and
one group label GL is defined as the set of subsets Si, j such that vi is the same and the depth d j of v j is the
same. To use the polynomial-based revocation scheme, we assign a random polynomial fGL(x) = aGLx+α

once to each group label where aGL is a random value and α is a fixed value for all group labels. In a group
label GL, each member L j that is associated with a node v j has a share g fGL(L j) where L j is the identifier
of the node v j. If one member L j′ is revoked, then his share g fGL(L j′ ) is revealed to all members. Thus
any member in the group label GL except the revoked member can reconstruct the secret gα by using the
Lagrange interpolation method since two points of a degree one polynomial are enough for reconstruction.
However, this simple method is insecure against collusion attacks since any two members can collude to
reconstruct the secret gα .

To provide the security against collusion attacks, the share of a member is personalized by using his
identity ID and the share of the revoked member is constrained by using revoked time T . That is, a per-
sonalized private key for a member L j is defined as g fGL(L j)H(ID)r1 ,gr1 where H is a hash function and
a time-constrained update key for a revoked member L j′ is defined as g fGL(L′j)H(T )r2 ,g−r2 . Thus a non-
revoked member in the group label can derive a decryption key as gαH(ID)r1H(T )r2 ,g−r1 ,g−r2 from his
personalized private key and the time-constrained update key. Note that if two revoked members collude,
then they only can derive gαH(ID)r1H(ID′)r2 ,g−r1 ,g−r2 that are not useful to decrypt a ciphertext. In the
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RIBE scheme, a private key for a user consists of many subsets and an update key for a time period also
consists of many subsets.

1.3 Related Work

Certificate Revocation in PKE. In PKE that uses public-key infrastructure (PKI), certificate revocation list
(CRL) and online certificate status protocol (OCSP) are traditional methods to revoke certificates of users.
However, these methods are inefficient in terms of transmission costs and computation costs since CRL
includes all serial numbers of revoked certificates and OCSP requires the generation of digital signature
for each queries. Furthermore, they also require for each client who uses a certificate to implement a path
validation module to check the validity of a digital signature in CRL or OCSP. A better solution named
certificate revocation system (CRS) was proposed by Micali [28] and it uses a hash-chain to check the
validity of the certificate. This method was improved by Naor and Nissim [30] and Aiello et al. [1]. Although
CRS improves the previous CRL and OCSP, these methods still require a sender to check the validity of a
certificate through a heavy infrastructure and this problem is the serious point of these methods. Gentry
[11] solved this problem by introducing certificate-based encryption (CBE) and proposed an efficient CBE
scheme in bilinear groups.

Revocation in IBE. As mentioned, an ideal revocation method for IBE is that a sender can create a ciphertext
as the same as that of IBE without worrying about the revocation of a receiver and only the receiver checks
the revocation of his key to decrypt the ciphertext. Boneh and Franklin [6] proposed the first IBE scheme
that supports the revocation capability, but their scheme is inefficient and not scalable since each user should
be connected to the center through a secure channel to receive an updated private key. A scalable and RIBE
scheme was proposed by Boldyreva et al. [4]. They constructed an RIBE scheme by combining the FIBE
scheme of Sahai and Waters [37] and the CS scheme, and then proved its selective security. After that, fully
secure RIBE schemes were proposed by Libert and Vergnaud [26] and Seo and Emura [39] where Seo and
Emura refined the security model of RIBE by considering the decryption key exposure attacks. Recently,
Park et al. [35] proposed an RIBE scheme with shorter private keys and update keys by using multilinear
maps, but the size of the public parameters is dependent to the number of all users. The design technique of
RIBE also can be applicable to the extensions of IBE, like HIBE, ABE, and PE. Boldyreva et al. [4] already
proposed a revocable ABE (R-ABE) scheme. Seo and Emura [38] proposed an RHIBE scheme by using
the HIBE scheme of Boneh and Boyen. For cloud storage, Sahai et al. [36] proposed RS-ABE schemes
that provide the key revocation and ciphertext update functionalities, and Lee et al. [18] proposed improved
RS-ABE and RS-PE schemes by introducing self-updatable encryption.

Revocation Encryption. Revocation encryption (RE) is a special type of broadcast encryption (BE) [10],
in which a sender creates a ciphertext by specifying the set of revoked users R instead of specifying the set
of receivers S and a receiver can decrypt the ciphertext if he is not included in R [24,29,31]. However, there
is a crucial difference between the security model of RE and that of RIBE. In RE, the collusion of non-
revoked users is not allowed since an adversary cannot request private keys for non-revoked users [24], but
the collusion of non-revoked users is allowed in RIBE since an adversary can request private keys for non-
revoked users except the challenge user ID∗ [4]. Although RE alone does not directly solve the revocation
problem of IBE, RE can be combined with IBE or its extensions to directly revoke the set of revoked users
by specifying a receiver and a revoked set R in a ciphertext [2, 19, 32, 41]. In this approach, a sender should
take care of the revocation of users.
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2 Preliminaries

In this section, we introduce the subset difference method and define the syntax and the security model of
revocable IBE.

2.1 Full Binary Tree

A full binary tree BT is a tree data structure where all internal nodes have two child nodes and all leaf
nodes have the same depth. Let Nmax be the number of leaf nodes in BT . The number of all nodes in BT
is 2Nmax−1 and for any 1 ≤ i ≤ 2Nmax−1 we denote by vi a node in BT . The depth di of a node vi is the
length of the path from the root node to the node. The root node is at depth zero. The depth of BT is the
length of the path from the root node to a leaf node. A level of BT is a set of all nodes at given depth. For
any node vi ∈ BT , Ti is defined as a subtree that is rooted at vi. For any two nodes vi,v j ∈ BT where v j is
a descendant of vi, Ti, j is defined as a subtree Ti−Tj, that is, all nodes that are descendants of vi but not v j.
For any node vi ∈ BT , Si is defined as the set of leaf nodes in Ti. Similarly, Si, j is defined as the set of leaf
nodes in Ti, j, that is, Si, j = Si \S j.

For any node vi ∈ BT , Li is defined as an identifier that is a fixed and unique string. The identifier of
each node in the tree is assigned as follows: Each edge in the tree is assigned with 0 or 1 depending on
whether the edge is connected to its left or right child node. The identifier Li ∈ {0,1}∗ of a node vi is defined
as the bitstring obtained by reading all the labels of edges in the path from the root node to the node vi. We
define Label(Si, j) as a function that uniquely maps a subset Si, j to identifiers (Li,L j) where Li and L j are
the identifiers of vi and v j respectively. We also define Depth(S j) as a function that returns the depth d j of
the node v j associated to S j.

For a full binary tree BT and a subset R of leaf nodes, ST (BT ,R) is defined as the Steiner Tree induced
by the set R and the root node, that is, the minimal subtree of BT that connects all the leaf nodes in R and
the root node. we simply denote ST (BT ,R) by ST (R).

2.2 Subset Difference Method

The subset difference (SD) method is a special instance of the subset cover framework of Naor, Naor, and
Lotspiech [29] that is a general methodology for revocation schemes. The well-known complete subtree
(CS) scheme is also one instance of the subset cover framework. The original subset cover framework
consists of a subset assignment part and a key assignment part. In this paper, we define the subset cover
framework by using the subset assignment part only. The formal definition is given as follows:

Definition 2.1 (Subset Cover). A subset cover (SC) scheme for the set N = {1, . . . ,Nmax} of users consists
of four PPT algorithms Setup, Assign, Cover, and Match, which are defined as follows:

Setup(Nmax). The setup algorithm takes as input the maximum number Nmax of users and outputs a collec-
tion S of subsets S1, . . . ,Sw where Si ⊆N .

Assign(S,u). The assigning algorithm takes as input the collection S and a user u ∈ N , and outputs a
private set PVu = {S j1 , . . . ,S jn} that is associated with the user u.

Cover(S,R). The covering algorithm takes as the collection S and a revoked set R ⊂ N of users, and
outputs a covering set CVR = {Si1 . . . ,Sim} that is a partition of the non-revoked users N \ R into
disjoint subsets Si1 , . . . ,Sim where N \R =

⋃m
k=1 Sik .
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Match(CVR,PVu). The matching algorithm takes as input a covering set CVR = {Si1 , . . . ,Sim} and a private
set PVu = {S j1 , . . . ,S jn} of a user u. It outputs (Sik ,S jk′ ) such that Sik ∈CVR, u ∈ Sik , and S jk′ ∈ PVu, or
it outputs ⊥.

The correctness of SC is defined as follows: For all S generated by Setup, all PVu generated by Assign, and
any R, it is required that:

• If u /∈ R, then Match(Cover(S,R),PVu) = (Sik ,S jk′ ) such that Sik ∈CVR and S jk′ ∈ PVu.

• If u ∈ R, then Match(Cover(S,R),PVu) =⊥.

Note that the exact conditions of the subsets outputted by the matching algorithm is defined by the specific
instance of the SC scheme.

As mentioned, the SD scheme is one instance of the SC scheme and it was proposed by Naor et al. [29]
as an improvement on the CS scheme. The SD scheme is described as follows:

SD.Setup(Nmax): This algorithm takes as input the maximum number Nmax of users. Let Nmax = 2n for
simplicity. It first sets a full binary tree BT of depth n. Each user is assigned to a different leaf node
in BT . The collection S of SD is the set of all subsets {Si, j} where vi,v j ∈ BT and v j is a descendant
of vi. It outputs the full binary tree BT .

SD.Assign(BT ,u): This algorithm takes as input the tree BT and a user u ∈ N . Let vu be the leaf node of
BT that is assigned to the user u. Let (vk0 ,vk1 , . . . ,vkn) be the path from the root node vk0 to the leaf
node vkn = vu. It first sets a private set PVu as an empty one. For all i, j ∈ {k0,k1, . . . ,kn} where v j is a
descendant of vi, it adds the subset Si, j defined by two nodes vi and v j in the path into PVu. It outputs
the private set PVu = {Si, j}.

SD.Cover(BT ,R): This algorithm takes as input the tree BT and a revoked set R of users. It first sets a
subtree T as ST (R), and then it builds a covering set CVR iteratively by removing nodes from T until
T consists of just a single node as follows:

1. It finds two leaf nodes vi and v j in T where the least-common-ancestor v of vi and v j does not
contain any other leaf nodes of T in its subtree. Let vl and vk be the two child nodes of v where
vi is a descendant of vl and v j is a descendant of vk. If there is only one leaf node left, it makes
vi = v j to the leaf node, v to be the root of T and vl = vk = v.

2. If vl 6= vi, then it adds the subset Sl,i to CVR; likewise, if vk 6= v j, it adds the subset Sk, j to CVR.

3. It removes from T all the descendants of v and makes v a leaf node.

It outputs the covering set CVR = {Si, j}.

SD.Match(CVR,PVu): This algorithm takes input as a covering set CVR = {Si, j} and a private set PVu =
{S′i, j}. It finds two subsets Si, j and S′i′, j′ such that Si, j ∈ CVR, S′i′, j′ ∈ PVu, and (vi = v′i)∧ (d j =
d j′)∧ (v j 6= v j′) where d j is the depth of v j. If it found two subsets, then it outputs (Si, j,S′i′, j′).
Otherwise, it outputs ⊥.

Lemma 2.1 ( [29]). Let Nmax be the number of leaf nodes in a full binary tree and r be the size of a revoked
set. In the SD scheme, the size of a private set is O(log2 Nmax) where the hidden constant is 1/2 and the size
of a covering set is at most 2r−1.
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Remark 1. The covering algorithm of the SD scheme is only defined for r ≥ 1 where r is the size of R.
One simple way to handle the case r = 0 is to define a new set R′ by adding a dummy user that is always
revoked since |R′| = r′ = r+ 1. In the SD scheme, the size of the covering set is at most 2r− 1, but it is
rough worst-case analysis and the size is always smaller than that of the CS scheme since a subset in the CS
scheme is defined by a subset in the SD scheme [29]. The better analysis of this covering set size is given
by Martin et al. [27].

The layered subset difference (LSD) scheme was proposed by Halevy and Shamir [15] to reduce the size
of a private set in the SD scheme. The SD scheme in a cryptosystem generally can be replaced by the LSD
scheme since the LSD scheme is a special case of the SD scheme.

Lemma 2.2 ( [15]). Let Nmax be the number of leaf nodes in a full binary tree and r be the size of a revoked
set. In the LSD scheme, the size of a private set is O(log1.5 Nmax) where the hidden constant is 1/2 and the
size of a covering set is at most 4r−2.

2.3 Revocable Identity-Based Encryption

Revocable IBE (RIBE) is an extension of IBE that can revoke a users if his credential is expired or revealed
[4]. In RIBE, a sender creates a ciphertext for a receiver identity ID and time T . A user first obtains a
(long-term) private key SKID for his identity ID from a center, and the center periodically broadcasts an
update key UKT,R for time T and a revoked identity set R. If a user ID is not revoked in R of the update key,
then he can derive a (short-term) decryption key DKID,T for his identity ID and the time T from SKID and
UKT,R and he can use this decryption key to decrypt the ciphertext. Note that the center does not encrypt an
update key for broadcasting. The syntax of RIBE is formally defined as follows:

Definition 2.2 (Revocable IBE). A revocable IBE (RIBE) scheme that is associated with the identity space
I, the time space T , and the message spaceM, consists of seven algorithms Setup, GenKey, UpdateKey,
DeriveKey, Encrypt, Decrypt, and Revoke, which are defined as follows:

Setup(1λ ,Nmax): The setup algorithm takes as input a security parameter 1λ and the maximum number
of users Nmax. It outputs a master key MK, an (empty) revocation list RL, a state ST , and public
parameters PP.

GenKey(ID,MK,ST,PP): The private key generation algorithm takes as input an identity ID ∈ I, the
master key MK, the state ST , and public parameters PP. It outputs a private key SKID for ID and an
updated state ST .

UpdateKey(T,RL,MK,ST,PP): The update key generation algorithm takes as input update time T ∈ T ,
the revocation list RL, the master key MK, the state ST , and the public parameters PP. It outputs an
update key UKT,R for T and R where R is a revoked identity set on the time T .

DeriveKey(SKID,UKT,R,PP): The decryption key derivation algorithm takes as input a private key SKID,
an update key UKT,R, and the public parameters PP. It outputs a decryption key DKID,T or ⊥.

Encrypt(ID,T,M,PP): The encryption algorithm takes as input an identity ID ∈ I, time T , a message
M ∈M, and the public parameters PP. It outputs a ciphertext CTID,T for ID and T .

Decrypt(CTID,T ,DKID′,T ′ ,PP): The decryption algorithm takes as input a ciphertext CTID,T , a decryption
key DKID′,T ′ , and the public parameters PP. It outputs an encrypted message M or ⊥.
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Revoke(ID,T,RL,ST ): The revocation algorithm takes as input an identity ID to be revoked and revocation
time T , a revocation list RL, and a state ST . It outputs an updated revocation list RL.

The correctness of RIBE is defined as follows: For all MK, RL, ST , and PP generated by Setup(1λ ,Nmax),
SKID generated by GenKey(ID,MK,ST,PP) for any ID, UKT,R generated by UpdateKey(T,RL,MK,ST,PP)
for any T and RL, CTIDc,Tc generated by Encrypt(IDc,Tc,M,PP) for any IDc, Tc, and M, it is required that

• If (ID /∈ R), then DeriveKey(SKID,UKT,R,PP) = DKID,T .

• If (ID ∈ R), then DeriveKey(SKID,UKT,R,PP) =⊥ with all but negligible probability.

• If (IDc = ID)∧ (Tc = T ), then Decrypt(CTIDc,Tc ,DKID,T ,PP) = M.

• If (IDc 6= ID)∨ (Tc 6= T ), then Decrypt(CTIDc,Tc ,DKID,T ,PP) =⊥ with all but negligible probability.

The security model of RIBE was introduced by Boldyreva et al. [4] and it was refined by Seo and
Emura [39] by considering the decryption key exposure attacks. In this paper, we follow the refined security
model of RIBE. In the security game of RIBE, an adversary adaptively request a private key for an identity
ID, an update key for time T and a current revocation list RL, a decryption key for an identity ID and time
T , and a revocation of an identity. In the challenge step, the adversary submits a challenge identity ID∗,
challenge time T ∗, and challenge messages M∗0 ,M

∗
1 with additional restrictions and he receives a challenge

ciphertext CT ∗ that is an encryption of a message M∗µ for a random bit µ . After that, the adversary may
request additional private key, update key, and decryption key queries, and finally he outputs a guess µ ′. If
his guess is correct, then he wins the game. The security of RIBE is formally defined as follows:

Definition 2.3 (Security). The security of RIBE under chosen plaintext attacks is defined in terms of the
following experiment between a challenger C and a PPT adversary A:

1. Setup: C generates a master key MK, a revocation list RL, a state ST , and public parameters PP by
running Setup(1λ ,Nmax). It keeps MK,RL,ST to itself and gives PP to A.

2. Phase 1: A adaptively request a polynomial number of queries. These queries are processed as
follows:

• If this is a private key query for an identity ID, then it gives the corresponding private key SKID

to A by running GenKey(ID,MK,ST,PP).

• If this is an update key query for time T , then it gives the corresponding update key UKT,R to A
by running UpdateKey(T,RL,MK,ST,PP).

• If this is a decryption key query for an identity ID and time T , then it gives the corresponding
decryption key DKID,T to A by running DeriveKey(SKID,UKT,R,PP).

• If this is a revocation query for an identity ID and revocation time T , then it updates the revo-
cation list RL by running Revoke(ID,T,RL,ST ) with the restriction: The revocation query for
time T cannot be queried if the update key query for the time T was already requested.

Note that we assume that the update key queries and the revocation queries are requested in non-
decreasing order of time.

3. Challenge: A submits a challenge identity ID∗, challenge time T ∗, and two challenge messages
M∗0 ,M

∗
1 with equal length with the following restrictions:
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• If a private key query for an identity ID such that ID = ID∗ was requested, then the identity ID∗

should be revoked at some time T such that T ≤ T ∗.

• The decryption key query for ID∗ and T ∗ was not requested.

C flips a random coin µ ∈{0,1} and gives the challenge ciphertext CT ∗ toA by running Encrypt(ID∗,
T ∗,M∗µ ,PP).

4. Phase 2: A may continue to request a polynomial number of additional queries subject to the same
restrictions as before.

5. Guess: Finally, A outputs a guess µ ′ ∈ {0,1}, and wins the game if µ = µ ′.

The advantage ofA is defined as AdvIND-CPA
RIBE,A (1λ ) =

∣∣Pr[µ = µ ′]− 1
2

∣∣ where the probability is taken over all
the randomness of the experiment. An RIBE scheme is fully secure under chosen plaintext attacks if for all
PPT adversary A, the advantage of A in the above experiment is negligible in the security parameter λ .

We can also define the selective revocation list security that is weaker than the previous full security of
RIBE. In the selective revocation list model, an adversary should submits a challenge identity ID∗, challenge
time T ∗, and a revocation identity set R∗ at the time T ∗ before the adversary receives public parameters. This
model was introduced by Boldyreva et al. [4] to prove the security of their revocable ABE scheme.

Definition 2.4 (Selective Revocation List Security). The selective revocation list security of RIBE under
chosen plaintext attacks is similar to the full security except that the adversaryA submits a challenge identity
ID∗, challenge time T ∗, and a revoked identity set R∗ on the time T ∗ before receiving public parameters. The
advantage of A is defined as AdvSRL-IND-CPA

RIBE,A (1λ ) =
∣∣Pr[µ = µ ′]− 1

2

∣∣ where the probability is taken over all
the randomness of the experiment. An RIBE scheme is secure in the selective revocation list model under
chosen plaintext attacks if for all PPT adversaryA, the advantage ofA in the above experiment is negligible
in the security parameter λ .

3 Revocable IBE with Selective Security

In this section, we propose an RIBE scheme in prime-order bilinear groups and prove its security in the
selective revocation list model under the standard assumption.

3.1 Bilinear Groups of Prime Order

Let G and GT be two multiplicative cyclic groups of same prime order p and g be a generator of G. The
bilinear map e : G×G→GT has the following properties:

1. Bilinearity: ∀u,v ∈G and ∀a,b ∈ Zp, e(ua,vb) = e(u,v)ab.

2. Non-degeneracy: ∃g such that e(g,g) has order p, that is, e(g,g) is a generator of GT .

We say that G is a bilinear group if the group operations in G and GT as well as the bilinear map e are all
efficiently computable. Furthermore, we assume that the description of G and GT includes generators of G
and GT respectively.
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3.2 Complexity Assumptions

Assumption 1 (Decisional Bilinear Diffie-Hellman, DBDH). Let (p,G,GT ,e) be a description of the bi-
linear group of prime order p. Let g be generators of subgroups G. The DBDH assumption is that if the
challenge tuple

D = ((p,G,GT ,e),g,ga,gb,gc) and Z,

are given, no PPT algorithm A can distinguish Z = Z0 = e(g,g)abc from Z = Z1 = e(g,g)d with more than a
negligible advantage. The advantage ofA is defined as AdvDBDH

A (1λ ) =
∣∣Pr[A(D,Z0) = 0]−Pr[A(D,Z1) =

0]
∣∣ where the probability is taken over random choices of a,b,c,d ∈ Zp.

3.3 Construction

Let ∆i,I be a Lagrange coefficient which is defined as ∆i,I(x) = ∏ j∈I, j 6=i
x− j
i− j for an index i ∈ Zp and a set of

indexes I in Zp. Our RIBE scheme is described as follows:

RIBE.Setup(1λ ,Nmax): This algorithm takes as input a security parameter 1λ and the maximum number
Nmax of users.

1. It first generates bilinear groups G,GT of prime order p of bit size Θ(λ ). Let g be a random
generator of G. It selects a random exponent α ∈ Zp and random elements u1,h1,u2,h2 ∈G. It
initializes a user list UL that contains a tuple (ID,u), and also initializes a function list FL that
contains a tuple (GL, fGL(x)) for a group label GL.

2. It obtains BT by running SD.Setup(Nmax). Let S be the collection of all subsets Si, j of BT . For
each Si, j ∈ S, it performs the following: It sets GL = Li‖d j by obtaining (Li,L j) = Label(Si, j)
and d j = Depth(S j). If (GL,∗) 6∈ FL, then it sets a random polynomial fGL(x) = aGLx+α by
selecting a random aGL ∈ Zp and saves (GL, fGL(x)) to FL.

3. It outputs a master key MK = (α,FL), an empty revocation list RL, a state ST = (BT ,UL), and
public parameters PP =

(
(p,G,GT ,e),g,u1,h1,u2,h2,Ω = e(g,g)α

)
.

RIBE.GenKey(ID,MK,ST,PP): This algorithm takes as input an identity ID ∈ I, the master key MK, the
state ST = (BT ,UL), and public parameters PP.

1. It assigns the identity ID to a leaf node vu in BT that is not yet assigned where u ∈ N is an
index that is assigned to ID. It saves (ID,u) to UL. Next, it obtains PVu = {Si, j} by running
SD.Assign(BT ,u).

2. For each Si, j ∈ PVu, it performs the following steps: It sets GL = Li‖d j by obtaining (Li,L j) =
Label(Si, j) and d j = Depth(S j), and then retrieves (GL, fGL(x)) from FL. Next, it selects a
random exponent r1 ∈ Zp and creates a personalized private key as

PSKID,Si, j =
(

K0 = g fGL(L j)(uID
1 h1)

r1 , K1 = g−r1
)
.

3. Finally, it outputs the updated state ST and a private key SKID =
(
PVu,

{
PSKID,Si, j

}
Si, j∈PVu

)
.

RIBE.UpdateKey(T,RL,MK,ST,PP): This algorithm takes as input time T , the revocation list RL, the
master key MK, the state ST = (BT ,UL), and public parameters PP.

11



1. It first defines the revoked set R of user identities on the time T from RL. That is, if there exists
(ID′,T ′) such that (ID′,T ′) ∈ RL for any T ′ ≤ T , then ID′ ∈ R. It also defines the revoked index
set RI ⊆N of the revoked identity set R by using UL. Next, it obtains CVRI = {Si, j} by running
SD.Cover(BT ,RI).

2. For each Si, j ∈CVR, it performs the following steps: It sets GL = Li‖d j by obtaining (Li,L j) =
Label(Si, j) and d j = Depth(S j), and then retrieves (GL, fGL(x)) from FL. Next, it selects a
random exponent r2 ∈ Zp and creates a time-constrained update key as

TUKT,Si, j =
(

U0 = g fGL(L j)(uT
2 h2)

r2 , U1 = g−r2
)
.

3. Finally, it outputs the updated state ST and an update key UKT,R =
(
CVRI,

{
TUKT,Si, j

}
Si, j∈CVRI

)
.

RIBE.DeriveKey(SKID,UKT,R,PP): This algorithm takes as input a private key SKID =(PVu,{PSKID,Si, j}),
an update key UKT,R = (CVRI,{TUKT,Si, j}), and the public parameters PP.

1. If ID 6∈ R, then it obtains (Si, j,Si′, j′) by running SD.Match(CVRI,PVu) such that Si, j ∈ CVR,
Si′, j′ ∈ PVu, and (Li = Li′)∧ (d j = d j′)∧ (L j 6= L j′) where (Li,L j) = Label(Si, j),(Li′ ,L′ j) =
Label(Si′, j′),d j = Depth(S j), and d j′ = Depth(S j′). Otherwise, it outputs ⊥.

2. It retrieves TUKT,Si, j = (U0,U1) from UKT,R and PSKID,Si′, j′ = (K0,K1) from SKID. Note that
TUKT,Si, j and PSKID,S′i′, j′

share the same fGL(x) for GL = Li‖d j since (Li = Li′)∧ (d j = d j′).
Next, it sets I = {L j,L j′} and calculates two Lagrange coefficients ∆L j,I(0) and ∆L j′ ,I(0) by
using the fact L j 6= L j′ . It chooses random exponents r′1,r

′
2 ∈ Zp and creates decryption key

components as

D0 = (K0)
∆L j′ ,I

(0)
(U0)

∆L j ,I(0) · (uID
1 h1)

r′1(uT
2 h2)

r′2 ,

D1 = (K1)
∆L j′ ,I

(0) ·g−r′1 , D2 = (U1)
∆L j ,I(0) ·g−r′2 .

3. Finally, it outputs a decryption key DKID,T =
(
D0,D1,D2

)
. Note that the components are formed

as D0 = gα(uID
1 h1)

r′′1 (uT
2 h2)

r′′2 ,D1 = g−r′′1 ,D2 = g−r′′2 since fGL(0) =α where r′′1 = r1∆L j′ ,I(0)+r′1
and r′′2 = r2∆L j,I(0)+ r′2.

RIBE.Encrypt(ID,T,M,PP): This algorithm takes as input an identity ID, time T , a message M, and the
public parameters PP. It first chooses a random exponent s∈Zp and outputs a ciphertext by implicitly
including ID and T as

CTID,T =
(

C = Ω
s ·M, C0 = gs, C1 = (uID

1 h1)
s, C2 = (uT

2 h2)
s
)
.

RIBE.Decrypt(CTID,T ,DKID′,T ′ ,PP): This algorithm takes as input a ciphertext CTID,T = (C,C0,C1,C2), a
decryption key DKID′,T ′ = (D0,D1,D2), and the public parameters PP. If (ID = ID′)∧ (T = T ′), then
it outputs the encrypted message M as M =C ·

(
∏

2
i=0 e(Ci,Di)

)−1. Otherwise, it outputs ⊥.

RIBE.Revoke(ID,T,RL,ST ): This algorithm takes as input an identity ID, revocation time T , the revoca-
tion list RL, and the state ST = (BT ,UL,FL). If (ID,∗) /∈UL, then it outputs ⊥ since the private key
of ID was not generated. Otherwise, it adds (ID,T ) to RL. It outputs the updated revocation list RL.

Remark 2. As noted in Remark 1, we can easily handle the case r = 0 by using a dummy revoked user.
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3.4 Correctness

Let SKID be a private key for an identity ID, and UKT,R be an update key for time T and a revoked identity set
R. If ID /∈ R, then two subsets (Si, j,Si′, j′) such that Si, j ∈CVRI , Si′, j′ ∈ PVu, and (Li = Li′)∧(d j = d j′)∧(L j 6=
L j′) can be obtained from the correctness of the SD scheme. A decryption key for ID and T can be derived
from PSKID,Si′, j′ = (K0,K1) and TUKT,Si, j = (U0,U1) as

D0 = (K0)
∆L j′ ,I

(0)
(U0)

∆L j ,I(0)(uID
1 h1)

r′1(uT
2 h2)

r′2

=
(
g fGL(L j′ )(uID

1 h1)
r1
)∆L j′ ,I

(0)(
g fGL(L j)(uT

2 h2)
r2
)∆L j ,I(0)(uID

1 h1)
r′1(uT

2 h2)
r′2

= g fGL(0)(uID
1 h1)

r1∆L j′ ,I
(0)+r′1(uT

2 h2)
r2∆L j ,I(0)+r′2 = gα(uID

1 h1)
r′′1 (uT

2 h2)
r′′2 ,

D1 = (K1)
∆L j′ ,I

(0)
g−r′1 = g

−r1∆L j′ ,I
(0)−r′1 = g−r′′1 ,

D2 = (U1)
∆L j ,I(0)g−r′2 = g−r2∆L j ,I(0)−r′2 = g−r′′2

since fGL(0) = fGL(L j′)∆L j′ ,I(0)+ fGL(L j)∆L j,I(0) = (aGLL j′+α)
−L j

L j′−L j
+(aGLL j +α)

−L j′
L j−L j′

= α and L j 6=
L j′ where r′′1 = r1∆L j′ ,I(0)+ r′1 and r′′2 = r2∆L j,I(0)+ r′2. If ID ∈ R, then there are no subsets (Si, j,Si′, j′) such
that Si, j ∈CVRI , Si′, j′ ∈ PVu, and (Li = Li′)∧ (d j = d j′)∧ (L j 6= L j′) from the correctness of the SD scheme.

Let CTID,T be a ciphertext for an identity ID and time T , and DKID′,T ′ be a decryption key for an identity
ID′ and time T ′. If (ID = ID′)∧ (T = T ′), then the decryption algorithm correctly computes a session key
by the following equation as

2

∏
i=0

e(Ci,Di) = e(gs,gα(uID
1 h1)

r′′1 (uT
2 h2)

r′′2 ) · e((uID
1 h1)

s,g−r′′1 ) · e((uT
2 h2)

s,g−r′′2 )

= e(g,g)αs = Ω
s.

3.5 Security Analysis

To prove the security of our RIBE scheme in the selective revocation list model, we use the partitioning
method that was widely used for the security proof of other IBE schemes [5, 6, 42]. In the security proof
of IBE that uses the partitioning method, a simulator divides the identity space into two partitions where
the simulator can generate a private key for an identity ID 6= ID∗ but he cannot generate a private key for
a challenge identity ID∗. However, the direct use of the partitioning method does not work in RIBE since
an adversary can request a private key for a challenge identity ID∗ and an update key for challenge time T ∗

that were not allowed in the security model of IBE. That is, the simulator that uses the partitioning method
of IBE cannot handle the private key for ID∗ and the update key for T ∗.

To overcome this difficulty of using the partitioning method, we use the fact that a random polynomial
f (x) of degree one such that f (0) = α can be determined by one fixed point (0,α) and another random point
(x̂, ŷ). That is, if the adversary requests a private key for ID∗ or an update key for T ∗, then the simulator
directly uses the values ŷ of the random point (x̂, ŷ) by implicitly defining f (x̂) = ŷ instead of using the
Lagrange interpolation method to calculate f (x′) for some x′ since the simulator cannot obtain an element
for f (0) = α by using the partitioning method. To generate a private key for ID∗, the simulator assigns
a random leaf node vu∗ to the identity ID∗ and creates each personalized private key for a subset Si, j in
PVu∗ by using a random point (x̂, ŷ) that implicitly defines a random polynomial fGL(x) for the group label
GL. To generate an update key for T ∗, the simulator obtains CVRI∗ from the given revocation identity set
R∗ and creates each time-constrained update key for a subset Si, j in CVRI∗ by using a random point (x̂, ŷ)
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that implicitly defines a random polynomial fGL(x) for the group label GL. Note that the simulation is only
possible in the selective revocation list model since R∗ is needed to generate the update key for T ∗.

However, the above proof idea is not enough to assure us the soundness of the proof. For the assurance,
we should show that a subset Si, j of the private key query for ID∗ and a subset Si, j′ of the update key query
for T ∗ should be the same member label L j = L j′ in a group label GL if they belong to the same group label
GL to use the above simulation technique that uses a random point (x̂, ŷ). At first, we have that each subset
in the private set PVu∗ for ID∗ belongs to different group labels since PVu∗ is associated with a path, and
each subset in the covering set CVRI∗ for T ∗ also belongs to different group labels since CVRI∗ is a partition.
If a subset Si, j of PVu∗ and a subset Si, j′ of CVRI∗ belong to the same group label GL, then v j = v j′ by the
correctness of the SD scheme since ID∗ ∈ R∗. Thus, two subsets Si, j and Si, j′ should be the same member
label L j = L j′ in the group label GL.

Theorem 3.1. The above RIBE scheme is secure in the selective revocation list model under chosen plaintext
attacks if the DBDH assumption holds. That is, for any PPT adversaryA, we have that AdvSRL-IND-CPA

RIBE,A (1λ )≤
AdvDBDH

B (1λ ).

Proof. Suppose there exists an adversary A that attacks the above RIBE scheme with a non-negligible
advantage. A simulator B that solves the DBDH assumption using A is given: a challenge tuple D =
((p,G,GT ,e),g,ga,gb,gc) and Z where Z = Z0 = e(g,g)abc or Z = Z1 ∈R GT . Then B that interacts with A
is described as follows:

Init: A initially submits a challenge identity ID∗, a challenge time T ∗, and a revoked identity set R∗ on the
time T ∗.
Setup: B implicitly sets α = ab and proceeds as follows:

1. It first obtains BT by running SD.Setup(Nmax). It initializes UL and FL as an empty one respectively.
It assigns ID∗ to a random index u∗ and saves (ID∗,u∗) to UL. For each ID ∈ R∗ \ {ID∗}, it assigns
ID to a random index u such that (∗,u) /∈UL and saves (ID,u) to UL. From R∗, it also defines the
revoked index set RI∗ by using UL.

2. It obtains PVu∗ and CVRI∗ by running SD.Assign(BT ,u∗) and SD.Cover(BT ,RI∗) respectively. If
ID∗ ∈R∗, then it sets FixedSubset(ID∗,R∗)=PVu∗∪CVRI∗ . Otherwise, it sets FixedSubset(ID∗,R∗)=
CVRI∗ . It sets the function list FL as follows:

(a) For each Si, j ∈FixedSubset(ID∗,R∗), it selects a random value ŷ∈Zp and saves (GL=Li‖d j,(x̂=
L j, ŷ)) to FL where (Li,L j) = Label(Si, j) and d j = Depth(S j).

(b) For each Si, j ∈ S \FixedSubset(ID∗,R∗), it selects random values x̂, ŷ ∈ Zp and saves (GL =
Li‖d j,(x̂, ŷ)) to FL if (GL = Li‖d j,∗) /∈ FL where (Li,L j) = Label(Si, j) and d j = Depth(S j).

Note that fGL(x) = aGLx+α for some aGL ∈ Zp is implicitly defined by two points (0,α) and (x̂, ŷ)
by using the Lagrange interpolation method. By defining the set FixedSubset(ID∗,R∗) at the setup
phase, we can handle a private key for ID∗ and an update key for T ∗ without using the partitioning
method. That is, we directly use the fixed point (x̂ = L j, ŷ) to generate the private key for ID∗ or the
update key for T ∗.

3. It sets RL as an empty one and sets ST = (BT ,UL). It selects random exponents h′0,h
′
1 ∈ Zp and

publishes public parameters PP as

g, u1 = gagu′1 ,h1 = (ga)−ID∗gh′1 , u2 = gagu′2 ,h2 = (ga)−T ∗gh′2 , Ω = e(ga,gb).
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Phase 1: A adaptively requests a polynomial number of private key, update key, and decryption key queries.
If this is a private key query for an identity ID, then B proceeds as follows:

• Case ID 6= ID∗: It performs the following steps:

1. It first selects a random exponent r′1 ∈ Zp and builds temporal private key components for the
point (0,α) as A0 = (gb)−(u

′
1ID+h′1)/(ID−ID∗)(uID

1 h1)
r′1 , A1 = (gb)1/(ID−ID∗)g−r′1 .

2. If (ID,∗) ∈ UL, then it loads (ID,u) from UL. Otherwise, it selects a random index u such
that (u 6= u∗)∧ ((∗,u) /∈UL) and saves (ID,u) to UL. Next, it obtains PVu = {Si, j} by running
SD.Assign(BT ,u).

3. For each Si, j ∈ PVu, it retrieves (GL = Li‖d j,(x̂, ŷ)) from FL and performs the following:

– Case Si, j ∈ FixedSubset(ID∗,R∗): Recall that x̂ = L j from the setup phase. It selects
a random exponent r1 ∈ Zp and builds a personalized private key by implicitly setting
fGL(L j) = ŷ as

PSKID,Si, j =
(

K0 = gŷ(uID
1 h1)

r1 , K1 = g−r1
)
.

– Case Si, j /∈ FixedSubset(ID∗,R∗): Recall that x̂ 6= L j since x̂ is a random value from the
setup phase. It sets I = {0, x̂} and calculates two Lagrange coefficients ∆0,I(L j) and ∆x̂,I(L j).
Next, it selects a random exponents r′′1 ∈ Zp and builds a personalized private key as

PSKID,Si, j =
(

K0 = (A0)
∆0,I(L j)(gŷ)∆x̂,I(L j) · (uID

1 h1)
r′′1 , K1 = (A1)

∆0,I(L j) ·g−r′′1
)
.

4. Finally, it creates a private key SKID =
(
PVu,

{
PSKID,Si, j

}
Si, j∈PVu

)
.

• Case ID = ID∗: In this case, we have ID∗ ∈ R∗. It performs the following steps:

1. It loads (ID∗,u∗) from UL where u∗ is the pre-assigned index for ID∗. Next, it obtains PVu∗ =
{Si, j} by running SD.Assign(BT ,u∗).

2. For each Si, j ∈ PVu∗ , it retrieves (GL = Li‖d j,(x̂, ŷ)) from FL and performs the following steps:
Recall that x̂ = L j from the setup phase. It selects a random exponent r1 ∈ Zp and builds a
personalized private key by implicitly setting fGL(L j) = ŷ as

PSKID∗,Si, j =
(

K0 = gŷ(uID
1 h1)

r1 , K1 = g−r1
)
.

3. Finally, it creates a private key SKID∗ =
(
PVu∗ ,

{
PSKID∗,Si, j

}
Si, j∈PVu∗

)
.

If this is an update key query for time T , then B proceeds as follows:

• Case T 6= T ∗: It performs the following steps.

1. It first selects a random exponent r′2 ∈ Zp and builds temporal update key components for the
point (0,α) as B0 = (gb)−(u

′
2T+h′2)/(T−T ∗)(uT

2 h2)
r′2 , B1 = (gb)1/(T−T ∗)g−r′2 .

2. It defines the revoked identity set R on the time T and the revoked index set RI of R. Next, it
obtains CVRI = {Si, j} by running SD.Cover(BT ,RI).

3. For each Si, j ∈CVRI , it retrieves (GL = Li‖d j,(x̂, ŷ)) from FL and performs the following:
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– Case Si, j ∈ FixedSubset(ID∗,R∗): It selects a random exponent r2 ∈ Zp and creates a time-
constrained update key by implicitly setting fGL(L j) = ŷ as

TUKT,Si, j =
(

U0 = gy j(uT
2 h2)

r2 , U1 = g−r2
)
.

– Case Si, j ∈ FixedSubset(ID∗,R∗): It sets I = {0, x̂} and calculates two Lagrange coef-
ficients ∆0,I(L j) and ∆ẑ,I(L j). Next, it selects a random exponent r′′2 ∈ Zp and builds a
time-constrained update key as

TUKT,Si, j =
(

U0 = (B0)
∆0,I(L j)(gŷ)∆x̂,I(L j)(uT

2 h2)
r′′2 , U1 = (B1)

∆0,I(L j)g−r′′2
)
.

4. Finally, it creates an update key UKT,R =
(
CVRI,

{
TUKT,Si, j

}
Si, j∈CVRI

)
.

• Case T = T ∗: In this case, we have R = R∗. It performs the following steps:

1. It first defines the revoked identity set R on the time T and the revoked index set RI of R. Next,
it obtains CVRI∗ = {Si, j} by running SD.Cover(BT ,RI∗).

2. For each Si, j ∈CVRI∗ , it performs the following steps: It sets GL= Li‖d j and retrieves (GL,(x̂, ŷ))
from FL. Next, it selects a random exponent r2 ∈ Zp and builds a time-constrained update key
by implicitly setting fGL(L j) = ŷ as

TUKT ∗,Si, j =
(

U0 = gŷ(uT ∗
2 h2)

r2 , U1 = g−r2
)
.

3. Finally, it creates an update key UKT ∗,R∗ =
(
CVRI∗ ,

{
TUKT ∗,Si, j)

}
Si, j∈CVRI∗

)
.

If this is a decryption key query for an identity ID and a time T , then B proceeds as follows:

• Case ID 6= ID∗: If (ID,∗) /∈ UL, then it selects a random index u such that (∗,u) /∈ UL and saves
(ID,u) to UL. It selects random exponents r′1,r2 ∈ Zp and creates a decryption key DKID,T by implic-
itly setting r1 =−b/(ID− ID∗)+ r′1 as

D0 = (gb)−(u
′
1ID+h′1)/(ID−ID∗)(uID

1 h1)
r′1(uT

2 h2)
r2 , D1 = (gb)1/(ID−ID∗)g−r′1 , D2 = g−r2 .

• Case ID = ID∗: In this case, we have T 6= T ∗ from the restriction of Definition 2.4. It selects random
exponents r1,r′2 ∈ Zp and creates a decryption key DKID,T implicitly setting r2 = −b/(T −T ∗)+ r′2
as

D0 = (uID
1 h1)

r1(gb)−(u
′
2T+h′2)/(T−T ∗)(uT

2 h2)
r′2 , D1 = g−r1 , D2 = (gb)1/(T−T ∗)g−r′2 .

If this is a revocation query for an identity ID and time T , then B updates RL by running RIBE.Revoke(ID,
T,RL,ST ).

Challenge: A submits two challenge messages M∗0 ,M
∗
1 . B chooses a random bit µ ∈ {0,1} and creates the

challenge ciphertext CT ∗ by implicitly setting s = c as

C = Z ·M∗µ , C0 = gc, C1 = (gc)u′1ID∗+h′1 , C2 = (gc)u′2T ∗+h′2 .

Phase 2: Same as Phase 1.
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Guess: Finally, A outputs a guess µ ′ ∈ {0,1}. B outputs 0 if µ = µ ′ or 1 otherwise.

To finish the proof, we first show that the simulation is correct. The public parameters is correct since
random exponents u′1,h

′
1,u
′
2,h
′
2 ∈ Zp are chosen. We show that the private keys are correct. In case of

ID 6= ID∗, we have that a personalized private key for Si, j such that Si, j /∈ FixedSubset(ID∗,R∗) is correctly
distributed from the setting r1 = (−b/(ID− ID∗)+ r′1)∆0,I(L j)+ r′′1 as

K0 = g fGL(L j)(uID
1 h1)

r1 = gα∆0,I(L j)+ŷ∆x̂,I(L j)(uID
1 h1)

r̃1∆0,I(L j)+r′′1

=
(
gα(uID

1 h1)
r̃1
)∆0,I(L j)gŷ∆x̂,I(L j)(uID

1 h1)
r′′1

=
(
gab((ga)ID−ID∗gu′1ID+h′1)−b/(ID−ID∗)+r′1

)∆0,I(L j)gŷ∆x̂,I(x j)(uID
1 h1)

r′′1

=
(
(gb)−(u

′
1ID+h′1)/(ID−ID∗)(uID

1 h1)
r′1
)∆0,I(L j)gŷ∆x̂,I(L j)(uID

1 h1)
r′′1 ,

K1 = g−r1 = g(b/(ID−ID∗)−r′1)∆0,I(L j)−r′′1 =
(
(gb)1/(ID−ID∗)g−r′1

)∆0,I(L j)g−r′′1 .

In case of ID = ID∗, we have that a personalized private key for Si, j is correctly distributed from the setting
L j = x̂ and fGL(x̂) = ŷ as

K0 = g fGL(L j)(uID
1 h1)

r1 = gŷ(uID
1 h1)

r1 , K1 = g−r1 .

Next, we show that the update keys are correct. In case of T 6= T ∗, we have that a time-constrained update
key for Si, j such that Si, j /∈ FixedSubset(ID∗,R∗) is correctly distributed from the setting r2 = (−b/(T −
T ∗)+ r′2)∆0,I(L j)+ r′′2 as

U0 = g fGL(L j)(uT
2 h2)

r2 = gα∆0,I(L j)+ŷ∆x̂,I(L j)(uT
2 h2)

r̃2∆0,I(L j)+r′′2

=
(
gα(uT

2 h2)
r̃2
)∆0,I(L j)gŷ∆x̂,I(L j)(uT

2 h2)
r′′2

=
(
gab((ga)T−T ∗gu′2T+h′2)−b/(T−T ∗)+r′2

)∆0,I(L j)gŷ∆x̂,I(L j)(uT
2 h2)

r′′2

=
(
(gb)−(u

′
2T+h′2)/(T−T ∗)(uT

2 h2)
r′2
)∆0,I(L j)gŷ∆x̂,I(L j)(uT

2 h2)
r′′2 ,

U1 = g−r2 = g(b/(T−T ∗)−r′2)∆0,I(L j)−r′′2 =
(
(gb)1/(T−T ∗)g−r′2

)∆0,I(L j)g−r′′2 .

In case of T = T ∗, we have that a time-constrained update key for Si, j is correctly distributed from the setting
L j = x̂ and fGL(x̂) = ŷ as

U0 = g fGL(L j)(uT
2 h2)

r2 = gŷ(uT
2 h2)

r2 , U1 = g−r2 .

We show that the decryption keys are correct. In case of ID 6= ID∗, the decryption key is correctly
distributed by setting r1 =−b/(ID− ID∗)+ r′1 as

D0 = gα(uID
1 h1)

r1(uT
2 h2)

r2 = gab((ga)ID−ID∗gu′1ID+h′1)−b/(ID−ID∗)+r′1(uT
2 h2)

r2

= (gb)−(u
′
1ID+h′1)/(ID−ID∗)(uID

1 h1)
r′1(uT

2 h2)
r2 ,

D1 = g−r1 = gb/(ID−ID∗)−r′1 = (gb)1/(ID−ID∗)g−r′1 .

In case of ID = ID∗, the decryption key is correctly distributed by setting r2 =−b/(T −T ∗)+ r′2 as

D0 = gα(uID
1 h1)

r1(uT
2 h2)

r2 = gab(uID
1 h1)

r1((ga)T−T ∗gu′2T+h′2)−b/(T−T ∗)+r′2

= (uID
1 h1)

r1(gb)−(u
′
2T+h′2)/(T−T ∗)(uT

2 h2)
r′2 ,

D2 = g−r2 = gb/(T−T ∗)−r′2 = (gb)1/(T−T ∗)g−r′2 .
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Finally, we show that the challenge ciphertext is correct. If Z = Z0 = e(g,g)abc is given, then the chal-
lenge ciphertext is correctly distributed as

C = Ω
s = e(g,g)αs = e(g,g)abc, C0 = gs = gc,

C1 = (uID∗
1 h1)

s = ((ga)ID∗−ID∗gu′1ID∗+h′1)s = (gc)u′1ID∗+h′1 ,

C2 = (uT ∗
2 h2)

s = ((ga)T ∗−T ∗gu′2T ∗+h′2)s = (gc)u′2T ∗+h′2 .

Otherwise, the component C of the challenge ciphertext is independent of δ in the A’s view since Z1 is a
random element in GT .

Let η be a random bit for Zη . From the above simulation, we have Pr[µ = µ ′|η = 0] = 1
2 +AdvSRL-IND-CPA

RIBE,A (1λ )

since the distribution of the simulation is correct, and we also have Pr[µ = µ ′|η = 1] = 1
2 since µ is com-

pletely hidden to A. Therefore we can obtain the following equation

AdvDBDH
B (1λ ) =

∣∣Pr[B(D,Z0) = 0]−Pr[B(D,Z1) = 0]
∣∣= ∣∣Pr[µ = µ

′|η = 0]
∣∣− ∣∣Pr[µ = µ

′|η = 1]
∣∣

=
1
2
+AdvSRL-IND-CPA

RIBE,A (1λ )− 1
2
= AdvSRL-IND-CPA

RIBE,A (1λ ).

This completes our proof.

3.6 Discussions

Efficiency. In our RIBE scheme that employs the SD scheme, the public parameters, a private key, an
update key, and a ciphertext consist of O(1),O(log2 Nmax),O(r), and O(1) number of group elements re-
spectively where Nmax is the maximum number of users and r is the number of revoked users in an update
key. Compared with the previous RIBE scheme that employs the CS scheme that has O(logNmax) number
of group elements in a private key and O(r log(Nmax/r)) number of group elements in an update key, our
RIBE scheme can reduce the number of group elements in an update key by increasing the number of group
elements in a private key. If we use the LSD scheme of Halevy and Shamir [15] instead of the SD scheme,
then we can reduce the number of group element in a private key to O(log1.5 Nmax).

Removing Stored Polynomials. The setup algorithm of our RIBE scheme should maintain the function
list FL that stores a random polynomial f (x) of degree one for each group label in a tree. If Nmax is the
maximum number of users in the system, then the maximum number of group labels is O(Nmax logNmax)
since a group label is defined by a node vi that is not a leaf node in the tree and a depth d j in the tree. A
pseudo-random function PRF can be used to remove FL. That is, the master key MK consists of a random
exponent α and a seed z for PRF, and a random polynomial fGL(x) for a group label can be defined as
fGL(x) = aGLx+α where GL is a group label and aGL = PRFz(GL). The security of this modified scheme
also holds from the security of the pseudo-random function.

Supporting an Exponential Number of Users. Our RIBE scheme takes the maximum number of users
Nmax as an input and assigns each user to a leaf node of a binary tree with depth logNmax. To support an
exponential number of users, a binary tree with depth 2λ can be used where λ is a security parameter and
the bit size of an identity is 2λ . Additionally, a random function fGL(x) can be deterministically generated
by using a pseudo-random function PRF instead of keeping a function list FL. Furthermore, if a user is
assigned to a leaf node of a tree such that the label L of the leaf node is equal to the identity string ID, then
the user list UL is not needed.

Layered Subset Difference. Compared with the previous RIBE scheme that employs the CS scheme,
our RIBE scheme that uses the SD scheme reduce the number of group elements in update keys from
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O(r log(Nmax/r)) to O(r), but it increases the number of group elements in private keys from O(logNmax)
to O(log2 Nmax). To reduce the size of private keys in RIBE, we can use the layered subset difference (LSD)
scheme of Halevy and Shamir [15]. In the LSD scheme, the number of subsets in a private set PVu is
O(log1.5 Nmax) and the number of subsets in a covering set CVR is still O(r). Our RIBE scheme also can
employ the LSD scheme since the LSD scheme is a special case of the SD scheme. The security proof of
this RIBE scheme that uses the LSD scheme also holds.

Comparison with the RIBE scheme of Boldyreva et al. Compared with the previous RIBE schemes, our
RIBE scheme and the RIBE scheme of Boldyreva et al. [4] have the similarity of using a random polynomial
of degree one. However, the purpose of using a random polynomial is quite different between two schemes.
That is, we use a random polynomial of degree one for single member revocation to integrate it with the SD
scheme whereas they use a degree one polynomial for the FIBE scheme of Sahai and Waters [37].

Chosen-Ciphertext Security. The proposed RIBE scheme only provides the indistinguishability under
chosen-plaintext attacks (IND-CPA). To provide the stronger indistinguishability under chosen-ciphertext
attacks (IND-CCA) where an adversary can request decryption queries, we can use the general transforma-
tion of Canetti, Halevi, and Katz [9] since our RIBE scheme can be easily modified to support the HIBE
scheme with 3-level of Boneh and Boyen [5]. That is, we can use the additional level of HIBE to provide
the integrity of ciphertexts by using an one-time signature scheme. The proof of IND-CCA security easily
follows since the decryption queries can be easily simulated by the private key delegation capability of the
HIBE scheme.

Achieving Full Security. The security of our RIBE scheme is only proven in the selective revocation list
model that is weaker than the well-known selective model since the revocation identity set R∗ should be
additionally given. The previous RIBE schemes that employ the CS scheme were already proven in the full
model by using a fully secure IBE scheme since the assigned key of a subset in the CS scheme is independent
with each other [26, 39]. However, it is not easy to prove the full security of our RIBE scheme by using a
fully secure IBE scheme and a partitioning method since the assigned key of a subset in the SD scheme is
dependent of each member in a group label. In Section 4, we show that our RIBE scheme in composite-
order bilinear groups can be proven in the full model if we use the dual system encryption technique of
Waters [25, 43] instead of using the partitioning method.

4 Revocable IBE with Full Security

In this section, we propose an RIBE scheme in composite-order bilinear groups and prove its full security
under static assumptions.

4.1 Bilinear Groups of Composite Order

Let N = p1 p2 p3 where p1, p2, and p3 are distinct prime numbers. Let G and GT be two multiplicative cyclic
groups of same composite order N and g be a generator of G. The bilinear map e : G×G→ GT has the
following properties:

1. Bilinearity: ∀u,v ∈G and ∀a,b ∈ ZN , e(ua,vb) = e(u,v)ab.

2. Non-degeneracy: ∃g such that e(g,g) has order N, that is, e(g,g) is a generator of GT .

We say that G is a bilinear group if the group operations in G and GT as well as the bilinear map e are
all efficiently computable. Furthermore, we assume that the description of G and GT includes generators
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of G and GT respectively. We use the notation Gpi to denote the subgroups of order pi of G respectively.
Similarly, we use the notation GT,pi to denote the subgroups of order pi of GT respectively.

4.2 Complexity Assumptions

We present three static assumptions that were introduced by Lewko and Waters [25].

Assumption 2 (Subgroup Decision). Let (N,G,GT ,e) be a description of the bilinear group of composite
order N = p1 p2 p3. Let gp1 ,gp2 ,gp3 be generators of subgroups Gp1 ,Gp2 ,Gp3 respectively. The Assumption
is that if the challenge tuple

D = ((N,G,GT ,e),gp1 ,gp3) and Z,

are given, no PPT algorithmA can distinguish Z = Z0 = X1 from Z = Z1 = X1R1 with more than a negligible
advantage. The advantage of A is defined as AdvSD

A (1λ ) =
∣∣Pr[A(D,Z0) = 0]−Pr[A(D,Z1) = 0]

∣∣ where
the probability is taken over random choices of X1 ∈Gp1 and R1 ∈Gp2 .

Assumption 3 (General Subgroup Decision). Let (N,G,GT ,e) be a description of the bilinear group of
composite order N = p1 p2 p3. Let gp1 ,gp2 ,gp3 be generators of subgroups Gp1 ,Gp2 ,Gp3 respectively. The
Assumption is that if the challenge tuple

D = ((N,G,GT ,e),gp1 ,gp3 ,X1R1,R2Y1) and Z,

are given, no PPT algorithm A can distinguish Z = Z0 = X2Y2 from Z = Z1 = X2R3Y2 with more than a
negligible advantage. The advantage of B is defined as AdvGSD

A (1λ ) =
∣∣Pr[A(D,Z0) = 0]−Pr[A(D,Z1) =

0]
∣∣ where the probability is taken over random choices of X1,X2 ∈Gp1 , R1,R2,R3 ∈Gp2 , and Y1,Y2 ∈Gp3 .

Assumption 4 (Composite Diffie-Hellman). Let (N,G,GT ,e) be a description of the bilinear group of
composite order N = p1 p2 p3. Let gp1 ,gp2 ,gp3 be generators of subgroups Gp1 ,Gp2 ,Gp3 respectively. The
Assumption is that if the challenge tuple

D = ((N,G,GT ,e),gp1 ,gp2 ,gp3 ,g
a
p1

R1,gb
p1

R2) and Z,

are given, no PPT algorithm A can distinguish Z = Z0 = e(gp1 ,gp1)
ab from Z = Z1 = e(gp1 ,gp1)

c with
more than a negligible advantage. The advantage of A is defined as AdvComDH

A (1λ ) =
∣∣Pr[A(D,Z0) =

0]−Pr[A(D,Z1) = 0]
∣∣ where the probability is taken over random choices of a,b,c ∈ ZN , and R1,R2 ∈Gp2 .

4.3 Construction

Let ∆i,I be a Lagrange coefficient which is defined as ∆i,I(x) = ∏ j∈I, j 6=i
x− j
i− j for an index i ∈ ZN and a set of

indexes I in ZN . Our RIBE scheme is described as follows:

RIBE.Setup(1λ ,Nmax): This algorithm takes as input a security parameter 1λ and the maximum number
Nmax of users.

1. It first generates a bilinear group G of composite order N = p1 p2 p3 where p1, p2, and p3 are
random primes. Let g1 be a random generator of Gp1 . It selects a random exponent α ∈ ZN and
random elements u1,h1,u2,h2 ∈ Gp1 , Y ∈ Gp3 . It initializes a user list UL that contains a tuple
(ID,u), and also initializes a function list FL that contains a tuple (GL, fGL(x)) for a group label
GL.
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2. It obtains BT by running SD.Setup(Nmax). Let S be the collection of all subsets Si, j of BT .
For each Si, j ∈ S, it performs the following steps: It sets GL = Li‖d j by obtaining (Li,L j) =
Label(Si, j) and d j = Depth(S j). If (GL,∗) /∈ FL, then it sets a random polynomial fGL(x) =
aGLx+α by selecting a random aGL ∈ ZN and saves (GL, fGL(x)) to FL.

3. It outputs a master key MK = (α,FL), an empty revocation list RL, a state ST = (BT ,UL), and
public parameters PP =

(
(N,G,GT ,e),g = g1,Y,u1,h1,u2,h2,Ω = e(g,g)α

)
.

RIBE.GenKey(ID,MK,ST,PP): This algorithm takes as input an identity ID ∈ I, the master key MK, the
state ST = (BT ,UL), and public parameters PP.

1. It first randomly assigns the identity ID to a leaf node vu in BT that is not yet assigned where
u∈N is an index assigned to ID. It saves (ID,u) to UL. Next, it obtains PVu = {Si, j} by running
SD.Assign(BT ,u).

2. For each Si, j ∈ PVu, it performs the following steps: It sets GL = Li‖d j by obtaining (Li,L j) =
Label(Si, j) and d j = Depth(S j), and then retrieves (GL, fGL(x)) from FL. Next, it selects ran-
dom r1 ∈ ZN , Y0,Y1 ∈Gp3 and creates a personalized private key as

PSKID,Si, j =
(

K0 = g fGL(L j)(uID
1 h1)

r1Y0, K1 = g−r1Y1

)
.

3. Finally, it outputs the state ST and a private key SKID =
(
PVu,

{
PSKID,Si, j

}
Si, j∈PVu

)
.

RIBE.UpdateKey(T,RL,MK,ST,PP): This algorithm takes as input time T , the revocation list RL, the
master key MK, the state ST = (BT ,UL,FL), and public parameters PP.

1. It first defines the revoked set R of user identities on the time T from RL. That is, if there exists
(ID′,T ′) such that (ID′,T ′) ∈ RL for any T ′ ≤ T , then ID′ ∈ R. It also defines the revoked index
set RI ⊆N of the revoked identity set R by using UL. Next, it obtains CVRI = {Si, j} by running
SD.Cover(BT ,RI).

2. For each Si, j ∈CVR, it performs the following steps: It sets GL = Li‖d j by obtaining (Li,L j) =
Label(Si, j) and d j = Depth(S j), and then retrieves (GL, fGL(x)) from FL. Next, it selects ran-
dom r2 ∈ ZN , Y0,Y1 ∈Gp3 and creates a time-constrained update key as

TUKT,Si, j =
(

U0 = g fGL(L j)(uT
2 h2)

r2Y0, U1 = g−r2Y1

)
.

3. Finally, it outputs the state ST and an update key UKT,R =
(
CVRI,

{
TUKT,Si, j

}
Si, j∈CVRI

)
.

RIBE.DeriveKey(SKID,UKT,R,PP): This algorithm takes as input a private key SKID = (PVu,{PSKID,Si, j})
for an identity ID, an update key UKT,R = (CVRI,{TUKT,Si, j}) for time T and a revoked set R of
identities, and the public parameters PP.

1. If ID 6∈ R, then it obtains (Si, j,Si′, j′) by running SD.Match(CVRI,PVu) such that Si, j ∈ CVR,
Si′, j′ ∈ PVu, and (Li = Li′)∧ (d j = d j′)∧ (L j 6= L j′) where (Li,L j) = Label(Si, j),(Li′ ,L′ j) =
Label(Si′, j′),d j = Depth(S j), and d j′ = Depth(S j′). Otherwise, it outputs ⊥.

2. It retrieves TUKT,Si, j = (U0,U1) from UKT,R, and PSKID,Si′, j′ = (K0,K1) from SKID. Next, it sets
I = {L j,L j′} and calculates two Lagrange coefficients ∆L j,I(0) and ∆L j′ ,I(0) by using the fact
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L j 6= L j′ . It chooses random r′1,r
′
2 ∈ ZN , Y ′0,Y

′
1,Y
′
2 ∈Gp3 and creates decryption key components

as

D0 = (K0)
∆L j′ ,I

(0)
(U0)

∆L j ,I(0) · (uID
1 h1)

r′1(uT
2 h2)

r′2Y ′0,

D1 = (K1)
∆L j′ ,I

(0) ·g−r′1Y ′1, D2 = (U1)
∆L j ,I(0) ·g−r′2Y ′2.

3. Finally, it outputs a decryption key DKID,T =
(
D0,D1,D2

)
.

RIBE.Encrypt(ID,T,M,PP): This algorithm takes as input an identity ID, time T , a message M, and the
public parameters PP. It first chooses a random exponent s∈ZN and outputs a ciphertext by implicitly
including ID and T as

CTID,T =
(

C = Ω
s ·M, C0 = gs, C1 = (uID

1 h1)
s, C2 = (uT

2 h2)
s
)
.

RIBE.Decrypt(CTID,T ,DKID′,T ′ ,PP): This algorithm takes as input a ciphertext CTID,T = (C,C0,C1,C2), a
decryption key DKID′,T ′ = (D0,D1,D2), and the public parameters PP. If (ID = ID′)∧ (T = T ′), then
it outputs the encrypted message M as M =C ·

(
∏

2
i=0 e(Ci,Di)

)−1. Otherwise, it outputs ⊥.

RIBE.Revoke(ID,T,RL,ST ): This algorithm is the same as that of Section 3.3.

4.4 Security Analysis

To prove the security of our RIBE scheme in composite-order bilinear groups, we use the dual system
encryption technique of Waters [25, 43]. The dual system encryption technique was successfully used to
prove the security of HIBE, ABE, and PE schemes [23, 25, 34, 43]. However, the dual system encryption
does not directly applicable to the RIBE scheme since the adversary of RIBE can request a private key query
for a challenge identity ID∗ and an update key query for challenge time T ∗ that were not allowed in IBE,
HIBE, and ABE. Note that the dual system encryption technique essentially uses those restrictions of an
adversary in IBE, HIBE, and ABE when it changes normal private keys to semi-functional private keys to
solve the paradox of dual system encryption. To handle the private key query for ID∗ and the update key
query for T ∗ in RIBE, we need different techniques for dual system encryption.

To solve this problem, we first organize personalized private keys in a private key and time-constrained
update keys in an update key in the order of group labels, and change those keys in the same group label
from normal to semi-functional through hybrid games. Note that this strategy that changes keys in the same
group label from normal to semi-functional was used in the security proof of RS-ABE [18, 36]. In contrast
to the RS-ABE scheme that uses the CS scheme, our RIBE scheme uses the SD scheme that has a complex
key assignment part and this makes it difficult for us to prove the security. To overcome this difficulty, we
carefully redesign semi-functional types and hybrid games by using the fact that there are only one private
key query for ID∗ and one update key query for T ∗ in RIBE that match to the challenge ciphertext.

We now consider one group label GL that is associated with a polynomial fGL(x). This group consists of
many personalized private keys and time-constrained update keys. Through another hybrid sub-games,
we try to change all normal keys in this group to semi-functional keys. If an adversary only requests
personalized private keys for ID 6= ID∗, then those key are first changed to nominally semi-functional keys.
Next, those key are changed to semi-functional keys by using the information theoretic argument. After that,
all normal time-constrained update keys are easily changed into semi-functional keys. Note that the paradox
does not occur when normal time-constrained update keys are changed to semi-functional keys since the
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paradox is already solved when we change the personalized private keys and fGL(x) is shared. For technical
reason, this process of hybrid games is more complicated. If an adversary only requests time-constrained
update keys for T 6= T ∗, then we also use the similar method by using nominally semi-functional keys and
the information theoretic argument.

The difficult part is to handle an adversary that can request a personalized private key for ID∗ and a
time-constrained update key for T ∗. Let h∗m be the member index of the group GL that is associated with
ID∗ and T ∗. Through additional hybrid games, we can change all normal personalized private keys and all
normal time-constrained update keys that are not related to h∗m to semi-functional keys by introducing the
nominally semi-functional type since ID 6= ID∗ and T 6= T ∗ for other member index. Note that personalized
private keys and time-constrained update keys for h∗m are still normal. To change those normal keys for h∗m
to semi-functional keys, we embed the challenge value of the assumption into gα instead of embedding it
into (uxh)r. This method works well since there is only one member index h∗m that is left.

Note that we can solve the paradox when we change normal keys for h∗m to semi-functional keys since
the Lagrange interpolation method does not work if personalized private key and time-constrained update
key are related to the same member index h∗m. That is, a simulator cannot derive a normal decryption key
from a normal personalized private key and a normal time-constrained update key for the same h∗m since only
one point of fGL(x) is revealed. The simulator also cannot derive a semi-functional decryption key from a
semi-functional personalized private key and a semi-functional time-constrained update key for the same h∗m
because of the same reason. Thus, the simulator cannot distinguish whether a personalized private key and
a time-constrained update key for the same h∗m are normal of semi-functional.

Theorem 4.1. The above RIBE scheme is fully secure under chosen plaintext attacks if the SD, GSD, and
ComDH assumptions hold. That is, for any PPT adversaryA, we have that AdvIND-CPA

RIBE,A (1λ )≤ AdvSD
B (1λ )+

O(q2 log2 Nmax + q2rmax)AdvGSD
B (1λ )+AdvComDH

B (1λ ) where q is the maximum number of private key, up-
date key, and decryption key queries of A.

Proof. We first define the semi-functional type of private keys, update keys, decryption keys, and cipher-
texts. For the semi-functional type, we let g2 denote a fixed generator of the subgroup Gp2 .

RIBE.GenKeySF. This algorithm first creates a normal private key SK′ID = (PVu,{PSK′ID,Si, j
}Si, j∈PVu) by

using MK where PVu = {Si, j} and PSK′ID,Si, j
= (K′0,K

′
1). For each Si, j ∈ PVu, it chooses a random

exponent δi, j ∈ ZN once for Si, j and builds a semi-functional personalized private key PSKID,Si, j =(
K0 = K′0gδi, j

2 ,K1 = K′1
)
. It outputs a semi-functional private key SKID = (PVu,{PSKID,Si, j}Si, j∈PVu).

RIBE.UpdateKeySF. This algorithm first creates a normal update key UK′T,R = (CVRI,{TUK′T,Si, j
}Si, j∈CVRI )

by using MK. For each Si, j ∈CVRI , it chooses a random exponent δi, j ∈ ZN once for Si, j and builds a
semi-functional time-constrained update key TUKT,Si, j =

(
U0 =U ′0gδi, j

2 ,U1 =U ′1
)
. It outputs a semi-

functional update key UKT,R = (CVRI,{PUKT,Si, j}Si, j∈CVRI ).

RIBE.DeriveKeySF. This algorithm first creates a normal decryption key DK′ID,T = (D′0,D
′
1,D

′
2) by using

MK. It chooses a random exponent a ∈ ZN and outputs a semi-functional decryption key DKID,T =(
D0 = D′0ga

2,D1 = D′1,D2 = D′2
)
.

RIBE.EncryptSF. This algorithm first creates a normal ciphertext CT ′ID,T = (C′,C′0,C
′
1,C
′
2). It chooses

random exponents c,d1,d2 ∈ ZN and outputs semi-functional ciphertext CTID,T =
(
C0 = C′0gc

2,C1 =

C′1gcd1
2 ,C2 =C′2gcd2

2

)
.
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Note that if a semi-functional decryption key is used to decrypt a semi-functional ciphertext, then the de-
cryption fails since an additional random element e(g2,g2)

ac is left.
To prove the security, we use a sequence of hybrid games. For the hybrid games that change personalized

private keys (or time-constrained update keys) that are related with a subset Si, j from normal ones to semi-
functional ones, we need to state additional information of a subset Si, j in BT . Note that a personalized
private key for Si, j and a time-constrained update key for Si′, j′ share the same polynomial f (x) if (Li =
Li′)∧ (d j = d j′) since they belong to the same group label GL = Li‖d j where Li is the identifier of vi and d j

is the depth of v j. Thus we associate a personalized private key (or a time-constrained update key) with a
tuple of indexes (ig, im, ic) to state additional information about the group label GL where ig is a group index,
im is a member index, and ic is a counter index.

Suppose that a personalized private key (or a time-constrained update key) is related with a subset Si, j,
Then this key has a group label GL = Li‖d j and a member label L j. The group index ig for personalized
private keys (or time-constrained update keys) is assigned as follows: If the group label GL appears first
time in queries, then we set ig as the number of distinct group label GL′ in previous queries plus one. If the
group label GL already appeared before in queries, then we set ig as the value i′g of previous personalized
private key (or time-constrained update key) with the same group label GL. The member index im for the
group index ig is assigned as follows: If the member label L j for this group label GL appears first time in
queries, then we set im as the number of distinct members for this group label GL in previous queries plus
one. If the member label L j for this group label already appeared before in queries, then we set im as the
value i′m of previous one. The counter index ic is assigned as follows: If the group label and member label
(GL,L j) appears first time in queries, then we set ic as one. If the group label and member label (GL,L j)
appeared before in queries, then we set ic as the number of queries with the group label and member label
(GL,L j) that appeared before plus one.

The security proof consists of the sequence of hybrid games: The first game will be the original security
game and the last one will be a game such that the adversary has no advantage. We define the games as
follows:

Game G0. This game is the original security game. In this game, all personalized private keys, time-
constrained update keys, decryption keys, and the challenge ciphertext are normal.

Game G1. In the next game, all personalized private keys, time-constrained update keys, and decryption
keys are normal, but the challenge ciphertext is semi-functional.

Game G2. Next, we define a new game G2. In this game, all personalized private keys, time-constrained
update keys, and the challenge ciphertext are semi-functional, but decryption keys are normal. For the
security proof, we additionally define a sequence of games G1,1, . . . ,G1,h, . . . ,G1,qg where G1 = G1,0
and qg is the maximum number of group labels that are used in private keys and update keys. In
the game G1,h for 1 ≤ h ≤ qg, the challenge ciphertext is semi-functional, personalized private keys
and time-constrained update keys with a group index ig such that ig ≤ h are semi-functional, and the
remaining personalized private keys and time-constrained update keys with an index ig such that h< ig
are normal. It is obvious that G1,qg = G2.

Game G3. In this game G3, all personalized private keys, time-constrained update keys, decryption keys,
and the the challenge ciphertext are semi-functional.

Game G4. In the final game G4, all personalized private keys, time-constrained update keys, decryption
keys, and the challenge ciphertext are semi-functional, but the challenge ciphertext component C is
random.
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Let AdvG j
A be the advantage of A in the game G j. We easily obtain that AdvIND-CPA

RIBE,A (1λ ) = AdvG0
A ,

AdvG1
A = AdvG1,0,2

A , AdvG2
A = AdvG1,q,2

A , and AdvG4
A = 0. Through the following Lemmas 4.2, 4.3, 4.4, and

4.7, we can obtain the following equation

AdvIND-CPA
RIBE,A (1λ )

≤
∣∣AdvG0

A −AdvG1
A
∣∣+ qg

∑
h=1

∣∣AdvG1,h−1
A −AdvG1,h

A
∣∣+ ∣∣AdvG2

A −AdvG3
A
∣∣+ ∣∣AdvG3

A −AdvG4
A
∣∣

≤ AdvSD
B (1λ )+5(qsk +quk)

qg

∑
h=1

qm

∑
hm=1

qc

∑
hc=1

AdvGSD
B (1λ )+2qdkAdvGSD

B (1λ )+AdvComDH
B (1λ )

≤ AdvSD
B (1λ )+

(5
2

q2 log2 Nmax +10q2rmax +2q
)
AdvGSD

B (1λ )+AdvComDH
B (1λ ).

where q = qsk +quk +qdk. This completes our proof.

Lemma 4.2. If the SD assumption holds, then no polynomial-time adversary can distinguish between G0
and G1 with a non-negligible advantage.

Proof. Suppose there exists an adversaryA that distinguishes between G0 and G1 with a non-negligible ad-
vantage. A simulatorB that solves the SD assumption usingA is given: a challenge tuple D=((N,G,GT ,e),
gp1 ,gp3) and Z where Z = Z0 = X1 ∈ Gp1 or Z = Z1 = X1R1 ∈ Gp1 p2 . Then B that interacts with A is de-
scribed as follows:

Setup: B first chooses random exponents u′1,h
′
1,u
′
2,h
′
2,α ∈ ZN . It sets BT by running SD.Setup and FL

by selecting fGL(x) for each GL in BT . It sets MK = (α,FL), RL = /0, ST = (BT ,UL = /0), and publishes
PP =

(
(N,G,GT ,e),g = gp1 ,Y = gp3 ,u1 = gu′1

p1 ,h1 = gh′1
p1 ,u2 = gu′2

p1 ,h2 = gh′2
p1 ,Ω = e(g,g)α

)
.

Phase 1: To response queries, B creates normal keys by running the normal algorithms since it knows MK.
Note that it cannot create semi-functional keys since it does not know gp2 .
Challenge: A submits a challenge identity ID∗, a challenge time T ∗, and challenge messages M∗0 ,M

∗
1 . B

flips a random coin µ ∈ {0,1} and creates a challenge ciphertext CT ∗ by implicitly setting gs to be the Gp1

part of Z as CT ∗ =
(
C = e(Z,g)α ·M∗µ , C0 = Z, C1 = (Z)u′1ID∗+h′1 , C2 = (Z)u′2T ∗+h′2

)
.

Phase 2: Same as Phase 1.
Guess: A outputs a guess µ ′. If µ = µ ′, then B outputs 1. Otherwise, it outputs 0.

If Z = Z0 = X1, then the simulation is the same as G0 since the challenge ciphertext is correctly dis-
tributed. If Z = Z1 = X1R1, then the simulation is the same as G1 since the challenge ciphertext is generated
as semi-functional by implicitly setting d1 ≡ u′1ID∗ + h′1 mod p2,d2 ≡ u′2T ∗ + h′2 mod p2. The values
u′1,h

′
1,u
′
2,h
′
2 modulo p2 are not correlated with their values modulo p1 by the Chinese Remainder Theorem

(CRT). This completes our proof.

Lemma 4.3. If the GSD assumption holds, then no polynomial-time adversary can distinguish between
G1,h−1 and G1,h with a non-negligible advantage.

Proof. We first divide the behavior of an adversary as two types: Type-I and Type-II. We next show that this
lemma holds for two types of the adversary. Let ID∗ and T ∗ be the challenge identity and the challenge time
respectively. The two types of adversaries are formally defined as follows:
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Type-I. An adversary is Type-I if it queries on an identity ID such that ID= ID∗ for at least one personalized
private key with the group index h, or it queries on time T such that T = T ∗ for at least one time-
constrained update key with the group index h. More specifically, this adversary can be divided as
follows:

• Type-I-A. This adversary queries on an identity ID such that ID 6= ID∗ for all personalized
private keys with the group index h, and it queries on time T such that T = T ∗ for at least one
time-constrained update key with the group index h.
• Type-I-B. This adversary queries on time T such that T 6= T ∗ for all time-constrained update

keys with h, and it queries on an identity ID such that ID = ID∗ for at least one personalized
private key with h.
• Type-I-C. This adversary queries on an identity ID such that ID = ID∗ for at least one per-

sonalized private key with h, and it queries on time T such that T = T ∗ for at least one time-
constrained update key with h.

Type-II. An adversary is Type-II if it queries on an identity ID such that ID 6= ID∗ for all personalized
private keys with the group index h, and it queries on time T such that T 6= T ∗ for all time-constrained
update keys with the group index h.

Let CVRI∗ be the covering set of the update key for the time T ∗ and revoked set R∗, and PVu∗ be the
private set of the private key for the identity ID∗. Let h∗m be a member index of the group index h such that
the personalized private key for ID∗ or the time-constrained update key for T ∗ belong to the member index
h∗m. If the adversary is Type-I-A, then there is only one member index h∗m since CVRI∗ is a partition. If the
adversary is In Type-I-B, then there is only one member index h∗m since PVu∗ is related with a path. If the
adversary is Type-I-C, the member index h∗m of CVRI∗ with the group index h should be the same as that of
PVu∗ with the same group index h in the SD scheme if ID∗ ∈ R∗. If the adversary is Type-II, then there is no
member index h∗m since the adversary does not request a key query for ID∗ or T ∗.

For the Type-I adversaryAI , we define hybrid games H(1,1),1,H(1,1),2, . . . ,H(qm,qc),1,H(qm,qc),2 =H′(qm,qc),2,

H′(qm,qc),1, . . . ,H
′
(1,1),2,H

′
(1,1),1,H

′
(1,0),2,H

′′ where G1,h−1 = H(1,0),2, H′′ = G1,h, qm is the maximum number
of distinct member subsets of the group index h, and qc is the maximum number of queries for one member
subset. The games are formally defined as follows:

Game H(hm,hc),1. This game H(hm,hc),1 for 1≤ hm ≤ qm and 1≤ hc ≤ qc is almost the same as G1,h−1 except
the generation of personalized private keys and time-constrained update keys with the group index
h. These personalized private keys and time-constrained update keys with indexes (ig = h, im, ic) are
generated as follows:

• Case ig < h: The keys (personalized private keys and time-constrained update keys) are gener-
ated as semi-functional.
• Case ig = h: The keys are generated as follows:

– (im 6= h∗m)∧ (im < hm) or (im 6= h∗m)∧ (im = hm)∧ (ic < hc):
If this is a personalized private key query, then it generates a normal PSK′ = (K′0,K

′
1)

and creates the semi-functional personalized private key of type 2 as PSKID,Si, j =
(
K0 =

K′0ga
2,K1 = K′1

)
by selecting a new random exponent a ∈ ZN .

If this is a time-constrained update key query, then it generates a normal TUK′ = (U ′0,U
′
1)

and creates the semi-functional time-constrained update key of type 2 as TUKT,Si, j =
(
U0 =

U ′0ga
2,U1 =U ′1

)
by selecting a new random exponent a ∈ ZN .
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– (im 6= h∗m)∧ (im = hm)∧ (ic = hc):
If this is a personalized private key query, then it generates a normal PSK′ = (K′0,K

′
1)

and creates the semi-functional personalized private key of type 1 as PSKID,Si, j =
(
K0 =

K′0ga
2,K1 = K′1gb

2

)
by selecting new random exponents a,b ∈ ZN .

If this is a time-constrained update key query, then it generates a normal TUK′ = (U ′0,U
′
1)

and creates the semi-functional time-constrained update key of type 1 as TUKT,Si, j =
(
U0 =

U ′0ga
2,U1 =U ′1gb

2

)
by selecting new random exponents a,b ∈ ZN .

– (im 6= h∗m)∧ (im = hm)∧ (hc < ic) or (im 6= h∗m)∧ (hm < im): It simply creates a normal type
key.

– (im = h∗m): It simply creates a normal type key.

• Case ig > h: The keys are generated as normal.

Note that if a semi-functional personalized private key of type 1 and a normal time-constrained update
key are used to decrypt a semi-functional ciphertext, then the decryption fails since an additional
random element e(g2,g2)

c(a−bd1) is left. If a = bd1, then the decryption succeeds and this personalized
private key is nominally semi-functional of type 1. Similarly, if a semi-functional time-constrained
update key of type 1 and a normal personalized private key are used to decrypt a semi-functional
ciphertext, then the decryption fails since an additional random element e(g2,g2)

c(a−bd1) is left. If a =
bd1, then the decryption succeeds and this time-constrained update key is nominally semi-functional
of type 1.

Game H(hm,hc),2. This game H(hm,hc),2 is almost the same as H(hm,hc),1 except that the personalized private
key (or the time-constrained update key) with the indexes (ig = h, im, ic) such that (im 6= h∗m)∧ (im =
hm)∧ (ic = hc) is generated with b = 0. In the game H(qm,qc),2, all personalized private keys and time-
constrained update keys with the group index h are semi-functional of type 2 except that personalized
private keys and time-constrained update keys with the member index h∗m are normal.

Game H′(hm,hc),1. This game H′(hm,hc),1 is almost the same as H(hm,hc),1 except the generation of a personalized
private key (or a time-constrained update key) with the indexes (ig = h, im, ic) such that (im 6= h∗m)∧
(im = hm)∧ (hc ≤ ic) or (im 6= hm)∧ (hm < im). These personalized private keys (or time-constrained
update keys) are generated as follows:

• (im 6= h∗m)∧ (im = hm)∧ (ic = hc): Let δi, j be a random exponent in ZN that is fixed for this
member subset Si, j.
If this is a personalized private key query, then it generates PSK′′ = (K′′0 ,K

′′
1 ) as the same

as H(hm,hc),1 and creates the semi-functional personalized private key as PSKID,Si, j =
(
K0 =

K′′0 gδi, j
2 ,K1 = K′′1

)
.

If this is a time-constrained update key query, then it generates TUK′′ = (U ′′0 ,U
′′
1 ) as the same

as H(hm,hc),1 and creates the semi-functional time-constrained update key as TUKT,Si, j =
(
U0 =

U ′′0 gδi, j
2 ,U1 =U ′′1

)
.

• (im 6= h∗m)∧ (im = hm)∧ (hc < ic) or (im 6= h∗m)∧ (hm < im): It creates a semi-functional key by
using the fixed δi, j for this member subset Si, j.

Game H′(hm,hc),2. This game H′(hm,hc),2 is almost the same as H′(hm,hc),1 except that the personalized private
key or time-constrained update key with the indexes (ig = h, im, ic) such that (im 6= h∗m)∧ (im = hm)∧
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(ic = hc) is generated with b = 0. The modification is similar to the game H′(hm,hc),1. In the game
H′(1,0),2, all personalized private keys and all time-constrained update keys with the group index h
except the keys with the member index h∗m are semi-functional where a fixed δi, j is used for each
member.

Game H′′. This game H′′ is the same as G1,h. Compared to the game H′(1,0),2, the remaining personalized
private keys and time-constrained update keys with the member index h∗m are changed to be semi-
functional by using a fixed δi, j for this member subset Si, j.

Let AdvHi
AI

be the advantage of AI in a game Hi. From the following Lemmas 4.8, 4.9, 4.10, 4.11, and
4.12, we can obtain the following equation

AdvH(1,0),2
AI

−AdvH ′′
AI

≤
qm

∑
hm=1

qc

∑
hc=1

∣∣AdvH(hm,hc−1),2
AI

−AdvH(hm,hc),1
AI

∣∣+ qm

∑
hm=1

qc

∑
hc=1

∣∣AdvH(hm,hc),1
AI

−AdvH(hm,hc),2
AI

∣∣+
qm

∑
hm=1

qc

∑
hc=1

∣∣Adv
H ′(hm,hc),2
AI

−Adv
H ′(hm,hc),1
AI

∣∣+ qm

∑
hm=1

qc

∑
hc=1

∣∣Adv
H ′(hm,hc),1
AI

−Adv
H ′(hm,hc−1),2
AI

∣∣+
∣∣Adv

H ′(1,0),2
AI

−AdvH ′′
AI

∣∣
≤ 5(qsk +quk)

qm

∑
hm=1

qc

∑
hc=1

AdvGSD
B (1λ ).

For the Type-II adversary AII , we define hybrid games I(1,1),1,I(1,1),2, . . . ,I(qm,qc),1,I(qm,qc),2 = I′(qm,qc),2,

I′(qm,qc),1, . . . ,I
′
(1,1),2,I

′
(1,1),1,I

′
(1,0),2,I

′′ where G1,h−1 = I(1,0),2 and I′(1,0),2 = I′′=G1,h. The games are formally
defined as follows:

Game I(hm,hc),1. This game I(hm,hc),1 is almost the same as H(hm,hc),1 except that there is no case im = h∗m
since the adversary is Type-II.

Game I(hm,hc),2. This game I(hm,hc),2 is almost the same as H(hm,hc),2 except that there is no case im = h∗m
since the adversary is Type-II.

Game I′(hm,hc),1. This game I′(hm,hc),1 is almost the same as H′(hm,hc),1 except that there is no case im = h∗m
since the adversary is Type-II.

Game I′(hm,hc),2. This game I′(hm,hc),1 is almost the same as H′(hm,hc),1 except that there is no case im = h∗m since
the adversary is Type-II. In the game I′(1,0),2, all personalized private keys and all time-constrained
update keys with the group index h are semi-functional where a fixed δi, j is used for each member.

Let AdvIi
AII

be the advantage ofAII in a game Ii. From the following Lemmas 4.13, 4.14, 4.15, and 4.16,

we can easily obtain the equation AdvI0,2
AII
−AdvI′′

AII
≤ 5(qsk +quk)AdvGSD

B (1λ ).

Let EI,EII be the event such that an adversary behave like the Type-I, Type-II adversary respectively.
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From the above three inequalities for three types, we have the following inequality as

AdvG1,h−1
A −AdvG1,h

A ≤ Pr[EI](AdvG1,h−1
AI

−AdvG1,h
AI

)+Pr[EII](AdvG1,h−1
AII

−AdvG1,h
AII

)

≤ Pr[EI](AdvH(1,0),2
AI

−AdvH ′′
AI
)+Pr[EII](AdvI(1,0),2

AII
−AdvI′′

AII
)

≤ 5(qsk +quk)
qm

∑
hm=1

qc

∑
hc=1

(
Pr[EI]AdvGSD

B (1λ )+Pr[EII]AdvGSD
B (1λ )

)
≤ 5(qsk +quk)

qm

∑
hm=1

qc

∑
hc=1

AdvGSD
B (1λ ).

This completes our proof.

Lemma 4.4. If the GSD assumption holds, then no polynomial-time adversary can distinguish between G2
and G3 with a non-negligible advantage.

Proof. Let qdk be the number of decryption key queries of an adversary. For the security proof, we addi-
tionally define a sequence of games G2,1,1,G2,1,2, . . . ,G2,k,1,G2,k,2, . . . ,G2,qdk,1,G2,qdk,2 where G2 = G2,0,2.
The games are defined as follows:

Game G2,k,1. In this game, all personalized private keys, all time-constrained update keys, and the challenge
ciphertext are semi-functional. The first k−1 decryption keys are semi-functional. The kth decryption
key is semi-functional of type 1 and it is generated as DKID,T = (D0 = D′0ga

2,D1 = D′1g−b1
2 ,D2 =

D′2g−b2
2 ) where DK′ID,T = (D′0,D

′
1,D

′
2) is a normal decryption key and a,b1,b2 are random exponents

in ZN . The remaining decryption keys are normal.

Game G2,k,2. In this game, all personalized private keys, all time-constrained update keys, the challenge
ciphertext header, and the first k decryption keys are semi-functional. But the remaining decryption
keys are normal. It is obvious that G2,qdk,2 = G3.

Note that if a semi-functional decryption key of type 1 is used to decrypt a semi-functional ciphertext, then
the decryption fails since an additional random element e(g2,g2)

c(a−b1d1−b2d2) is left. If a = b1d1 + b2d2,
then the decryption succeeds. In this case, we say that the decryption key is nominally semi-functional of
type 1.

Let AdvG2,i, j
A be the advantage of A in the game G2,i, j. We easily obtain that AdvG2

A = AdvG2,0,2
A and

AdvG3
A = Adv

G2,qdk ,2

A . From the following Lemmas 4.5 and 4.6, we can obtain the following equation

AdvG2
A −AdvG3

A ≤
qdk

∑
k=1

∣∣AdvG2,k−1,2
A −AdvG2,k,1

A
∣∣+ qdk

∑
k=1

∣∣AdvG2,k,1
A −AdvG2,k,2

A
∣∣

≤ 2qdkAdvGSD
B (1λ ).

This completes our proof.

Lemma 4.5. If the GSD assumption holds, then no polynomial-time adversary can distinguish between
G2,k−1,2 and G2,k,1 with a non-negligible advantage.

Proof. Suppose there exists an adversary A that distinguishes between G2,k−1,2 and G2,k,1 with a non-
negligible advantage. A simulator B that solves the GSD assumption using A is given: a challenge tuple
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D = ((N,G,GT ,e),gp1 ,gp3 ,X1R1,R2Y1) and Z where Z = Z0 = X2Y2 or Z = Z1 = X2R3Y2. Then B that
interacts with A is described as follows:

Setup: B first chooses random exponents u′1,h
′
1,u
′
2,h
′
2,α ∈ ZN . It sets BT by running SD.Setup and FL

by selecting fGL(x) for each GL in BT . It sets MK = (α,FL), RL = /0, ST = (BT ,UL = /0), and publishes
PP =

(
(N,G,GT ,e),g = gp1 ,Y = gp3 ,u1 = gu′1

p1 ,h1 = gh′1
p1 ,u2 = gu′2

p1 ,h2 = gh′2
p1 ,Ω = e(g,g)α

)
.

Phase 1: For each query, B proceeds as follows: If this is a personalized private key (or time-constrained
update key) query, then it creates a semi-functional one by using MK and R2Y1 given in the assumption. If
this is a jth decryption key query for ID and T , then it handles this query as follows:

• If j < k, then it creates a semi-functional decryption key since it knows MK and R2Y1 is given in the
assumption.

• If j = k, then it selects random r′1,r
′
2 ∈ ZN , Y ′0,Y

′
1,Y
′
2 ∈ Gp3 and creates a decryption key DKID,T =(

D0 = gα(Z)(u
′
1ID+h′1)r

′
1(Z)(u

′
2T+h′2)r

′
2Y ′0, D1 = (Z)−r′1Y ′1, D2 = (Z)−r′2Y ′2

)
.

• If j > k, then it creates a normal decryption key since it knows MK.

Challenge: B flips a random coin µ ∈ {0,1} and creates a semi-functional ciphertext by implicitly setting
gs =X1 and gc

2 =R1 as CT ∗=
(
C = e(X1R1,g)α ·M∗µ , C0 =X1R1, C1 =(X1R1)

u′1ID∗+h′1 , C2 =(X1R1)
u′2T ∗+h′2

)
.

Phase 2: Same as Phase 1.
Guess: A outputs a guess µ ′. If µ = µ ′, then B outputs 1. Otherwise, it outputs 0.

If Z = Z0 = X2Y2, then the simulation is the same as G2,k−1,2 since the kth decryption key and the
semi-functional challenge ciphertext are correctly distributed by implicitly setting r1 ≡ logg(X2)r′1 mod p1,
r2 ≡ logg(X2)r′2 mod p1, and s ≡ logg(X1) mod p1. If Z = Z1 = X2R3Y2, then the simulation is almost
the same as G2,k,1 except that the kth decryption key is generated as a nominally semi-functional one of
type 1 by implicitly setting b1 ≡ logg2

(R3)r′1 mod p2, b2 ≡ logg2
(R3)r′2 mod p2, and a≡ b1(u′1ID+h′1)+

b2(u′2T + h′2) mod p2. Note that we solve the paradox of the dual system encryption by introducing the
nominally semi-functional decryption key which is similar to that of Lewko and Waters [25]. That is, the
simulator cannot distinguish whether the kth decryption key is normal or nominally semi-functional since
the nominally semi-functional one is correlated to the challenge ciphertext.

To finish the proof, we should argue that the adversary cannot distinguish the nominally semi-functional
decryption key from the semi-functional decryption key of type 1. For this argument, we show an informa-
tion theoretic argument by using the restriction of the security model such that a decryption key query for
the identity ID∗ and the time T ∗ is not allowed. Suppose there exists an unbounded adversary. Then the
adversary can gather the values a ≡ b1(u′1ID+ h′1)+ b2(u′2T + h′2),b1,b2 mod p2 from the kth decryption
key and d1 ≡ u′1ID∗+h′1,d2 ≡ u′2T ∗+h′2 mod p2 from the challenge ciphertext. If (ID 6= ID∗)∨ (T 6= T ∗),
then b1(u′1ID+ h′1)+ b2(u′2T + h′2) mod p2, u′1ID∗+ h′1 mod p2 and u′2T ∗+ h′2 mod p2 look random to
the adversary since u′ix+ h′i is a pair-wise independent function, (ID 6= ID∗)∨ (T 6= T ∗) by the restriction
of the security model, and u′1,h

′
1,u
′
2,h
′
2 mod p2 are information theoretically hidden to the adversary. This

completes our proof.

Lemma 4.6. If the GSD assumption holds, then no polynomial-time adversary can distinguish between
G2,k,1 and G2,k,2 with a non-negligible advantage.

Proof. The proof of this lemma is almost the same as that of Lemma 4.5, except the generation of the kth
decryption key. The kth decryption key for ID and T is generated as follows:
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• If j = k, then it selects random r′1,r
′
2,a
′ ∈ ZN , Y ′0,Y

′
1,Y
′
2 ∈Gp3 and creates a decryption key DKID,T =(

D0 = gα(Z)(u
′
1ID+h′1)r

′
1(Z)(u

′
2T+h′2)r

′
2(R2Y1)

a′Y ′0, D1 = (Z)−r′1Y ′1, D2 = (Z)−r′2Y ′2
)
.

Note that the kth decryption key is no longer correlated with CT ∗ since the element D0 is re-randomized by
(R2Y1)

a′ . If Z = Z0 = X2Y2, then the simulation is the same as G2,k,2. If Z = Z1 = X2R3Y2, then the simulation
is the same as G2,k,1.

Lemma 4.7. If the ComDH assumption holds, then no polynomial-time adversary can distinguish between
G3 and G4 with a non-negligible advantage.

Proof. Suppose there exists an adversary A that distinguish G3 from G4 with a non-negligible advantage.
A simulator B that solves the ComDH assumption using A is given: a challenge tuple D = ((N,G,GT ,e),
gp1 ,gp2 ,gp3 ,g

a
p1

R1,gb
p1

R2) and Z where Z = Z0 = e(gp1 ,gp1)
ab or Z = Z1 = e(gp1 ,gp1)

c. Then B that interacts
with A is described as follows:

Setup: B chooses random exponents u′1,h
′
1,u
′
2,h
′
2 ∈ ZN and implicitly sets α = a from the term ga

p1
R1. It

sets BT by running SD.Setup and FL by selecting a random point (x,y) for each GL in BT . Note that a
random fGL(x) for GL is implicitly defined by two points (0,a) and (x,y) and g fGL(L j)

p1 R for any L j can be
computable from the Lagrange interpolation method where R ∈ Gp2 . It sets RL = /0, ST = (BT ,UL = /0)
and publishes the public parameters PP =

(
(N,G,GT ,e),g = gp1 ,Y = gp3 ,u1 = gu′1 ,h1 = gh′1 ,u2 = gu′2 ,h2 =

gh′2 ,Ω = e(g,ga
p1

R1)
)
.

Phase 1: For each query, B creates a semi-functional key since ga
p2

R1 and gp2 are given from the assumption.
Note that it cannot create a normal update key since it does not know ga

p1
∈Gp1 .

Challenge: B first flips a random coin µ ∈{0,1} and creates a challenge ciphertext CT ∗=
(
C = Z ·M∗µ , C0 =

gb
p1

R2, C1 = (gb
p1

R2)
u′1ID∗+h′1 , C2 = (gb

p1
R2)

u′2T ∗+h′2
)
.

Phase 2: Same as Phase 1.
Guess: A outputs a guess µ ′. If µ = µ ′, then B outputs 1. Otherwise, it outputs 0.

If Z = Z0, then the simulation is the same as G3 since the challenge ciphertext is correctly distributed by
implicitly setting s = b. If Z = Z1, then the simulation is the same as G4 since the element C is random.

4.4.1 Type-I Adversary

Lemma 4.8. If the GSD assumption holds, then no polynomial-time Type-I adversary can distinguish be-
tween H(hm,hc−1),2 and H(hm,hc),1 with a non-negligible advantage.

Proof. Suppose there exists an adversary AI that distinguishes between H(hm,hc−1),2 and H(hm,hc),1 with a
non-negligible advantage. A simulator B that solves the GSD assumption using AI is given: a challenge
tuple D = ((N,G,GT ,e),gp1 ,gp3 ,X1R1,R2Y1) and Z where Z = Z0 = X2Y2 or Z = Z1 = X2R3Y2. Then B that
interacts with AI is described as follows:

Setup: B selects random exponents u′1,h
′
1,u
′
2,h
′
2,α ∈ ZN . It sets BT by running SD.Setup and FL by

selecting fGL(x) for each GL in BT . It sets MK = (α,FL), RL = /0, ST = (BT ,UL = /0), and PP =(
(N,G,GT ,e),g = gp1 ,Y = gp3 ,u1 = gu′1 ,h1 = gh′1 ,u2 = gu′2 ,h2 = gh′2 ,Ω = e(g,g)α

)
.

Phase 1: Let h∗m be a member index of the group index h such that the personalized private key for ID∗ or
the time-constrained update key for T ∗ belong to the member index h∗m such that 1 ≤ h∗m ≤ qm where qm is
the maximum number of members in the group index h. As mentioned before, there is only one index h∗m in
the Type-I adversary. B selects a random index k such that 1≤ k≤ qm to guess h∗m, and it can correctly guess
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h∗m with the probability of 1/qm. Note that qm ≤ qsk +quk since the private set of a private key is related with
a path and the covering set of an update key is a partition where qsk is the number of private key queries and
quk is the number of update key queries of the adversary.

For each query, B proceeds as follows: If this is a decryption key query, then it creates a normal one
since it knows MK. If this is a personalized private key or a time-constrained update key query with indexes
(ig, im, ic), then it handles this query as follows:

• Case ig < h: It first builds a normal key since it knows MK and converts it to a semi-functional one
by using R2Y1 that is given in the assumption and selecting a random exponent δ ′i, j once for the subset
Si, j.

• Case ig = h: It generates the key as follows:

– (im 6= h∗m)∧ (im < hm) or (im 6= h∗m)∧ (im = hm)∧ (ic < hc):
If this is a personalized private key query, then it first builds a normal one and converts it to a
semi-functional one of type 2 by selecting a new random exponent a′ ∈ZN as PSKID,Si, j =

(
K0 =

g fGL(L j)(uID
1 h1)

r1Y ′0 · (R2Y1)
a′ , K1 = g−r1Y ′1

)
.

If this is a time-constrained update key query, then it first builds a normal one and converts it
to a semi-functional one of type 2 by selecting a new random exponent a′ ∈ ZN as TUKT,Si, j =(
U0 = g fGL(L j)(uT

2 h2)
r2Y ′0 · (R2Y1)

a′ , U1 = g−r2Y ′1
)
.

– (im 6= h∗m)∧ (im = hm)∧ (ic = hc):
If this is a personalized private key query, then it chooses random elements Y ′0,Y

′
1 ∈ Gp3 and

creates a key as PSKID,Si, j =
(
K0 = g fGL(L j)(Z)u′1ID+h′1Y ′0, K1 = Z−1Y ′1

)
.

If this is a time-constrained update key query, then it chooses random elements Y ′0,Y
′
1 ∈Gp3 and

creates a key as TUKT,Si, j =
(
U0 = g fGL(L j)(Z)u′2T+h′2Y ′0, U2 = Z−1Y ′1

)
.

– (im 6= h∗m)∧(im = hm)∧(hc < ic) or (im 6= h∗m)∧(hm < im): It creates a normal key since it knows
MK.

– (im = h∗m): It creates a normal key since it knows MK.

• Case ig > h: It creates a normal key since it knows MK.

Challenge: B flips a random coin µ ∈ {0,1} and creates a semi-functional ciphertext by implicitly setting
gs =X1 and gc

2 =R1 as CT ∗=
(
C = e(X1R1,g)α ·M∗µ , C0 =X1R1, C1 =(X1R1)

u′1ID∗+h′1 , C2 =(X1R1)
u′2T ∗+h′2

)
.

Phase 2: Same as Phase 1.
Guess: A outputs a guess µ ′. If µ = µ ′, then B outputs 1. Otherwise, it outputs 0.

If Z = Z0 = X2Y2, then the simulation is the same as H(hm,hc−1),2 since the personalized private key (or
the time-constrained update key) with (im 6= h∗m)∧ (im = hm)∧ (ic = hc) and the semi-functional challenge
ciphertext are correctly distributed by implicitly setting r1 ≡ logg(X2) mod p1 (or r2 ≡ logg(X2) mod p1),
and s ≡ logg(X1) mod p1. If Z = Z1 = X2R3Y2, then the simulation is almost the same as H(hm,hc),1 except
that the personalized private key (or the time-constrained update key) with (im 6= h∗m)∧ (im = hm)∧ (ic = hc)
is generated as a nominally semi-functional one of type 1 by implicitly setting a ≡ logg2

(R3)(u′1ID+ h′1)
mod p2 (or a ≡ logg2

(R3)(u′2T +h′2) mod p2) and b ≡ logg2
(R3) mod p2. Note that we solve the paradox

of the dual system encryption by introducing the nominally semi-functional one of type 1 which is similar
to that of Lewko and Waters [25]. That is, the simulator cannot distinguish whether the personalized private
key (or time-constrained update key) of hc is normal or nominally semi-functional since the nominally semi-
functional one is correlated to the challenge ciphertext.
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To finish the proof, we should argue that the Type-I adversary cannot distinguish the nominally semi-
functional one of type 1 from the semi-functional one of type 1. For this argument, we show an information
theoretic argument by using the fact that we have ID 6= ID∗ for all personalized private key queries for
ID with indexes (ig = h, im, ic) such that im 6= h∗m, and T 6= T ∗ for all time-constrained update key queries
for T with indexes (ig = h, im, ic) such that im 6= h∗m. Suppose there exists an unbounded Type-I adversary.
If the query with (im 6= h∗m)∧ (im = hm)∧ (ic = hc) is a personalized private key, then the adversary can
gather the values a ≡ b(u′1ID+ h′1),b mod p2 from the personalized private key with (im 6= h∗m)∧ (im =
hm)∧ (ic = hc) and d1 ≡ u′1ID∗+ h′1 mod p2, d2 ≡ u′2T ∗+ h′2 mod p2 from the challenge ciphertext. We
obtain that u′1ID+h′1 mod p2 and u′1ID∗+h′1 mod p2 look random to the adversary since u′1x+h′1 is a pair-
wise independent function, ID 6= ID∗ if im 6= h∗m, and u′1,h

′
1 mod p2 are information theoretically hidden

to the adversary. If the query with (im 6= h∗m)∧ (im = hm)∧ (ic = hc) is a time-constrained update key, then
we also obtain that u′2T + h′2 mod p2 and u′2T ∗+ h′2 are random to the adversary since u′2x+ h′2 pair-wise
independent function, T 6= T ∗ if im 6= h∗m, and u′2,h

′
2 mod p2 are information theoretically hidden to the

adversary. This completes our proof.

Lemma 4.9. If the GSD assumption holds, then no polynomial-time Type-I adversary can distinguish be-
tween H(hm,hc),1 and H(hm,hc),2 with a non-negligible advantage.

Proof. The proof of this lemma is almost the same as that of Lemma 4.8 except the generation of the key
with indexes ig = h and (im 6= h∗m)∧ (im = hm)∧ (ic = hc). This key with the group index h is generated as
follows:

• (im 6= h∗m)∧ (im = hm)∧ (ic = hc):

If this is a personalized private key query, then it chooses random a′ ∈ ZN , Y ′0,Y
′
1 ∈Gp3 and creates a

key as PSKID,Si, j =
(
K0 = g fGL(L j)(Z)u′1ID+h′1Y ′0(R2Y1)

a′ , K1 = Z−1Y ′1
)
.

If this is a time-constrained update key query, then it chooses random a′ ∈ZN , Y ′0,Y
′
1 ∈Gp3 and creates

a key as TUKT,Si, j =
(
U0 = g fGL(L j)(Z)u′2T+h′2Y ′0(R2Y1)

a′ , K1 = Z−1Y ′1
)
.

Note that this personalized private key or time-constrained update key is no longer correlated with CT ∗ since
the element K0 is re-randomized by (R2Y1)

a′ .

Lemma 4.10. If the GSD assumption holds, then no polynomial-time Type-I adversary can distinguish
between H′(hm,hc−1),2 and H′(hm,hc),1 with a non-negligible advantage.

Lemma 4.11. If the GSD assumption holds, then no polynomial-time Type-I adversary can distinguish
between H′(hm,hc),1 and H′(hm,hc),2 with a non-negligible advantage.

The proofs of Lemma 4.10 and Lemma 4.11 are almost the same as that of Lemma 4.8 and Lemma 4.9
respectively. The only difference is that each element K0 of personalized private keys and each element U0
of time-constrained update keys with indexes (ig = h, im, ic) such that im 6= h∗m that are generated in Lemma
4.8 and Lemma 4.9 respectively are additionally multiplied by (R2Y1)

δ ′i, j where δ ′i, j is a fixed exponent that
is related with the member subset Si, j. This modification is possible since R2Y1 is given in the assumption.
We omit the detailed proofs of these lemmas.

Lemma 4.12. If the GSD assumption holds, then no polynomial-time Type-I adversary can distinguish
between H′(1,0),2 and H′′ with a non-negligible advantage.
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Proof. The proof of this lemma is the core of the RIBE security proof since it changes the personalized
private key for ID∗ and the time-constrained update key for T ∗ from normal type to semi-functional type. It
should be noted that this changes from normal to semi-functional cannot be handled by introducing nomi-
nally semi-functional type since an information theoretic argument for ID∗ and T ∗ cannot be used. Recall
that h∗m be the member index that is related to ID∗ and T ∗. To solve this problem, we directly change normal
keys for h∗m to semi-functional keys without introducing nominally semi-functional keys, and then we ar-
gue that the paradox of dual system encryption can be solved by the property of the Lagrange interpolation
method.

Many parts of this proof is similar to that of Lemma 4.8 except the generation of personalized private
keys and time-constrained update keys with the group index ig = h. These keys with the group index ig = h
are generated as follows:

• Case ig = h: Let δ ′i, j be a fixed exponent in ZN for each member Si, j in this group index h.

– (im 6= h∗m):
If this is a personalized private key query, then it selects random r1 ∈ZN , Y ′0,Y

′
1 ∈Gp3 and creates

a semi-functional key as PSKID,Si, j =
(
K0 = (Z)L j gα(uID

1 h1)
r1Y ′0 · (R2Y1)

δ ′i, j , K1 = g−r1Y ′1
)
.

If this is a time-constrained update key query , then it selects random r2 ∈ ZN , Y ′0,Y
′
1 ∈Gp3 and

creates a semi-functional key as TUKT,Si, j =
(
U0 = (Z)L j gα(uT

2 h2)
r2Y ′0 ·(R2Y1)

δ ′i, j , U1 = g−r2Y ′1
)
.

– (im = h∗m):
If this is a personalized private key query, then it selects random r1 ∈ZN , Y ′0,Y

′
1 ∈Gp3 and creates

a key as PSKID,Si, j =
(
K0 = (Z)L j gα(uID

1 h1)
r1Y ′0, K1 = g−r1Y ′1

)
.

If this is a time-constrained update key query, then it selects random r2 ∈ ZN , Y ′0,Y
′
1 ∈ Gp3 and

creates a key as TUKT,Si, j =
(
U0 = (Z)L j gα(uT

2 h2)
r2Y ′0, U1 = g−r2Y ′1

)
.

If Z = Z0 = X2Y2, then the simulation is the same as H′(1,0),2 since all personalized private keys and time-
constrained update keys with the group index h implicitly uses a random polynomial fGL(x) ≡ logg(X2) ·
x+α mod p1 and it implicitly sets δi, j ≡ loggp2

(R2)δ
′
i, j mod p2 for each member index im 6= h∗m. If Z =

Z1 = X2R3Y2, then the simulation is the same as H′′ since it implicitly sets δi, j = loggp2
(R3)L j mod p2

for the member index h∗m. As mentioned before, the personalized private key query for ID∗ and the time-
constrained update key query for T ∗ should belong to the same member index h∗m by the restriction ID∗ ∈ R∗

of the security model.
We now argue that the paradox of dual system encryption can be solved. To distinguish whether a

personalized private key for h∗m and a time-constrained update key for h∗m are normal or semi-functional, the
simulator may try to decrypt a semi-functional ciphertext by deriving a decryption key from these keys for
h∗m. However, the simulator cannot derive a decryption key from those keys since the Lagrange interpolation
method does not work for the same h∗m since only one point of fGL(x) is revealed. Recall that the Lagrange
interpolation method requires two points of fGL(x) to derive fGL(0). Thus, the simulator cannot distinguish
whether these two keys for the same h∗m are normal or semi-functional. This completes our proof.

4.4.2 Type-II Adversary

Lemma 4.13. If the GSD assumption holds, then no polynomial-time Type-II adversary can distinguish
between I(hm,hc−1),2 and I(hm,hc),1 with a non-negligible advantage.

Lemma 4.14. If the GSD assumption holds, then no polynomial-time Type-II adversary can distinguish
between I(hm,hc),1 and I(hm,hc),2 with a non-negligible advantage.
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Lemma 4.15. If the GSD assumption holds, then no polynomial-time Type-II adversary can distinguish
between I′(hm,hc−1),2 and I′(hm,hc),1 with a non-negligible advantage.

Lemma 4.16. If the GSD assumption holds, then no polynomial-time Type-II adversary can distinguish
between I′(hm,hc),1 and I′(hm,hc),2 with a non-negligible advantage.

The proofs of Lemmas 4.13, 4.14, 4.15, and 4.16 are almost the same as those of Lemmas 4.8, 4.9, 4.10,
and 4.11 respectively except that there is no case im = h∗m since the Type-II adversary does not request a
personalized private key for ID∗ and a time-constrained update key for T ∗. We omit the detailed proofs of
these lemmas.

4.5 Discussions

Prime-Order Groups Our RIBE scheme is fully secure in composite-order bilinear groups under static
assumptions. To improve the efficiency of our RIBE scheme, we may consider to use prime-order bilinear
groups instead of composite-order bilinear groups. A general methodology that converts cryptosystems
that use dual system encryption techniques in composite-order bilinear groups into prime-order setting was
introduced by Lewko [22]. Lewko showed that the parameter hiding property of composite-order bilinear
groups can be achieved in prime-order groups by using the dual pairing vector space proposed by Okamoto
and Takashima [33]. We expect that our RIBE scheme in composite-order bilinear groups also can be
converted into prime-order setting by slightly modifying the prime-order IBE scheme of Lewko.

5 Conclusion

In this work, we presented a new technique for RIBE that can use the efficient SD scheme (or the LSD
scheme) instead of the CS scheme for key revocation. By following our technique, we first proposed a
new RIBE scheme in bilinear groups by combining the IBE scheme of Boneh and Boyen [5] and the SD
scheme, and then we proved its security in the selective revocation list model. We also proposed another
RIBE scheme in bilinear groups by combining the IBE scheme in composite-order bilinear groups of Lewko
and Waters [25] and the SD scheme, and proved its full security under static assumptions. Our constructions
also can be integrated with the LSD scheme to reduce the size of private keys.

An interesting open problem is to build efficient R-ABE, RS-ABE, and RS-PE schemes that provide the
revocation functionality for ABE and PE by using the SD scheme. One may expect that our technique in
this work can be used to achieve these schemes, but there is one crucial difficulty to prove the security of
the schemes since our proof techniques in the selective revocation list model (or the full model) only work
when there is only one private key (or one update key) that matches to a challenge ciphertext. However,
there are many private key queries in ABE that can decrypt a challenge ciphertext. Thus, we expect that
a new different technique will be needed to build R-ABE, RS-ABE, and RS-PE schemes that use the SD
scheme.
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