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Abstract

The well-known Chowla and Zassenhaus conjecture, proven by Co-
hen in 1990, states that for any d ≥ 2 and any prime p > (d2 − 3d+4)2

there is no complete mapping polynomial in Fp[x] of degree d.
For arbitrary finite fields Fq, we give a similar result in terms of the

Carlitz rank of a permutation polynomial rather than its degree. We
prove that if n < ⌊q/2⌋, then there is no complete mapping in Fq[x] of
Carlitz rank n of small linearity. We also determine how far permutation
polynomials f of Carlitz rank n < ⌊q/2⌋ are from being complete, by
studying value sets of f+x. We provide examples of complete mappings
if n = ⌊q/2⌋, which shows that the above bound cannot be improved in
general.

Keywords: Permutation polynomials, complete mappings, Carlitz rank,
value sets of polynomials

Mathematical Subject Classification: 11T06

1 Introduction

For any prime power q let Fq be the finite field of q elements. A polynomial
f(x) ∈ Fq[x] is called a permutation polynomial if it induces a bijection from Fq

to Fq.
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A polynomial f(x) ∈ Fq[x] is a complete mapping polynomial (or a com-
plete mapping) if both f(x) and f(x) + x are permutation polynomials of Fq.
These polynomials were introduced by Mann in 1942, [12]. A detailed study of
complete mapping polynomials over finite fields was carried out by Niederreiter
and Robinson (1982, [14]). Complete mappings are pertinent to the construc-
tion of mutually orthogonal Latin squares, which can be used for the design
of agricultural experiments, see for example [10]. Also due to other recently
emerged applications such as check-digit systems [17, 18] and the construc-
tion of cryptographic functions [13, 19], complete mappings have attracted
considerable attention, see also [8, 9, 15, 21, 22, 23, 24].

By a well-known result of Carlitz (1953), all permutation polynomials
over Fq with q ≥ 3 can be generated by linear polynomials ax + b, a, b ∈ Fq,

a 6= 0, and inversions xq−2 =

{

0, x = 0,
x−1, x 6= 0,

see [2] or [11, Theorem 7.18].

Consequently, as pointed out in [4], any permutation f of Fq can be represented
by a polynomial of the form

Pn(a0, a1, ..., an+1; x) = (. . . ((a0x+ a1)
q−2 + a2)

q−2 . . .+ an)
q−2 + an+1, (1)

where ai 6= 0, for i = 0, 2, . . . , n. Note that this representation is not unique,
and n is not necessarily minimal. Accordingly the authors of [1] define the
Carlitz rank of a permutation polynomial f over Fq to be the smallest integer
n ≥ 0 satisfying f = Pn for a permutation Pn of the form (1), and denote it
by Crk(f). In other words, for q ≥ 4, Crk(f) = n if f is a composition of at
least n inversions xq−2 and n or n + 1 linear polynomials (depending on an+1

being zero or not). This concept, introduced in the last decade, has already
found interesting applications in diverse areas, see [5, 7, 16].

The following theorem states the well-known conjecture of Chowla and
Zassenhaus (1968) [3], which was proven by Cohen [6] in 1990.

Theorem A. If d ≥ 2 and p > (d2 − 3d + 4)2, then there is no complete
mapping polynomial of degree d over Fp.

Note that Cohen’s theorem is not true for arbitrary finite fields without
further restrictions. For example, for any 0 6= a ∈ Fpr with a(p

r−1)/(p−1) 6=
(−1)r it is easy to see that axp is a complete mapping.

Since the Carlitz rank of a permutation polynomial f over Fq is an invariant
of f , a natural question to ask is whether a non-existence result, similar to that
stated in Theorem A, can be obtained in terms of the Carlitz rank.

We define the linearity L(f) of a polynomial f over Fq by

L(f) = max
a,b∈Fq

|{c ∈ Fq : f(c) = ac+ b}|.
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Note that polynomials of large linearity are highly predictable and thus un-
suitable in cryptography.

In this paper we show, see Theorem 1 below, that for any n < ⌊q/2⌋, there
is no complete mapping polynomial of Carlitz rank n and linearity L(f) <
⌊(q + 5)/2⌋.

We also answer the following two questions that immediately arise. Firstly
one wonders how far the non-complete mapping f in the above setting is from
being complete. This question can be quantified by considering the number
|Vf+x| of elements in the image of the polynomial f + x. Theorem 3 presents
bounds for |Vf+x|. Secondly one would ask if the bound q > 2n + 1 can be
improved. This is not possible in general, see Example 2 below.

2 Preliminaries

Let f(x) be a permutation polynomial over Fq. Suppose that f has a repre-
sentation Pn as in (1) for n ≥ 1. We follow the notation of [20] and put

f(x) = Pn(a0, a1, ..., an+1; x).

Since we are interested in complete mapping polynomials, the value of an+1

is irrelevant. Also, by using the substitution x 7→ x−a−1
0 a1, we see that the size

of the value set of f(x) + x does not depend on a1. Therefore we may restrict
ourselves to the case a1 = an+1 = 0. We relabel the coefficients accordingly, as
c0 = a0, ci = ai+1 for i = 1, .., n− 1, and use the notation

f(x) = Pn(c0, ..., cn−1; x) =: Pn(x). (2)

The representation of a permutation f as in (1) (or in (2)) enables approx-
imation of f by a fractional linear transformation Rn as described below.

Following the terminology of [1], the nth convergentRn(x) can be associated
to f , which is defined as

Rn(x) =
αn−1x+ βn−1

αnx+ βn

, (3)

where
αk = ck−1αk−1 + αk−2 and βk = ck−1βk−1 + βk−2,

for k ≥ 2 and α0 = 0, α1 = c0, β0 = 1, β1 = 0.
The set of poles On is defined as

O
n
= {xi : xi =

−βi

αi

, i = 1, . . . , n} ⊂ Fq ∪ {∞},
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where the elements of O
n
are not necessarily distinct. We note that

f(c) = Pn(c) = Rn(c) for c ∈ Fq\On. (4)

3 A non-existence result

In this section we show that any complete mapping must have either high
Carlitz rank or high linearity.

Theorem 1. If f(x) is a complete mapping of Fq, then we have either

L(f) ≥

⌊

q + 5

2

⌋

or
Crk(f) ≥

⌊q

2

⌋

.

Proof. Let f(x) be of the form (2) with n = Crk(f) and put F (x) = f(x)+x.
For n = 0 we have L(f) = q. Hence, we may assume n ≥ 1.

If αn = 0, then Rn(x) defined by (3) is a polynomial of degree 1 with
Rn(c) = f(c) for all c ∈ Fq \ On by (4) and thus L(f) ≥ q − n + 1. Since
otherwise the result is trivial, we may assume n ≤ ⌊q/2⌋ − 1 and thus L(f) ≥
q + 2− ⌊q/2⌋ = ⌊(q + 5)/2⌋.

Now we assume αn 6= 0.
We note that the first pole x1 is 0, since β1 = 0. Observe that

F (c) = Rn(c) + c =
αnc

2 + (αn−1 + βn)c+ βn−1

αnc+ βn

(5)

for any c ∈ Fq \On. It is also easy to show that

αnβn−1 − αn−1βn = (−1)n−1c0, n ≥ 1. (6)

First we assume that q is odd.
For any u ∈ Fq we study the quadratic equation

Rn(x) + x = u+ (αn−1 − βn)α
−1
n , (7)

that is,

x2 + (2α−1
n βn − u)x+ ((−1)n−1c0 + β2

n − uαnβn)α
−2
n = 0 (8)
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by (5) and (6). This equation has at most two different solutions c ∈ Fq \{xn}
and we have exactly two solutions if its discriminant

Du = u2 + 4(−1)nc0α
−2
n (9)

is a square in F
∗
q. Note that

1 + η(Du)

2
=







1, Du is a square in F
∗
q,

0, Du is a nonsquare in F
∗
q,

1/2, Du = 0,

where η is the quadratic character of Fq. Moreover, either Du = 0 for two
values of u, that is, (−1)n−1c0 is a square, or there is no value u with Du = 0.
Hence, the number N of the elements u ∈ Fq for which Du is a square in F

∗
q

can be expressed as

N =
1

2

∑

u∈Fq,Du 6=0

(1 + η(Du)) = −
1 + η((−1)n−1c0)

2
+

1

2

∑

u∈Fq

(1 + η(Du))

=
q − 1− η((−1)n−1c0)

2
+

1

2

∑

u∈Fq

η(Du) =
q − 2− η((−1)n−1c0)

2
,

by [11, Theorem 5.48].
Now assume that F is a permutation. Then at least one of these two

solutions must be a pole c ∈ On \ {xn}. Hence,

n ≥
q − η((−1)n−1c0)

2
≥

q − 1

2
.

For even q we can argue similarly. Note that a quadratic equation x2+ax+b
has exactly two solutions whenever a 6= 0 and Tr(a−2b) = 0, where Tr denotes
the absolute trace of Fq, see [11, Theorem 2.25]. We have to determine the
number N of u such that (8) has two solutions in Fq, that is, the number of
u 6= 0 with

0 = Tr

(

αnβnu+ β2
n + c0

α2
nu

2

)

= Tr

(

βn

αnu
+

βn + c
q/2
0

αnu

)

= Tr

(

c
q/2
0

αnu

)

. (10)

Since u 7→ u−1 is a bijection of F∗
q and Tr is 2-to-1 on Fq, we get N = q/2− 1.

Hence, if F is a permutation, then On contains at least n ≥ N+1 = q
2
different

poles and the result follows.
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Remark. Note that complete mappings of high linearity, that is, polynomi-
als f(x) with nth convergent Rn(x) and αn = 0 (or xn = ∞) are not suitable
for cryptographic applications. Hence, in the following we focus on the case
αn 6= 0 (or xn 6= ∞). Note that α1α2 6= 0 and thus ∞ is not a pole if n = 1 or
n = 2.

Now we provide examples of complete mappings of Carlitz rank n = ⌊q/2⌋
with L(f) < ⌊(q + 5)/2⌋.

Example 2. It is easy to check that f(x) = γ(x4+1)+γ−1(x2+x) ∈ F8[x] is a
complete mapping of F8 = F2(γ), where γ is a root of the polynomial x3+x+1
which is irreducible over F2. As a polynomial of degree 4 its linearity is at
most 4 and by Theorem 1 its Carlitz rank is at least 4. Verifying

f(c) = ((((γc)6 + 1)6 + γ−3)6 + 1)6, c ∈ F8,

we see that Crk(f) = 4 and Theorem 1 is in general tight in the case of even q.
Analogously, f(x) = x4 − x3 + 3x2 − x+ 1 ∈ F7[x] satisfies

f(c) = (((c5 + 3)5 + 3)5, c ∈ F7,

and has Carlitz rank 3. Hence, the bound of Theorem 1 is attained for odd q,
as well.

Many similar examples lead the authors to believe that there is a complete
mapping of Fq of Carlitz rank n = ⌊q/2⌋ and small linearity for infinitely many
prime powers q ≥ 7. This can be checked for 7 ≤ q ≤ 25.

4 The size of Vf+x

In this section we study the set Vf+x = {f(δ)+ δ : δ ∈ Fq} for any f satisfying
(4) with αn 6= 0. Theorem 1 implies that if n < ⌊q/2⌋, we have |Vf+x| < q. Here
we aim to determine how large the gap between q and |Vf+x| is. Theorem 3
below shows that q − |Vf+x| ≥ (q − 2 Crk(f)− 1)/2, that is, it is large if the
Carlitz rank of f is small, as one would expect. We present the result in a
slightly more general form.

Theorem 3. For αn−1, βn−1, αn, βn ∈ Fq with αn 6= 0 and αn−1βn −αnβn−1 6=
0, let F be any self-mapping of Fq satisfying

F (c) =
αn−1c+ βn−1

αnc+ βn
+ c (11)
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for at least q − n different c ∈ Fq. Then we have
⌈

q − n

2

⌉

≤ |VF | ≤ min

{

n+

⌊

q + 1

2

⌋

, q

}

.

Proof. Consider the set S of elements c ∈ Fq satisfying (11), which has car-
dinality |S| ≥ q − n. At most two different elements of S can have the same
value u since F (c) = u is a quadratic equation in c because of the conditions
on αn−1, βn−1, αn, βn. Therefore, |VF | ≥ (q− n)/2. Now the elements of Fq \S
can attain at most n different values of F . If q is odd, the discriminant Du

of F (c) = u is a quadratic polynomial in u and is 0 for at most two different
values u ∈ VF . For these two possible u we have exactly one solution c of
F (c) = u. For all other u we have either two or no solutions. Hence, the
value set of αn−1x+βn−1

αnx+βn

+ x contains at most (q + 1)/2 elements and we get

|VF | ≤ n + (q + 1)/2. If q is even, the quadratic equation F (c) = u has a
unique solution for exactly one u and two or no solutions otherwise. Hence,
we get similarly |VF | ≤ n+ q/2.

For the special cases n = 1 and n = 2 one can provide exact formulas
for |Vf+x|.

Proposition 4. The size of the value set VF of the polynomial

F (x) = (c0x)
q−2 + x ∈ Fq[x],

q > 2, with c0 6= 0 is

|VF | =

{

(q + 1 + η(c0)− η(−c0))/2, q odd,
q/2, q even,

where η denotes the quadratic character of Fq.

Proof. We start with odd q. We have F (0) = 0 = F (±(−c0)
−1/2) and thus

F (c) = 0 is attained for 2 + η(−c0) different c ∈ Fq. The discriminant

Du = u2 − 4c−1
0

of x2−ux+ c−1
0 has no zeros if c0 is a non-square. If c0 is a square, for the two

zeros of Du there is a unique solution c = u/2 of F (c) = u. For the remaining
u there are two or no solutions of F (c) = u. Collecting everything we get the
result.

For even q we have F (0) = F (c
−q/2
0 ) = 0 and no further zeros of F . For

all u 6= 0 there are either two or no solutions of F (c) = u and we get the
result.
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Proposition 5. The size of the value set of F (x) =
(

(c0x)
q−2 + c1

)q−2
+ x,

q > 2, with c0, c1, 4c0 + 1, c0 + 4 6= 0 is

|VF | =

{

q+2−η(4c0+1)−η(c2
0
+4c0)+η(−c0)

2
, c0 6= −1,

q−η(−3)
2

, c0 = −1,

if q is odd. For even q and c0, c1 6= 0, we get

|VF | =
q

2
+

{

Tr(c0) + Tr(c−1
0 ), c0 6= 1,

T r(1)− 1, c0 = 1,

where Tr is the absolute trace of Fq and we identify F2 with the integers {0, 1}.

Proof. Note that O2 = {0,−(c0c1)
−1}. We have F (0) = c−1

1 and

F (−(c0c1)
−1) = −(c0c1)

−1.

Note that both values coincide if c0 = −1. (7) simplifies to R2(x) + x =
u+ c−1

1 − (c0c1)
−1. Hence, we get R2(c) + c = F (0) if u = (c0c1)

−1 =: u1 and
R2(c) + c = F (−(c0c1)

−1) if u = −c−1
1 =: u2.

Again we deal with odd q first.
By (9) we get the discriminants

Du1
= (4c0 + 1)(c0c1)

−2 and Du2
= (c0 + 4)c0(c0c1)

−2.

Hence there are 1 + η(4c0 + 1) additional c with R2(c) + c = F (0) and 1 +
η((c0+4)c0) additional c with R2(c)+c = F (−(c0c1)

−1). Now verify that there
is a u, namely u = (1 − c0)(c0c1)

−1, such that x = 0 is a solution of (8). If
c0 = −1, x = 0 is the unique solution for this u. However, for x = −(c0c1)

−1

there is no such u. Finally, there are 1 + η(−c0) values u with Du = 0 such
that (8) has a unique solution. Altogether we have

4 + η(−c0) +
q − 6− η(4c0 + 1)− η((c0 + 4)c0)− η(−c0)

2

values in VF if c0 6= −1 and the first result follows. For c0 = −1 we get
|VF | = 2 + q−4−η(−3)

2
.

Now we consider even q. By (10) and

Tr

(

c
q/2
0

α2u1

)

= Tr(c0) and Tr

(

c
q/2
0

α2u2

)

= Tr(c−1
0 )
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the number of c with F (c) = F (0) (including c = 0) is 3 − 2Tr(c0) and the
number of c with F (c) = F ((c0c1)

−1) is 3 − 2Tr(c−1
0 ). For u = 0 there is a

unique solution x 6= 0 of (8) if c0 6= 1. Moreover, x = 0 is a solution of (8) for
one u which has already been counted above. Hence, we get

|VF | = 4 +
q − 8 + 2Tr(c0) + 2Tr(c−1

0 )

2

if c0 6= 1 and the result follows.
If c0 = 1 we have F (0) = F ((c0c1)

−1) = c−1
1 and c−1

1 is attained 4−2Tr(c0)
times. Moreover, the u with unique solution (8) corresponds to the solution
x = 0. Hence we get

|VF | = 1 +
q − 4 + 2Tr(1)

2

and the result follows.
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of a permutation polynomial, Finite Fields and Their Applications 15
(2009), 428–440.

[2] L. Carlitz, Permutations in a finite field, Proc. American Mathematical
Society 4 (1953), 538.

[3] S. Chowla, H. Zassenhaus, Some conjectures concerning finite fields,
Norske Videnskabers Selskabs Forhandlinger (Trondheim) 41 (1968), 34–
35.
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