Intersection sets, three-character multisets and associated codes

A. Aguglia* L. Giuzzi ${ }^{\dagger}$

Abstract

In this article we construct new minimal intersection sets in $\mathrm{AG}\left(r, q^{2}\right)$ sporting three intersection numbers with hyperplanes; we then use these sets to obtain linear error correcting codes with few weights, whose weight enumerator we also determine. Furthermore, we provide a new family of three-character multisets in $\mathrm{PG}\left(r, q^{2}\right)$ with r even and we also compute their weight distribution.

Keywords: Quadric, Hermitian variety, three-character set, multiset, error correcting code, weight enumerator
MSC: 51E20, 94B05

1 Introduction

Throughout this paper q is taken to be any prime power. A set of points S in the projective space $\mathrm{PG}\left(r, q^{2}\right)$ or in the affine space $\mathrm{AG}\left(r, q^{2}\right)$ is a t-intersection set or a t-fold blocking set with respect to hyperplanes if every hyperplane contains at least $t>0$ points of S. A point P of a t-intersection set S is said to be essential if $S \backslash\{P\}$ is not a t-intersection set. When all points of S are essential then S is minimal.

An intersection set S in $\operatorname{PG}\left(r, q^{2}\right)$ or in $\operatorname{AG}\left(r, q^{2}\right)$ is an m-character set if the size of the intersection of S with any hyperplane might assume just one out of m possible different values called the characters of S.

Sets with few characters are connected with many theoretical and applied areas such as coding theory, strongly regular graphs, association schemes, optimal multiple coverings, secret sharing; see in particular [7, 9, 10, 11, 12, 13, 16, 17]

[^0]for applications of 2 - and 3-character sets. For an extensive survey of results on three-character sets, see also [15] and the references therein.

A multiset in $\operatorname{PG}\left(r, q^{2}\right)$ is a mapping $M: \operatorname{PG}\left(r, q^{2}\right) \rightarrow \mathbb{N}$ from the points of $\operatorname{PG}\left(r, q^{2}\right)$ into non-negative integers. The points of a multiset are the points P of $\mathrm{PG}\left(r, q^{2}\right)$ with multiplicity $M(P)>0$. Certain multisets arise in various classification problems for optimal linear codes of higher dimension; see [17, 18].

We recall how a linear code in q^{2} symbols is generated from a (multi)-set \mathcal{V} of points in $\mathrm{PG}\left(r, q^{2}\right)$. Fix a reference frame in $\mathrm{PG}\left(r, q^{2}\right)$ and construct a matrix G by taking as columns the coordinates of the points of \mathcal{V} suitably normalized. The code \mathcal{C} having G as generator matrix is called the code generated from \mathcal{V}.

In the case in which \mathcal{V} is a set of points, that is G does not contain columns which are scalar multiples of each other, then \mathcal{C} is the projective code generated from \mathcal{V}. The spectrum of the intersections of \mathcal{V} with the hyperplanes of $\operatorname{PG}\left(r, q^{2}\right)$ provides the list of the weights of the associated code; we refer to [21] for further details on this geometric approach to codes.

As the order of the points in \mathcal{V} or their normalization change, it is potentially possible to construct different codes from the same set of points. However, all of these are monomially equivalent; thus, in the following discussion we shall speak of the code associated to a multiset; see 14 .

The present paper is organized as follows. In Section 2 we recall a non-standard model of $\operatorname{PG}\left(r, q^{2}\right)$ which will be useful for our constructions. In Section 3 we consider certain affine sets of $\mathrm{AG}\left(r, q^{2}\right)$ which allows to construct interesting geometric objects with three characters. Using these sets in Section 4 we then construct linear error correcting codes with four weights and we determine the corresponding weight enumerator. In Section 5 we present a construction of a 3 -character multiset in $\operatorname{PG}\left(r, q^{2}\right)$, for any r even and we determine the weight distribution of the corresponding three-weight code.

The study of the weights is important, since they measure the efficiency of the code and their knowledge is useful for decoding.

The codes we shall obtain in the present paper are all q-divisible that is they are q-ary code whose all non-zero weights are divisible by q; see [22].

2 Preliminaries

It is well known that all non-degenerate Hermitian varieties of $\operatorname{PG}\left(r, q^{2}\right)$ are projectively equivalent and that they sport just two intersection numbers with hyperplanes; see [20]. Thus, non-degenerate Hermitian varieties are two-character set. Quasi-Hermitian varieties \mathcal{V} of $\operatorname{PG}\left(r, q^{2}\right)$ are combinatorial objects which have the same size and the same intersection numbers with hyperplanes as (non-degenerate) Hermitian varieties \mathcal{H}.

In [1, 2] new infinite families of quasi-Hermitian varieties have been constructed by modifying some point-hyperplane incidences in $\mathrm{PG}\left(r, q^{2}\right)$. To this purpose, the authors kept the point-set of $\operatorname{PG}\left(r, q^{2}\right)$ but altered the geometry by suitably replacing the subspaces of higher type.

The following non-standard model Π of $\mathrm{PG}\left(r, q^{2}\right)$, originally introduced in [2], leads to an extension to higher dimensional spaces of Buekenhout-Metz unitals and it shall also be relevant for the current work.

Fix a non-zero element $a \in \operatorname{GF}\left(q^{2}\right)$. For any choice $\mathbf{m}=\left(m_{1}, \ldots, m_{r-1}\right) \in$ $\operatorname{GF}\left(q^{2}\right)^{r-1}$ and $d \in \operatorname{GF}\left(q^{2}\right)$ let $\mathcal{Q}_{a}(\mathbf{m}, d)$ denote the quadric of affine equation

$$
\begin{equation*}
x_{r}=a\left(x_{1}^{2}+\ldots+x_{r-1}^{2}\right)+m_{1} x_{1}+\ldots+m_{r-1} x_{r-1}+d . \tag{1}
\end{equation*}
$$

Consider now the birational transform $\mathrm{AG}\left(r, q^{2}\right) \rightarrow \mathrm{AG}\left(r, q^{2}\right)$ given by

$$
\varphi_{a}:\left(x_{1}, \ldots, x_{r-1}, x_{r}\right) \mapsto\left(x_{1}, \ldots, x_{r-1}, x_{r}-a\left(x_{1}^{2}+\ldots+x_{r-1}^{2}\right)\right) .
$$

We can define a new geometry Π_{a} whose t-dimensional subspaces are the image under φ_{a} of the subspaces of $\operatorname{AG}\left(r, q^{2}\right)$ of dimension t for $0 \leq t \leq r-1$. As φ_{a} is bijective, Π_{a} is isomorphic to $\operatorname{AG}\left(r, q^{2}\right)$. In particular, the set of the hyperplanes of Π_{a} corresponds to the set of all hyperplanes of $\operatorname{AG}\left(r, q^{2}\right)$ through $P_{\infty}(0,0, \ldots, 0,1)$ together with all of the quadrics $\mathcal{Q}_{a}(\mathbf{m}, d)$. Completing Π_{a} with its points at infinity in the usual way we obtain a projective space isomorphic to $\operatorname{PG}\left(r, q^{2}\right)$.

In [1], an extension of Buekenhout-Tits unitals is considered, leading to nonisomorphic families of quasi-Hermitian varieties for q an odd power of 2 . However, we shall not be concerned any further with this second construction in the present paper.

3 3-character sets in $\operatorname{AG}\left(r, q^{2}\right)$

In this section we construct an infinite family of minimal intersection sets in $\mathrm{AG}\left(r, q^{2}\right)$ that sport just three intersection numbers. Fix a projective frame in $\mathrm{PG}\left(r, q^{2}\right)$ and assume the space to have homogeneous coordinates $\left(X_{0}, X_{1}, \ldots, X_{r}\right)$. Let $\mathrm{AG}\left(r, q^{2}\right)$ be the affine space obtained by taking as hyperplane at infinity Π_{∞} of $\operatorname{PG}\left(r, q^{2}\right)$ that of equation $X_{0}=0$. Then, the points of $\operatorname{AG}\left(r, q^{2}\right)$ have affine coordinates $\left(x_{1}, x_{2}, \ldots, x_{r}\right)$ where $x_{i}=X_{i} / X_{0}$ for $i \in\{1, \ldots, r\}$.

Consider now the non-degenerate Hermitian variety \mathcal{H} with affine equation

$$
\begin{equation*}
x_{r}^{q}-x_{r}=\left(b^{q}-b\right)\left(x_{1}^{q+1}+\ldots+x_{r-1}^{q+1}\right), \tag{2}
\end{equation*}
$$

where $b \in \mathrm{GF}\left(q^{2}\right) \backslash \operatorname{GF}(q)$. The set of the points at infinity of \mathcal{H} is

$$
\begin{equation*}
\mathcal{F}=\left\{\left(0, x_{1}, \ldots, x_{r}\right) \mid x_{1}^{q+1}+\ldots+x_{r-1}^{q+1}=0\right\} ; \tag{3}
\end{equation*}
$$

r	q	$4 a^{q+1}+\left(b^{q}-b\right)^{2}$	$\operatorname{Tr}_{q}\left(a^{q+1} /\left(b^{q}+b\right)^{2}\right)$
odd	odd	non-zero	
even	odd	non-square in $\operatorname{GF}(q)$	
odd	even		Any
even	even		0

Table 1: Summary of the cases considered in [2, Theorem 3.1]

r	q	$4 a^{q+1}+\left(b^{q}-b\right)^{2}$	$\operatorname{Tr}\left(a^{q+1} /\left(b^{q}+b\right)^{2}\right)$
odd	odd	0	
even	odd	0	
even	odd	non-zero square in $\operatorname{GF}(q)$	
even	even		1

Table 2: Summary of the cases considered in Theorem 3.1 and Theorem 3.2
that is \mathcal{F} is a Hermitian cone of $\mathrm{PG}\left(r-1, q^{2}\right)$, projecting a Hermitian variety of $\mathrm{PG}\left(r-2, q^{2}\right)$ from the point $P_{\infty}(0, \ldots, 0,1)$. In particular, the hyperplane Π_{∞} is tangent to \mathcal{H} at P_{∞}.

For any $a \in \operatorname{GF}\left(q^{2}\right)^{*}$ and $b \in \operatorname{GF}\left(q^{2}\right) \backslash \operatorname{GF}(q)$, let $\mathcal{B}(a, b)$ be the affine algebraic set of equation

$$
\begin{equation*}
x_{r}^{q}-x_{r}+a^{q}\left(x_{1}^{2 q}+\ldots+x_{r-1}^{2 q}\right)-a\left(x_{1}^{2}+\ldots+x_{r-1}^{2}\right)=\left(b^{q}-b\right)\left(x_{1}^{q+1}+\ldots+x_{r-1}^{q+1}\right) . \tag{4}
\end{equation*}
$$

It is shown in [2] that $\mathcal{B}(a, b)$, together with the points at infinity of \mathcal{H}, as given by (31), is a quasi-Hermitian variety \mathcal{V} of $\operatorname{PG}\left(r, q^{2}\right)$ provided that the following algebraic conditions are satisfied: for q odd, r is odd and $4 a^{q+1}+\left(b^{q}-b\right)^{2} \neq 0$, or r is even and $4 a^{q+1}+\left(b^{q}-b\right)^{2}$ is a non-square in $\mathrm{GF}(q)$; for q even, r is odd, or r is even and $\operatorname{Tr}_{q}\left(a^{q+1} /\left(b^{q}+b\right)^{2}\right)=0$. Here Tr_{q} with $q=2^{h}$, denotes the absolute trace $\mathrm{GF}(q) \rightarrow \mathrm{GF}(2)$ which maps $x \in \mathrm{GF}(q)$ to $x+x^{2}+x^{2^{2}}+\ldots+x^{2^{h-1}}$.

We recall that for $r=2$ the condition that $4 a^{q+1}+\left(b^{q}-b\right)^{2}$ is a non-square in $\mathrm{GF}(q)$ for q odd or $b \notin \mathrm{GF}(q)$ and $\operatorname{Tr}_{q}\left(a^{q+1} /\left(b^{q}+b\right)^{2}\right)=0$ for q even is known as Ebert's discriminant condition see [5, 8].

We shall study the point-set $\mathcal{B}(a, b)$ when complementary of conditions of those mentioned above hold.

We are going to prove the following results.
Theorem 3.1. Suppose q to be an odd prime-power and $4 a^{q+1}+\left(b^{q}-b\right)^{2}=0$. Then, $\mathcal{B}(a, b)$ is a set of $q^{2 r-1}$ points of $\mathrm{AG}\left(r, q^{2}\right)$ with characters:

1. for $r \equiv 1(\bmod 4)$ or r odd and $q \equiv 1(\bmod 4)$

$$
q^{2 r-3}-q^{(3 r-5) / 2}, q^{2 r-3}, q^{2 r-3}-q^{(3 r-5) / 2}+q^{3(r-1) / 2} ;
$$

	r	q		Case
$r \equiv 1$	$(\bmod 4)$	$q \equiv 1$	$(\bmod 4)$	1()
$r \equiv 1$	$(\bmod 4)$	$q \equiv 3$	$(\bmod 4)$	$\boxed{1})$
$r \equiv 3$	$(\bmod 4)$	$q \equiv 1$	$(\bmod 4)$	$\boxed{1})$
$r \equiv 3$	$(\bmod 4)$	$q \equiv 3$	$(\bmod 4)$	$\boxed{2})$
$r \equiv 0$	$(\bmod 2)$	$q \equiv 1$	$(\bmod 2)$	$3)$

Table 3: Cases for Theorem 3.17; q odd.
2. for $r \equiv 3(\bmod 4)$ and $q \equiv 3(\bmod 4)$

$$
q^{2 r-3}+q^{(3 r-5) / 2}-q^{3(r-1) / 2}, q^{2 r-3}, q^{2 r-3}+q^{(3 r-5) / 2}
$$

3. for r even,

$$
q^{2 r-3}-q^{(3 r-4) / 2}, q^{2 r-3}, q^{2 r-3}+q^{(3 r-4) / 2}
$$

Furthermore, $\mathcal{B}(a, b)$ is a minimal intersection set with respect to hyperplanes for $r>2$.

Theorem 3.2. Let r be even. Suppose that either q is odd with $4 a^{q+1}+\left(b^{q}-b\right)^{2} a$ non-zero square in $\mathrm{GF}(q)$ or q is even and $\operatorname{Tr}_{q}\left(a^{q+1} /\left(b^{q}+b\right)^{2}\right)=1$. Then, $\mathcal{B}(a, b)$ is a set of $q^{2 r-1}$ points of $\mathrm{AG}\left(r, q^{2}\right)$ with characters

$$
q^{2 r-3}-q^{r-2}, q^{2 r-3}, q^{2 r-3}-q^{r-2}+q^{r-1} .
$$

$\mathcal{B}(a, b)$ is also a minimal intersection set with respect to hyperplanes.
As it can be seen from Tables 11 and 2, all of the possibilities have been accounted for. For the convenience of the reader, we also summarize the subcases of Theorem 3.1 in Table 3.

3.1 Proof of Theorem 3.1

Recall that for any quadric \mathcal{Q}, the radical $\operatorname{Rad}(\mathcal{Q})$ of \mathcal{Q} is the subspace

$$
\operatorname{Rad}(\mathcal{Q}):=\{x \in \mathcal{Q}: \forall y \in \mathcal{Q},\langle x, y\rangle \subseteq \mathcal{Q}\}
$$

where by $\langle x, y\rangle$ we denote the line through x and y. It is well known that $\operatorname{Rad}(\mathcal{Q})$ is a subspace of $\operatorname{PG}\left(r, q^{2}\right)$.

Assume $\mathcal{B}(a, b)$ to have Equation (4). It is straightforward to see that $\mathcal{B}(a, b)$ coincides with the affine part of the Hermitian variety \mathcal{H} of equation (2) in the space Π_{a}; hence, any hyperplane $\pi_{P_{\infty}}$ of $\mathrm{PG}\left(r, q^{2}\right)$ passing through P_{∞} meets $\mathcal{B}(a, b)$ in $\left|\mathcal{H} \cap \pi_{P_{\infty}}\right|=q^{2 r-3}$ points.

Now we are interested in the possible intersection sizes of $\mathcal{B}(a, b)$ with a generic hyperplane

$$
\pi: x_{r}=m_{1} x_{1}+\cdots+m_{r-1} x_{r-1}+d,
$$

of $\operatorname{AG}\left(r, q^{2}\right)$ with coefficients $m_{1}, \ldots, m_{r}, d \in \operatorname{GF}\left(q^{2}\right)$. This is the same as to study the intersection of \mathcal{H} with the quadrics $\mathcal{Q}_{a}(\mathbf{m}, d)$ and hence we have to solve the system

$$
\left\{\begin{array}{l}
x_{r}^{q}-x_{r}=\left(b^{q}-b\right)\left(x_{1}^{q+1}+\ldots+x_{r-1}^{q+1}\right) \tag{5}\\
a\left(x_{1}^{2}+\ldots+x_{r-1}^{2}\right)+m_{1} x_{1}+\ldots+m_{r-1} x_{r-1}-x_{r}+d=0
\end{array}\right.
$$

Recovering x_{r} from the second equation in (5) and replacing its value in the first equation, we obtain the following

$$
\begin{align*}
& a^{q}\left(x_{1}^{2 q}+\ldots+x_{r-1}^{2 q}\right)+\left(b-b^{q}\right)\left(x_{1}^{q+1}+\ldots+x_{r-1}^{q+1}\right)+m_{1}^{q} x_{1}^{q}+ \\
& +\ldots+m_{r-1}^{q} x_{r-1}^{q}+d^{q}-a\left(x_{1}^{2}+\ldots+x_{r-1}^{2}\right)-m_{1} x_{1}+\ldots+ \tag{6}\\
& -m_{r-1} x_{r-1}-d=0 .
\end{align*}
$$

As q is odd, there is $\varepsilon \in \operatorname{GF}\left(q^{2}\right) \backslash \operatorname{GF}(q)$ such that $\varepsilon^{q}=-\varepsilon$. For any $x \in \operatorname{GF}\left(q^{2}\right)$ write $x=x^{0}+\varepsilon x^{1}$ with $x^{0}, x^{1} \in \mathrm{GF}(q)$; in this way the previous Equation (6) becomes

$$
\begin{equation*}
\sum_{i=1}^{r-1}\left(\left(b^{1}+a^{1}\right) \varepsilon^{2}\left(x_{i}^{1}\right)^{2}+2 a^{0} x_{i}^{0} x_{i}^{1}+\left(a^{1}-b^{1}\right)\left(x_{1}^{0}\right)^{2}\right)+\sum_{i=1}^{r-1}\left(m_{i}^{0} x_{i}^{1}+m_{i}^{1} x_{i}^{0}\right)+d^{1}=0 \tag{7}
\end{equation*}
$$

that is the number N of affine points which lie in $\mathcal{B}(a, b) \cap \pi$ is the same as the number of points of the affine quadric \mathcal{Q} of $\mathrm{AG}(2 r-2, q)$ of Equation (7). Following the approach of [2], in order to compute N, we first count the number of points of the quadric at infinity $\mathcal{Q}_{\infty}:=\mathcal{Q} \cap \Pi_{\infty}$ of \mathcal{Q} and then we determine $N=|\mathcal{Q}|-\left|\mathcal{Q}_{\infty}\right|$. Observe that the quadric \mathcal{Q}_{∞} of $\mathrm{PG}(2 r-3, q)$ has a block matrix of the form

$$
A_{\infty}=\left(\begin{array}{ccccc}
\left(a^{1}-b^{1}\right) & a^{0} & & & \tag{8}\\
a^{0} & \left(b^{1}+a^{1}\right) \varepsilon^{2} & & & \\
& & \ddots & & \\
& & & \left(a^{1}-b^{1}\right) & a^{0} \\
& & & a^{0} & \left(b^{1}+a^{1}\right) \varepsilon^{2}
\end{array}\right)
$$

with determinant

$$
\operatorname{det} A_{\infty}=\left(\varepsilon^{2}\left[\left(a^{1}\right)^{2}-\left(b^{1}\right)^{2}\right]-\left(a^{0}\right)^{2}\right)^{r-1} .
$$

Since $\left(a^{0}\right)^{2}-\varepsilon^{2}\left[\left(a^{1}\right)^{2}-\left(b^{1}\right)^{2}\right]=a^{q+1}+\left(b^{q}-b\right)^{2} / 4$ and $4 a^{q+1}+\left(b^{q}-b\right)^{2}=0$ we have $\operatorname{det} A_{\infty}=0$. This means

$$
\operatorname{det}\left(\begin{array}{cc}
\left(a^{1}-b^{1}\right) & a^{0} \\
a^{0} & \left(a^{1}+b^{1}\right) \varepsilon^{2}
\end{array}\right)=0
$$

that is, each of the 2×2 blocks on the main diagonal of A_{∞} has rank 1 . Consequently, the rank of the matrix A_{∞} is exactly $r-1$.

If $a^{1}=b^{1}$, then $a^{0}=0$, the matrix A_{∞} is diagonal and the quadric \mathcal{Q}_{∞} is projectively equivalent to

$$
\left(x_{1}^{1}\right)^{2}+\left(x_{2}^{1}\right)^{2}+\cdots+\left(x_{r-1}^{1}\right)^{2}=0 .
$$

Otherwise, take

$$
M=\left(\begin{array}{ccccc}
1 & 0 & & & \\
-a^{0} /\left(a^{1}-b^{1}\right) & 1 & & & \\
& & \ddots & & \\
& & & 1 & 0 \\
& & & -a^{0} /\left(a^{1}-b^{1}\right) & 1
\end{array}\right)
$$

a direct computation proves that

$$
M^{T} A_{\infty} M=\left(\begin{array}{ccccc}
a^{1}-b^{1} & 0 & & & \\
0 & 0 & & & \\
& & \ddots & & \\
& & & a^{1}-b^{1} & 0 \\
& & & 0 & 0
\end{array}\right)
$$

Hence, \mathcal{Q}_{∞} is projectively equivalent to the quadric of rank $r-1$ with equation

$$
\left(x_{1}^{0}\right)^{2}+\left(x_{2}^{0}\right)^{2}+\cdots+\left(x_{r-1}^{0}\right)^{2}=0 .
$$

For r odd, we have that \mathcal{Q}_{∞} is either

- a cone with vertex $\operatorname{Rad}\left(\mathcal{Q}_{\infty}\right) \simeq \operatorname{PG}(r-2, q)$ and basis a hyperbolic quadric $Q^{+}(r-2, q)$ if $q \equiv 1(\bmod 4)$ or $r \equiv 1(\bmod 4)$, or
- a cone with vertex $\operatorname{Rad}\left(\mathcal{Q}_{\infty}\right) \simeq \operatorname{PG}(r-2, q)$ and basis an elliptic quadric $Q^{-}(r-2, q)$ if $q \equiv 3(\bmod 4)$ and $r \equiv 3(\bmod 4)$; see [19, Theorem 1.2].

For r even, \mathcal{Q}_{∞} is a cone with vertex $\operatorname{Rad}\left(\mathcal{Q}_{\infty}\right) \simeq \operatorname{PG}(r-2, q)$ and basis a parabolic quadric $Q(r-2, q)$.

We now move to investigate the quadric \mathcal{Q}. Clearly, the rank of its matrix is either $r-1, r$ or $r+1$.

Write $\Pi_{\infty}=\Sigma \oplus \operatorname{Rad}\left(\mathcal{Q}_{\infty}\right)$. As Σ is disjoint from the radical of the quadratic form inducing \mathcal{Q}_{∞}, we have that $\mathcal{Q}_{\infty}^{\prime}:=\Sigma \cap \mathcal{Q}_{\infty}$ is a nondegenerate quadric (either hyperbolic, elliptic or parabolic according to the various conditions).

When \mathcal{Q} has the same rank $r-1$ as \mathcal{Q}_{∞}, we have

$$
\operatorname{dim} \operatorname{Rad}(\mathcal{Q})=\operatorname{dim} \operatorname{Rad}\left(\mathcal{Q}_{\infty}\right)+1
$$

Observe that $\operatorname{Rad}(\mathcal{Q}) \cap \Pi_{\infty} \leq \operatorname{Rad}\left(\mathcal{Q}_{\infty}\right)$. Thus, $\operatorname{Rad}(\mathcal{Q}) \cap \Sigma=\{\mathbf{0}\}$ and Σ is also a direct complement of $\operatorname{Rad}(\mathcal{Q})$. It follows that \mathcal{Q} is cone of vertex a $\operatorname{PG}(r-1, q)$ and basis a quadric of the same kind as $\mathcal{Q}_{\infty}^{\prime}$. If \mathcal{Q} has rank $r+1$, then the hyperplane at infinity is tangent to \mathcal{Q}; in particular \mathcal{Q} must have as radical a $\operatorname{PG}(r-3, q)$; by [19, Lemma 1.22], the basis $\mathcal{Q}^{\prime \prime}$ of \mathcal{Q} must have the same character (elliptic, parabolic or hyperbolic) as $\mathcal{Q}_{\infty}^{\prime}$.

In the case in which the matrix of \mathcal{Q} has $\operatorname{rank} r, \operatorname{Rad}(\mathcal{Q})=\operatorname{Rad}\left(\mathcal{Q}_{\infty}\right)$ and \mathcal{Q} is a cone of vertex a $\operatorname{PG}(r-2, q)$ and basis a parabolic quadric $Q(r-1, q)$ for r odd or \mathcal{Q} is a cone of vertex a $\mathrm{PG}(r-2, q)$ and basis a hyperbolic quadric $Q^{+}(r-1, q)$ or an elliptic quadric $Q^{-}(r-1, q)$ for r even. We can now write the complete list of sizes for r odd:

$$
\left|\mathcal{Q}_{\infty}\right|=\frac{q^{2 r-3}-1}{q-1} \pm q^{(3 r-5) / 2}
$$

in case $\operatorname{rank}(\mathcal{Q})=r-1$, then

$$
|\mathcal{Q}|=\frac{q^{2 r-2}-1}{q-1} \pm q^{3(r-1) / 2}
$$

in case $\operatorname{rank}(\mathcal{Q})=r$,

$$
|\mathcal{Q}|=\frac{q^{2 r-2}-1}{q-1} ;
$$

in case $\operatorname{rank}(\mathcal{Q})=r+1$, then

$$
|\mathcal{Q}|=\frac{q^{2 r-2}-1}{q-1} \pm q^{(3 r-5) / 2} .
$$

In particular, the possible values for $N=|\mathcal{Q}|-\left|\mathcal{Q}_{\infty}\right|$ are

$$
q^{2 r-3}, q^{2 r-3}+q^{3(r-1) / 2}-q^{(3 r-5) / 2}, q^{2 r-3}-q^{(3 r-5) / 2}
$$

for $q \equiv 1(\bmod 4)$ or $r \equiv 1(\bmod 4)$ and

$$
q^{2 r-3}-q^{3(r-1) / 2}+q^{(3 r-5) / 2}, q^{2 r-3}+q^{(3 r-5) / 2}
$$

for $q \equiv 3(\bmod 4)$ and $r \equiv 3(\bmod 4)$.
When r is even we get:

$$
\left|\mathcal{Q}_{\infty}\right|=\frac{q^{2 r-3}-1}{q-1}
$$

in case $\operatorname{rank}(\mathcal{Q})=r-1$ or $\operatorname{rank}(\mathcal{Q})=r+1$, then

$$
|\mathcal{Q}|=\frac{q^{2 r-2}-1}{q-1} ;
$$

in case $\operatorname{rank}(\mathcal{Q})=r$,

$$
|\mathcal{Q}|=\frac{q^{2 r-2}-1}{q-1} \pm q^{(3 r-4) / 2}
$$

Thus, the possible list of cardinalities for $N=|\mathcal{Q}|-\left|\mathcal{Q}_{\infty}\right|$ is

$$
q^{2 r-3}, q^{2 r-3}+q^{(3 r-4) / 2}, q^{2 r-3}-q^{(3 r-4) / 2}
$$

Now we are going to show that $\mathcal{B}(a, b)$ is a minimal intersection set. First of all, we prove that for any $P \in \mathcal{B}(a, b)$ there exists a subspace $\Lambda_{n}(P) \simeq \operatorname{AG}\left(n, q^{2}\right)$, $1 \leq n \leq r-1$ through P such that $\left|\mathcal{B}(a, b) \cap \Lambda_{n}(P)\right| \leq q^{2 n-1}-q^{n-1}$. The argument is by induction on n. Assume $n=1$. Then, for any $P \in \mathcal{B}(a, b)$ there exists at least one line ℓ through P such that $|\ell \cap \mathcal{B}(a, b)|<q$, otherwise $\mathcal{B}(a, b)$ would contain more than $q^{2 r-1}$ points. Suppose now that the result holds for $n=1, \ldots, r-2$, take $P \in \mathcal{B}(a, b)$ and suppose that any hyperplane π through P meets $\mathcal{B}(a, b)$ in at least $q^{2 r-3}$ points. By induction, there exists a subspace $\pi^{\prime}:=\Lambda_{r-2}(P) \simeq \operatorname{AG}\left(r-2, q^{2}\right)$ through P meeting $\mathcal{B}(a, b)$ in at most $q^{2 r-5}-q^{r-3}$ points. By considering all hyperplanes containing π^{\prime} we get $|\mathcal{B}(a, b)| \geq\left(q^{2}+\right.$ 1) $\left(q^{2 r-3}-q^{2 r-5}+q^{r-3}\right)+q^{2 r-5}-q^{r-3}>q^{2 r-1}$, a contradiction. Thus, through any $P \in \mathcal{B}(a, b)$ there exists a hyperplane meeting $\mathcal{B}(a, b)$ in $\left(q^{2 r-3}-q^{(3 r-5) / 2}\right)$ points for r odd or $\left(q^{2 r-3}-q^{(3 r-4) / 2}\right)$ for r even. This implies that $\mathcal{B}(a, b)$ is a minimal intersection set for any $r>2$.

Remark 3.3. The quadric $\mathcal{Q}_{a}(\mathbf{m}, d)$ of Equation (1) shares its tangent hyperplane at P_{∞} with the Hermitian variety (2).

The problem of the intersection of the Hermitian variety \mathcal{H} with irreducible quadrics \mathcal{Q} having the same tangent plane at a common point $P \in \mathcal{Q} \cap \mathcal{H}$ has been considered in detail for $r=3$ in [3, 4].

3.2 Proof of Theorem 3.2

First consider the case q odd. Arguing as in the proof of Theorem 3.1 we have that any hyperplane $\pi_{P_{\infty}}$ of $\operatorname{PG}\left(r, q^{2}\right)$ passing through P_{∞} meets $\mathcal{B}(a, b)$ in $q^{2 r-3}$ points.

In order to determine the possible intersection sizes of $\mathcal{B}(a, b)$ with a hyperplane which does not pass through P_{∞}, say $\pi: x_{r}=m_{1} x_{1}+\cdots+m_{r-1} x_{r-1}+d$, we need to compute the number N of affine points of the quadric \mathcal{Q} in $\mathrm{AG}(2 r-2, q)$ with equation (7). We first discuss the nature of $\mathcal{Q}_{\infty}=\mathcal{Q} \cap \Pi_{\infty}$ whose associated matrix A_{∞} is of the form (10).

Observe that, under our assumptions, for q odd $(-1)^{r-1} \operatorname{det} A_{\infty}$ is always a square in $\mathrm{GF}(q)$; hence, \mathcal{Q}_{∞} is a hyperbolic quadric of $\mathrm{PG}(2 r-3)$.

For q even, choose $\varepsilon \in \operatorname{GF}\left(q^{2}\right) \backslash \operatorname{GF}(q)$ such that $\varepsilon^{2}+\varepsilon+\nu=0$, for some $\nu \in \operatorname{GF}(q) \backslash\{1\}$ with $\operatorname{Tr}_{q}(\nu)=1$. Then, $\varepsilon^{2 q}+\varepsilon^{q}+\nu=0$. Therefore, $\left(\varepsilon^{q}+\varepsilon\right)^{2}+$ $\left(\varepsilon^{q}+\varepsilon\right)=0$, whence $\varepsilon^{q}+\varepsilon+1=0$. With this choice of ε, the system given by (4) and (1) reads as

$$
\begin{align*}
& \left(a^{1}+b^{1}\right)\left(x_{1}^{0}\right)^{2}+\left[\left(a^{0}+a^{1}\right)+\nu\left(a^{1}+b^{1}\right)\right]\left(x_{1}^{1}\right)^{2}+b^{1} x_{1}^{0} x_{1}^{1}+m_{1}^{1} x_{1}^{0}+\left(m_{1}^{0}+m_{1}^{1}\right) x_{1}^{1} \\
& +\ldots+\left(a^{1}+b^{1}\right)\left(x_{r-1}^{0}\right)^{2}+\left[\left(a^{0}+a^{1}\right)+\nu\left(a^{1}+b^{1}\right)\right]\left(x_{r-1}^{1}\right)^{2}+b^{1} x_{r-1}^{0} x_{r-1}^{1} \\
& +m_{r-1}^{1} x_{r-1}^{0}+\left(m_{r-1}^{0}+m_{r-1}^{1}\right) x_{r-1}^{1}+d^{1}=0 . \tag{9}
\end{align*}
$$

The discussion of the (possibly degenerate) quadric \mathcal{Q} of Equation (9) may be carried out in close analogy to what has been done before.

Observe however that, as also pointed out in the remark before [19, Theorem 1.2], some caution is needed when quadrics are studied and classified in even characteristic. Indeed, let

$$
A_{\infty}=\left(\begin{array}{ccc}
2\left(a^{1}+b^{1}\right) & b_{1} & \\
b_{1} & 2\left(\left(a^{0}+a^{1}\right)+\nu\left(a^{1}+b^{1}\right)\right) & \\
& & \ddots
\end{array}\right)
$$

be the formal matrix associated to the quadric \mathcal{Q}_{∞} of equation

$$
\begin{gathered}
\quad\left(a^{1}+b^{1}\right)\left(x_{1}^{0}\right)^{2}+\left[\left(a^{0}+a^{1}\right)+\nu\left(a^{1}+b^{1}\right)\right]\left(x_{1}^{1}\right)^{2}+b^{1} x_{1}^{0} x_{1}^{1}+\ldots \\
+\left(a^{1}+b^{1}\right)\left(x_{r-1}^{0}\right)^{2}+\left[\left(a^{0}+a^{1}\right)+\nu\left(a^{1}+b^{1}\right)\right]\left(x_{r-1}^{1}\right)^{2}+b^{1} x_{r-1}^{0} x_{r-1}^{1}=0 .
\end{gathered}
$$

Its determinant is equal to

$$
\operatorname{det} A_{\infty}=\left[4\left(a^{1}+b^{1}\right)\left(a^{0}+a^{1}+\nu\left(a^{1}+b^{1}\right)\right)+\left(b^{1}\right)^{2}\right]^{r-1} .
$$

In order to encompass the case q even, $\operatorname{det} A_{\infty}$ needs to be regarded as a polynomial function in the ring $\mathbb{Z}\left[z_{0}, z_{1}, z_{2}, z_{3}\right]$ where the terms $\left(a^{0}, a^{1}, b^{0}, b^{1}\right)$ are replaced by indeterminates $z_{0}, z_{1}, z_{2}, z_{3}$; then we regard it over $\operatorname{GF}(q)$ for $\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=$ $\left(a^{0}, a^{1}, b^{0}, b^{1}\right)$. This gives $\operatorname{det} A_{\infty}=b_{1}^{2(r-1)}$. Here $b_{1} \neq 0$ since, by our assumption, $b^{q} \neq b$. From [19, Theorem 1.2 (i)], the quadric \mathcal{Q}_{∞} must be non-degenerate. Furthermore, by [19, Theorem 1.2 (ii)] and the successive Lemma 22.2.2 the nature of
\mathcal{Q}_{∞} can be ascertained as follows. Let B the matrix

$$
B=\left(\begin{array}{ccccc}
0 & b^{1} & & & \tag{10}\\
-b^{1} & 0 & & & \\
& & \ddots & & \\
& & & 0 & b_{1} \\
& & & -b^{1} & 0
\end{array}\right)
$$

and define

$$
\alpha=\frac{\operatorname{det} B-(-1)^{r-1} \operatorname{det} A_{\infty}}{4 \operatorname{det} B} .
$$

A straightforward computation shows that

$$
\alpha=\frac{\left(b^{1}\right)^{2(r-1)}+\left(4\left(a^{1}+b^{1}\right)\left(a^{0}+a^{1}+\nu\left(a^{1}+b^{1}\right)\right)+\left(b^{1}\right)^{2}\right)^{r-1}}{4\left(b^{1}\right)^{2(r-1)}} .
$$

Here α has to be regarded as the quotient of two polynomials in $\mathbb{Z}\left[z_{0}, z_{1}, z_{2}, z_{3}\right]$ where the terms $\left(a^{0}, a^{1}, b^{0}, b^{1}\right)$ are replaced by indeterminates $z_{0}, z_{1}, z_{2}, z_{3}$ and, then, evaluated it over $\operatorname{GF}(q)$ for $\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=\left(a^{0}, a^{1}, b^{0}, b^{1}\right)$. In particular, we get

$$
\alpha=\frac{\left(a^{1}+b^{1}\right)\left(a^{0}+a^{1}+\nu\left(a^{1}+b^{1}\right)\right)}{\left(b^{1}\right)^{2}} .
$$

Arguing as in [2, p. 439], we see that $\operatorname{Tr}_{q}(\alpha)=0$ and, hence, \mathcal{Q}_{∞} is hyperbolic also for q even.

We investigate the possible nature of \mathcal{Q} in either case q odd and q even. Suppose \mathcal{Q} to be non-singular; then \mathcal{Q} is a parabolic quadric and

$$
N=|\mathcal{Q}|-\left|\mathcal{Q}_{\infty}\right|=\frac{\left(q^{r-1}+1\right)\left(q^{r-1}-1\right)}{q-1}-\frac{\left(q^{r-1}+1\right)\left(q^{r-2}-1\right)}{q-1}=q^{r-2}\left(q^{r-1}+1\right) .
$$

If \mathcal{Q} is singular, then \mathcal{Q} is a cone with vertex a point and basis a hyperbolic quadric; thus

$$
\begin{gathered}
N=|\mathcal{Q}|-\left|\mathcal{Q}_{\infty}\right|=\frac{q\left(q^{r-1}+1\right)\left(q^{r-2}-1\right)}{q-1}-\frac{\left(q^{r-1}+1\right)\left(q^{r-2}-1\right)}{q-1}+1= \\
=q^{r-2}\left(q^{r-1}+1\right)-q^{r-1}
\end{gathered}
$$

This gives the possible intersection numbers.
Finally, in order to show that $\mathcal{B}(a, b)$ is a minimal $\left(q^{2 r-3}-q^{r-2}\right)$-fold blocking set we can use the same techniques as those adopted to prove that $\mathcal{B}(a, b)$ is a minimal blocking set in Theorem 3.1.

4 4-weight q-ary codes

Throughout this section q is and odd prime power and $4 a^{q+1}+\left(b^{q}-b\right)^{2}=0$ for any $a \in \operatorname{GF}\left(q^{2}\right)^{*}$ and $b \in \operatorname{GF}\left(q^{2}\right) \backslash \operatorname{GF}(q)$. Let $\mathcal{B}(a, b)$ the affine set of equation (4). We prove the following theorem.

Theorem 4.1. The points of $\mathcal{B}(a, b)$ determine a projective code \mathcal{C} of length $n=$ $q^{2 r-1}$, dimension $k=r+1$ and weight enumerator $w(x):=\sum_{i} A_{i} x^{i}$ where

$$
A_{0}=1, \quad A_{q^{2 r-1}}=\left(q^{2}-1\right)
$$

and all of the remaining A_{i} 's are 0 with the exception of

- for $r \equiv 1(\bmod 4)$ or r odd and $q \equiv 1(\bmod 4)$,

$$
\begin{gathered}
A_{q^{2 r-1}-q^{2 r-3}-q^{3(r-1) / 2}+q^{(3 r-5) / 2}}=\left(q^{r+1}-q^{r}\right)\left(q^{2}-1\right) \\
A_{q^{2 r-1}-q^{2 r-3}}=q^{2 r}-q^{2}+\left(q^{2 r}-q^{r+1}\right)\left(q^{2}-1\right), \quad A_{q^{2 r-1}-q^{2 r-3}+q^{(3 r-5) / 2}}=q^{r+2}-q^{r} ;
\end{gathered}
$$

- for $r \equiv 3(\bmod 4)$ and $q \equiv 3(\bmod 4)$,

$$
\begin{gathered}
A_{q^{2 r-1}-q^{2 r-3}-q^{(3 r-5) / 2}}=\left(q^{r+1}-q^{r}\right)\left(q^{2}-1\right), \quad A_{q^{2 r-1}-q^{2 r-3}}=q^{2 r}-q^{2}-q^{r+1}\left(q^{2}-1\right) \\
A_{q^{2 r-1}-q^{2 r-3}+q^{3(r-1) / 2}-q^{(3 r-5) / 2}}=q^{r+2}-q^{r} ;
\end{gathered}
$$

- for r even,

$$
\begin{gathered}
A_{q^{2 r-1}-q^{2 r-3}+q^{(3 r-4) / 2}}=A_{q^{2 r-1}-q^{2 r-3}-q^{(3 r-4) / 2}}=\frac{1}{2}\left(q^{r+1}-q^{r}\right)\left(q^{2}-1\right), \\
A_{q^{2 r-1}-q^{2 r-3}}=q^{2 r}+q^{r+2}-q^{r}-q^{2}+\left(q^{2 r}-q^{r+1}\right)\left(q^{2}-1\right) .
\end{gathered}
$$

In particular, each of these codes has exactly 4 non-zero weights.
Proof. We begin by proving the following lemma.
Lemma 4.2. The number of hyperplanes N_{j} meeting $\mathcal{B}(a, b)$ in exactly j points are as follows:
(a) For $r \equiv 1(\bmod 4)$, or r odd and $q \equiv 1(\bmod 4)$

$$
\begin{gathered}
N_{q^{2 r-3}+q^{3(r-1) / 2}-q^{(3 r-5) / 2}}=q^{r}, \quad N_{q^{2 r-3}}=\frac{q^{2 r}-1}{q^{2}-1}-1+q^{2 r}-q^{r+1} \\
N_{q^{2 r-3}-q^{(3 r-5) / 2}}=q^{r+1}-q^{r}
\end{gathered}
$$

(b) For $r \equiv 3(\bmod 4)$ and $q \equiv 3(\bmod 4)$

$$
\begin{gathered}
N_{q^{2 r-3}+q^{(3 r-5) / 2}}=q^{r}, \quad N_{q^{2 r-3}}=\frac{q^{2 r}-1}{q^{2}-1}-1+q^{2 r}-q^{r+1}, \\
N_{q^{2 r-3}-q^{3(r-1) / 2}+q^{(3 r-5) / 2}}=q^{r+1}-q^{r} .
\end{gathered}
$$

(c) For r even,

$$
\begin{gathered}
N_{q^{2 r-3}-q^{(3 r-4) / 2}}=\frac{1}{2}\left(q^{r+1}-q^{r}\right) \quad N_{q^{2 r-3}}=q^{r}+\frac{q^{2 r}-1}{q^{2}-1}-1+q^{2 r}-q^{r+1}, \\
N_{q^{2 r-3}+q^{3(r-4) / 2}}=\frac{1}{2}\left(q^{r+1}-q^{r}\right) .
\end{gathered}
$$

Proof. From the proof of Theorem 3.2 it follows that in order to prove Cases (a) and (b) we need to count the number of vectors $v:=\left(m_{1}^{0}, m_{1}^{1}, \ldots, m_{r-1}^{0}, m_{r-1}^{1}, d_{1}\right) \in$ $\mathrm{GF}(q)^{2 r-1}$ such that the matrix

$$
A:=\left(\begin{array}{cccccc}
& & & & & m_{1}^{0} \\
& & & & & m_{1}^{1} \\
& & & & & \vdots \\
& & & m_{r-1}^{1} \\
m_{1}^{0} & m_{1}^{1} & \cdots & m_{r-1}^{1} & d_{1}
\end{array}\right)
$$

of \mathcal{Q} with equation (7) has respectively rank $r-1, r$ or $r+1$.
We observe that A has rank $r-1$ if, and only if, there exist a scalar λ such that for all $i=1, \ldots, r-1$ we have $m_{i}^{1}=\lambda m_{i}^{0}$; also, the value of d_{1} turns out to be uniquely determined. Thus, the number of distinct possibilities for the parameters $m_{1}, \ldots, m_{r-1}, d$ is exactly q^{r}. The rank of the matrix of \mathcal{Q} is at least r in the remaining $q^{2 r}-q^{r}$ cases. Suppose it to be $r+1$. This means that the column $\left(m_{1}^{0}, m_{1}^{1}, \ldots, m_{r-1}^{0}, m_{r-1}^{1}\right)^{T}$ is linearly independent from the columns of A_{∞}; so, there are $q^{2 r-2}-q^{r-1}$ ways to choose $m_{1}^{0}, \ldots, m_{r-1}^{1}$. Furthermore, for any such choice the vector $v=\left(m_{1}^{0}, \ldots, m_{r-1}^{1}, d_{1}\right)$ is also independent from the first $2 r-2$ rows of A. So the overall number of planes with such property is $q^{2}\left(q^{2 r-2}-q^{r-1}\right)=q^{2 r}-q^{r+1}$. The remaining $q^{r+1}-q^{r}$ choices yield a matrix of rank r.

In Case (c), again from the proof of Theorem 3.2 when r is even, we need to count how often \mathcal{Q} with equation (7) turns out to be elliptic rather than hyperbolic. For any choice of the parameters $m_{1}, \ldots, m_{r-1}, d$ there is exactly one quadric \mathcal{Q} to consider. As \mathcal{Q}_{∞} is always a parabolic quadric, we can assume it to be fixed. Denote by $\sigma^{0}, \sigma^{+}, \sigma^{-}$respectively the number of quadrics \mathcal{Q} which are
parabolic, elliptic or hyperbolic. Clearly σ_{0} corresponds to the case in which $\operatorname{rank}(\mathcal{Q})=\operatorname{rank}\left(\mathcal{Q}_{\infty}\right)$ or $\operatorname{rank}(\mathcal{Q})=\operatorname{rank}\left(\mathcal{Q}_{\infty}\right)+2$. We have

$$
\sigma^{+}+\sigma^{0}+\sigma^{-}=q^{2 r}, \quad \sigma^{0}=q^{2 r}-q^{r+1}+q^{r} .
$$

Each point of $\mathcal{B}(a, b)$ lies on $\frac{q^{2 r}-1}{q^{2}-1}$ hyperplanes; of these $\frac{q^{2 r-2}-1}{q^{2}-1}$ pass through P_{∞} (and they must be discounted). Thus, we get

$$
\begin{aligned}
& q^{2 r-2}|\mathcal{B}|=q^{4 r-3}=\sigma^{0} q^{2 r-3}+\sigma^{+}\left(q^{2 r-3}+q^{(3 r-4) / 2}\right)+\sigma^{-}\left(q^{2 r-3}-q^{(3 r-4) / 2}\right)= \\
& q^{2 r-3}\left(\sigma^{0}+\sigma^{+}+\sigma^{-}\right)+q^{(3 r-4) / 2}\left(\sigma^{+}-\sigma^{-}\right)=q^{4 r-3}+\left(\sigma^{+}-\sigma^{-}\right) q^{(3 r-4) / 2}
\end{aligned}
$$

Hence, $\sigma^{+}=\sigma^{-}=\frac{1}{2}\left(q^{r+1}-q^{r}\right)$.
If we regard $\mathcal{B}(a, b)$ as a set of points in $\operatorname{PG}\left(r, q^{2}\right)$, then we can consider the projective code \mathcal{C} of length $q^{2 r-1}$ and dimension $r+1$ generated from $\mathcal{B}(a, b)$. Denote by A_{j} the number of codewords of \mathcal{C} of weight j. Observe that a hyperplane π meeting $\mathcal{B}(a, b)$ in n points always determines $\left(q^{2}-1\right)$ codewords of weight $q^{2 r-1}-n$. As the hyperplane at infinity is disjoint from $\mathcal{B}(a, b)$, we have

$$
A_{q^{2 r-1}}=\left(q^{2}-1\right) .
$$

The remaining weights follow from Lemma 4.2. This completes the proof of Theorem 4.1.

5 3-character multisets in $\mathrm{PG}\left(r, q^{2}\right), r$ even and 3-weight codes

We keep all previous notation. In [6, Theorem 4.1] it is shown that for $r=2, q$ odd and $4 a^{q+1}+\left(b^{q}-b\right)^{2} \neq 0$ or $r=2, q$ even and $\operatorname{Tr}_{q}\left(a^{q+1} /\left(b^{q}+b\right)^{2}\right)=1$, the set $\mathcal{B}(a, b)$ can be completed to a 2 -character multiset $\overline{\mathcal{B}}(a, b)$ yielding a two-weight code.

Here we prove that using a similar technique we can construct two infinite families of three-weight codes. The construction is as follows.

Let r be even. Suppose that either q is odd with $4 a^{q+1}+\left(b^{q}-b\right)^{2}$ a non-zero square in $\operatorname{GF}(q)$ or q is even and $\operatorname{Tr}_{q}\left(a^{q+1} /\left(b^{q}+b\right)^{2}\right)=1$. From Theorem 3.2 $\mathcal{B}(a, b)$ is a set of $q^{2 r-1}$ points of $\operatorname{AG}\left(r, q^{2}\right)$ with characters $q^{2 r-3}-q^{r-2}, q^{2 r-3}$, $q^{2 r-3}-q^{r-2}+q^{r-1}$.

Now consider the multiset $\overline{\mathcal{B}}(a, b)$ in $\operatorname{PG}\left(r, q^{2}\right)$ arising from $\mathcal{B}(a, b)$ by assigning multiplicity larger than 1 to the point P_{∞}.

More in detail the points of the 3 -character multiset $\overline{\mathcal{B}}(a, b)$ are exactly those of $\mathcal{B}(a, b) \cup\left\{P_{\infty}\right\}$ where each affine point of $\mathcal{B}(a, b)$ has multiplicity one, and P_{∞} has multiplicity j. In this way $\overline{\mathcal{B}}(a, b)$ turns out to have the following characters:

$$
j, q^{2 r-3}+j, q^{2 r-3}-q^{r-2}, q^{2 r-3}-q^{r-2}+q^{r-1} .
$$

The linear code \mathcal{C} associated with $\overline{\mathcal{B}}(a, b)$. is a $\left[q^{2 r-1}+j, r+1\right]_{q^{2}}$ code with weights

$$
q^{2 r-1}, q^{2 r-1}-q^{2 r-3}, q^{2 r-1}-q^{2 r-3}+q^{r-2}+j, q^{2 r-1}-q^{2 r-3}+q^{r-2}-q^{r-1}+j
$$

For $j=q^{r-1}-q^{r-2}$ of $j=q^{2 r-3}-q^{r-2}$ this is a 3 -weight code.
For $j=q^{r-1}-q^{r-2}$, the only hyperplane meeting $\overline{\mathcal{B}}(a, b)$ in j points is that at infinity; thus $N_{q^{r-1}-q^{r-2}}=1$; the hyperplanes meeting $\overline{\mathcal{B}}(a, b)$ in $q^{2 r-3}-q^{r-2}+q^{r-1}$ points are the hyperplanes passing through P_{∞} together with the hyperplanes for which the corresponding quadric \mathcal{Q} of equation (9) is singular. Therefore,

$$
N_{q^{2 r-3}-q^{r-2}+q^{r-1}}=\frac{q^{2 r}-1}{q^{2}-1}+q^{2 r-1} .
$$

The remaining hyperplanes intersect $\overline{\mathcal{B}}(a, b)$ in $q^{2 r-3}-q^{r-2}$ points and hence

$$
N_{q^{2 r-3}-q^{r-2}}=q^{2 r}-q^{2 r-1}-1 .
$$

Thus the weight enumerator of \mathcal{C} is $w(x):=\sum_{i} A_{i} x^{i}$ where

$$
A_{0}=1, \quad A_{q^{2 r-1}}=q^{2}-1
$$

and all of the remaining A_{i} 's are 0 with the exception of $A_{q^{2 r-1}-q^{2 r-3}}=q^{2 r}-1+q^{2 r-1}\left(q^{2}-1\right), \quad A_{q^{2 r-1}-q^{2 r-3}+q^{r-1}}=\left(q^{2 r}-q^{2 r-1}-1\right)\left(q^{2}-1\right)$.

For $j=q^{2 r-3}-q^{r-2}$ a similar argument gives

$$
\begin{gathered}
N_{2 q^{2 r-3}-q^{r-2}}=\frac{q^{2 r}-1}{q^{2}-1}, \quad N_{q^{2 r-3}-q^{r-2}+q^{r-1}}=q^{2 r-1} \\
N_{q^{2 r-3}-q^{r-2}}=q^{2 r}-q^{2 r-1} .
\end{gathered}
$$

In this case the weight enumerator of \mathcal{C} is $w(x):=\sum_{i} A_{i} x^{i}$ where

$$
A_{0}=1, \quad A_{q^{2 r-1}}=q^{2 r}-1,
$$

and all of the remaining A_{i} 's are 0 with the exception of

$$
A_{q^{2 r-1}-q^{2 r-3}}=\left(q^{2}-1\right) q^{2 r-1}, \quad A_{q^{2 r-1}-q^{r-1}}=q^{2 r-1}(q-1)\left(q^{2}-1\right) .
$$

References

[1] A. Aguglia, Quasi-Hermitian varieties in $\operatorname{PG}\left(r, q^{2}\right), q$ even, Contrib. Discrete Math. 8 (2013), no. 1, 31-37.
[2] A. Aguglia, A. Cossidente, G. Korchmáros, On quasi-Hermitian varieties, J. Combin. Des. 20 (2012), no. 10, 433-447.
[3] A. Aguglia, L. Giuzzi, Intersections of the Hermitian surface with irreducible quadrics in $\mathrm{PG}\left(3, q^{2}\right)$, q odd, Finite Fields Appl. 30 1-13 (2014).
[4] A. Aguglia, L. Giuzzi, Intersections of the Hermitian surface with irreducible quadrics in even characteristic, preprint (arXiv:1407.8498)
[5] A. Aguglia, L. Giuzzi, G. Korchmáros, Construction of unitals in Desarguesian planes, Discrete Math. 310 (2010), 3162-3167.
[6] A. Aguglia, G. Korchmáros, Multiple blocking sets and multisets in Desarguesian planes, Des. Codes Cryptogr. 56, 177-181 (2010).
[7] D. Bartoli, A. A. Davydov, M. Giulietti, S. Marcugini, F. Pambianco, Multiple coverings of the farthest-off points with small density from projective geometry, Adv. Math. Commun. 9 (2015), no. 1, 63-85.
[8] S. Barwick, G. Ebert, Unitals in Projective Planes, Springer Monographs in Mathematics (2008).
[9] A. Cossidente, O. H. King, Some two-character sets, Des. Codes Cryptogr. 56 (2010), no. 2-3, 105-113.
[10] A. Cossidente, T. Penttila, Two-character sets arising from gluings of orbits, Graphs Combin. 29 (2013), no. 3, 399-406.
[11] A. R. Calderbank,, Goethals, J. M. Three-weight codes and association schemes, Philips J. Res. 39 (1984), no. 4-5, 143-152.
[12] R. Calderbank, W. M. Kantor, The geometry of two-weight codes, Bull. London Math. Soc. 18 (1986), no. 2, 97-122.
[13] I. M., Chakravarti, Geometric construction of some families of two-class and three-class association schemes and codes from nondegenerate and degenerate Hermitian varieties, Graph theory and combinatorics (Marseille-Luminy, 1990). Discrete Math. 111 (1993), no. 1-3, 95-103.
[14] S. Dodunekov, J. Simonis, Codes and projective multisets, Electron. J. Combin. 5 (1998), Research Paper 37.
[15] C. Ding, C. Li, N. Li, Z. Zhou, Three-weight cyclic codes and their weight distributions, Discrete Math. 339 (2016), 415-427.
[16] K. Ding, C. Ding, Binary Linear Codes With Three Weights, IEEE Comm. Letters 18 (2014), 1879-1882.
[17] K. Ding, C. Ding, A class of two-weight and three-weights codes and their applications in secret sharing arXiv:1503.065123.
[18] R. Hill, E. Kolev, A survey of recent results on optimal linear codes, Combinatorial designs and their applications (Milton Keynes, 1997), 127-152, Chapman and Hall/CRC Res. Notes Math., 403, Chapman and Hall/CRC, Boca Raton, FL, 1999.
[19] J.W.P. Hirschfeld, J. A. Thas, General Galois Geometries, Second Edition, Springer-Verlag (2015).
[20] B. Segre, Forme e geometrie Hermitiane, con particolare riguardo al caso finito, Ann. Mat. Pura Appl. (4) 70, 1-201 (1965).
[21] M.A. Tsfasman, S.G. Vlăduţ, D.Yu. Nogin, Algebraic geometric codes: basic notions, Mathematical Surveys and Monographs 139, American Mathematical Society (2007).
[22] H.N. Ward, Divisible codes - a survey, Serdica Math. J. 27, 263-278 (2001).
Authors' addresses:
Angela Aguglia
Luca Giuzzi
Department of Mechanics, Mathematics
D.I.C.A.T.A.M.
and Management
Politecnico di Bari
Via Orabona 4, I-70126 Bari (Italy)
angela.aguglia@poliba.it
Section of Mathematics
Università di Brescia
Via Branze 43, I-25123, Brescia (Italy)
luca.giuzzi@unibs.it

[^0]: *Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via Orabona 4, I-70126 Bari
 ${ }^{\dagger}$ D.I.C.A.T.A.M., Università di Brescia, Via Branze 43, I-25123 Brescia

