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MOSAICS OF COMBINATORIAL DESIGNS

OLIVER WILHELM GNILKE, MARCUS GREFERATH,
AND MARIO OSVIN PAVČEVIĆ

Abstract. Looking at incidence matrices of t - (v, k, λ) designs as v×b

matrices with 2 possible entries, each of which indicates incidences of a
t -design, we introduce the notion of a c -mosaic of designs, having the
same number of points and blocks, as a matrix with c different entries,
such that each entry defines incidences of a design. In fact, a v×b matrix
is decomposed in c incidence matrices of designs, each denoted by a
different colour, hence this decomposition might be seen as a tiling of a
matrix with incidence matrices of designs as well. These mosaics have
applications in experiment design when considering a simultaneous run
of several different experiments. We have constructed infinite series of
examples of mosaics and state some probably non-trivial open problems.
Furthermore we extend our definition to the case of q -analogues of
designs in a meaningful way.

1. Introduction

A t -design with parameters (v, k, λ) is a collection B of k -element subsets
(blocks) of a v -element set X (of points), such that every t -element subset
of X is contained in exactly λ blocks. In such a case we speak sometimes
of a t -(v, k, λ) design.

It is known that t , v , k and λ must satisfy a number of more or less com-
plicated (necessary) divisibility conditions whereas for t ≥ 2 the existence
of a t -design with parameters (v, k, λ) is only known for particular cases
which are not described by any general set of sufficient conditions.

A particularly convenient way to represent a design B is a binary (v × b) -
matrix, where b is the number of blocks of the design and can be calculated
as b = λ ·

(

v
t

)

/
(

k
t

)

. This matrix, also called the incidence matrix of B ,
is labeled by the points in X and the blocks of B , and its entries give
the value of the incidence, namely 1 for incident and 0 for non-incident.
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Each point of a t -design is incident with the same number of blocks, usually
denoted by r = λ ·

(

v−1
t−1

)

/
(

k−1
t−1

)

.

The complement B of a design B has the same point set X , while its
blocks are complements of the blocks of B . The complement of a t -design
is a t -design as well. In particular, the complement of a 2 -(v, k, λ) design
is a 2 -(v, v − k, b− 2r + λ) design. Therefore, one can say that the entries
equal to 1 in an incidence matrix indicate incidences of a design, while the
0’s indicate incidences of its complement.

In the paper [1], dealing primarily with 1 -designs, the notion of a coloured
constant-composition design was thought of as a generalisation of this binary
understanding of incidence in that the incidence matrix may be multi-valued
(coloured) such that the set of subsets defined by every colour forms a design
with its individual parameter set. A simple example for this was given in
[1, example 1.3] and looks as follows.

Example 1.1. The matrix




















2 3 3 1 3 1 1
1 2 3 3 1 3 1
1 1 2 3 3 1 3
3 1 1 2 3 3 1
1 3 1 1 2 3 3
3 1 3 1 1 2 3
3 3 1 3 1 1 2





















is the incidence matrix of a 3 -coloured constant composition design in the
sense of [1].

As a motivation for the work on the paper at hand, we observed that colours
1 and 3 each define a 2 -design with parameters (7, 3, 1) whereas colour 2
gives rise to the trivial 2 -design with parameters (7, 1, 0) .

Indeed, all the v × b incidences between the points of X and b copies of
X itself can be partitioned in a mathematical constellation that might be
best described by the expression:

2 -(7, 3, 1) ⊕ 2 -(7, 3, 1) ⊕ 2 -(7, 1, 0) .

It may get even clearer if we remark that the all-one matrix J of dimension
v × b can be written as a sum of the corresponding incidence matrices of
mentioned 2 -designs.

As a matter of fact, we are able to immediately generalise this basic idea to
any prime power v ≡ 3 mod 4 using quadratic residues and non-residues
in GF(v) , forming developments of the Paley difference sets in the additive
groups of GF (v) , so that we clearly and constructively obtain 3 -valued
incidence matrices describing decompositions of the form:

2 -

(

v,
v − 1

2
,
v − 3

4

)

⊕ 2 -

(

v,
v − 1

2
,
v − 3

4

)

⊕ 2 -(v, 1, 0) .



MOSAICS OF COMBINATORIAL DESIGNS 3

Specifically, for v = 31 , we have the example and we ask, if, particularly
for v = b = 31 , there exist other decompositions of this kind.

Purely arithmetically, we may think of

2 -(31, 15, 7) ⊕ 2 -(31, 10, 3) ⊕ 2 -(31, 6, 1) ,

however, so far, we have not been able to provide an example of a 3 -valued
incidence matrix giving rise to this decomposition.

This paper is devoted to developing a formalisation of the general idea un-
derlying these thoughts. To the best of our knowledge, there has not been
any approach to this phenomenon in the past, and we hope to contribute to
a new chapter in the theory of combinatorial designs and possibly also that
of designs over GF(q) .

2. Main Definition and Necessary Conditions

Let us recapitulate the main notion introduced in the previous section. We
can take the all-one matrix of dimensions v× b and try to write it as a sum
of incidence matrices of t -designs:

J = M1 +M2 + · · · +Mc,

where Mj ’s are incident matrices of designs Bj . Since the complement of
a design is a design again, this equation is equivalent to the next one:

M i = M1 +M2 + · · ·+Mi−1 +Mi+1 + · · ·+Mc.

If we look at the last expression structurally, we see that we have decomposed
every block of the design Bi into c−1 differently coloured subblocks in the
way that every set of b subblocks of the same colour constitutes a design.
This fact justifies the way we have written down our constellations:

(1) t -(v, v, b) = t1 -(v, k1, λ1)⊕ t2 -(v, k2, λ2)⊕ · · · ⊕ tc -(v, kc, λc) ,

or equivalently

(2) ti -
(

v, ki, λi

)

= t1 -(v, k1, λ1)⊕ t2 -(v, k2, λ2)⊕ · · · ⊕ ti−1 -(v, ki−1, λi−1)

⊕ ti+1 -(v, ki+1, λi+1)⊕ · · · ⊕ tc -(v, kc, λc) .

We would like to point out that it is more natural and elegant to look at
this decomposition on the level of incidence matrices.

Definition 2.1. Let c be a positive integer and let Bi be designs with
parameters ti -(v, ki, λi) , i = 1, . . . , c with the same number of points v
and blocks b . A c -mosaic of designs B1,B2, . . . ,Bc is a (v × b) matrix
M = [mpq] , mpq ∈ {l1, l2, . . . , lc} for which holds that matrices Mi defined
as

[Mi]pq =

{

1, mpq = li
0, otherwise

are incidence matrices of designs Bi .
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Since there are a lot of parameters to be mentioned, we find it most conve-
nient to denote a c -mosaic of designs with given parameters in the way as
written in equations (1) and (2).

Remark 2.2. The prerequisites of this definition lead, presented more ex-
plicitely, to the following facts:

(1) The integrality conditions for each parameter set ti - (v, ki, λi) are
satisfied.

(2) b = λ1

( v

t1
)

(k1t1)
= λ2

( v

t2
)

(k2t2)
= · · · = λc

( v

tc
)

(kctc)

Remark 2.3. If M is a c -mosaic of designs with parameters given above,
then it holds:

(1) k1 + k2 + · · ·+ kc = v ,
(2) r1 + r2 + · · ·+ rc = b .

Conditions listed in the two remarks above form necessary conditions for
the existence of a c -mosaic of designs. We are not aware of any further
necessary conditions to be satisfied.

The following equations follow immediately from the existence of a c -
mosaic:

M1 +M2 + · · · +Mc = Jv,b(3)

l1M1 + l2M2 + · · · + lcMc = M(4)

Remark 2.4. Given c disjoint designs, such that k1 + · · · + kc < v the
remaining entries in the v×r incidence matrix form a (multiset) 1 -design.
We sometimes refer to such mosaics as partial mosaics, discarding the final
trivial design.

Example 2.5. (a) The matrix of order v

M =















1 2 3 · · · v − 1 v
v 1 2 · · · v − 2 v − 1

v − 1 v 1 · · · v − 3 v − 2
...

...
...

...
. . .

...
2 3 4 · · · v 1















is a trivial v -mosaic of designs with parameters 2 -(v, 1, 0) .
(b) Incidence matrices of a t -design and its complement, coloured in any

two different colours, define a 2 -mosaic.
(c) The previously mentioned decomposition consisting of two Hadamard

2 -designs on v points and a the trivial 2 -(v, 1, 0) design define a 3 -
mosaic.
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3. Further Constructions of Mosaics

The next obvious question for our investigation was to find non-trivial mo-
saics of designs. In particular, we have concentrated on 2 -designs, and how
they can be composed together in such a mosaic. Before presenting a general
theorem, we will show, how we tackled this problem given the example of
affine planes.

Example 3.1. (a) The incidence matrix of an affine plane of order 3 ,
i.e. the 2 -design with parameters (9, 3, 1) , is a (9×12) -matrix. Clearly,
3 copies of such planes satisfy the necessary conditions and we come up
with the following 3 -mosaic.





























1 1 2 3 3 3 1 2 2 2 3 1
1 3 1 2 3 2 3 1 2 1 2 3
1 2 3 1 3 1 2 3 2 3 1 2

2 1 2 3 1 2 3 1 3 3 1 2
2 3 1 2 1 1 2 3 3 2 3 1
2 2 3 1 1 3 1 2 3 1 2 3

3 1 2 3 2 1 2 3 1 1 2 3
3 3 1 2 2 3 1 2 1 3 1 2
3 2 3 1 2 2 3 1 1 2 3 1





























In our notation, this is a 3 -mosaic given by

2 -(9, 9, 12) = 2 -(9, 3, 1) ⊕ 2 -(9, 3, 1) ⊕ 2 -(9, 3, 1) .

(b) Being able to follow the same pattern, here is a (16 × 20) -matrix rep-
resenting a 4 -mosaic of 4 copies of the affine plane of order 4 .

























































0 0 1 2 3 1 0 1 2 3 2 0 1 2 3 3 0 1 2 3
0 1 0 3 2 1 1 0 3 2 2 1 0 3 2 3 1 0 3 2
0 2 3 0 1 1 2 3 0 1 2 2 3 0 1 3 2 3 0 1
0 3 2 1 0 1 3 2 1 0 2 3 2 1 0 3 3 2 1 0

1 0 1 2 3 0 1 0 3 2 3 2 3 0 1 2 3 2 1 0
1 1 0 3 2 0 0 1 2 3 3 3 2 1 0 2 2 3 0 1
1 2 3 0 1 0 3 2 1 0 3 0 1 2 3 2 1 0 3 2
1 3 2 1 0 0 2 3 0 1 3 1 0 3 2 2 0 1 2 3

2 0 1 2 3 3 2 3 0 1 0 3 2 1 0 1 1 0 3 2
2 1 0 3 2 3 3 2 1 0 0 2 3 0 1 1 0 1 2 3
2 2 3 0 1 3 0 1 2 3 0 1 0 3 2 1 3 2 1 0
2 3 2 1 0 3 1 0 3 2 0 0 1 2 3 1 2 3 0 1

3 0 1 2 3 2 3 2 1 0 1 1 0 3 2 0 2 3 0 1
3 1 0 3 2 2 2 3 0 1 1 0 1 2 3 0 3 2 1 0
3 2 3 0 1 2 1 0 3 2 1 3 2 1 0 0 0 1 2 3
3 3 2 1 0 2 0 1 2 3 1 2 3 0 1 0 1 0 3 2
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The bold entries in part (b) of the previous example shows how GF(4) can
be used in order to describe the decomposition. Let

A :=









0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0









and M :=









0 0 0 0
0 1 2 3
0 2 3 1
0 3 1 2









denote the addition and multiplication table of GF(4) . Then, up to column
rearrangements, the above matrix can be written as:










m0,0 + A m0,1 + A m0,2 + A m0,3 + A a0,0J4,1 a0,1J4,1 a0,2J4,1 a0,3J4,1

m1,0 + A m1,1 + A m1,2 + A m1,3 + A a1,0J4,1 a1,1J4,1 a1,2J4,1 a1,3J4,1

m2,0 + A m2,1 + A m2,2 + A m2,3 + A a2,0J4,1 a2,1J4,1 a2,2J4,1 a2,3J4,1

m3,0 + A m3,1 + A m3,2 + A m3,3 + A a3,0J4,1 a3,1J4,1 a3,2J4,1 a3,3J4,1











where J4,1 denotes the all- 1 -column of length 4 . In fact, it is clear that
this mosaic allows a ”chained” tactical decomposition (see [2]) of all copies
of affine planes involved in this construction.

Theorem 3.2. Let F be the field with q elements. Then there is a q -
mosaic of affine planes of order q :

2 -
(

q2, q2, q2 + q
)

= 2 -
(

q2, q, 1
)

⊕ · · · ⊕ 2 -
(

q2, q, 1
)

.

Proof. Let A and M denote the operation tables (matrices) of the additive
and multiplicative groups of F respectively. Then the desired q -mosaic is
described and represented as a matrix of dimensions q2 × (q2 + q) by the
simple formula:

[M ⊗ Jq,q + Jq,q ⊗A | A⊗ Jq,1] .

Here ⊗ denotes the Kronecker product of matrices, and Jq,q is the all- 1
matrix of size q × q . Now it is an easy task to verify that each element
of F (representing here a colour) appears in each row q + 1 times and in
each column q times and that it appears in two different rows in the same
columns just once at the same time. �

3.1. Mosaics of Resolvable Designs. We present a general construction
for creating v

k
-mosaics out of identical copies of a resolvable t -(v, k, λ)

design, i.e.

t -(v, v, b) =

v
k
⊕

i=1

t -(v, k, λ) .

Definition 3.3. A design B on a set X is called resolvable if there exists
a partition of the set of blocks B into so called parallel classes, such that
every parallel class itself is a partition of the set of points X .

We note that for a resolvable t -(v, k, λ) design the number of parallel classes
is r := λ1 and each class contains v

k
blocks.



MOSAICS OF COMBINATORIAL DESIGNS 7

Among the many examples of resolvable designs, affine planes and Kirkman
triple systems are the most prominent ones.

Theorem 3.4. Let D be the incidence matrix of a resolvable t -(v, k, λ)
design, where the columns have been arranged by parallel classes. Let L be
a latin square of order v

k
with entries l1, . . . , l v

k
. Then M := D(Ir ⊗L) is

a v
k
-mosaic.

Proof. We see that every v× v
k

submatrix containing one full parallel class
is multiplied by a copy of the latin square L . Since every value l1, . . . , l v

k

appears exactly once in every column of L , every column of M contains
every block of a parallel class, each block multiplied by a different li . Since
these columns form a parallel class they completely partition the set of
points while having disjoint support, therefore completely covering the col-
umn without overlapping each other.
Furthermore every li appears exactly once in every row of (Ir ⊗L) , there-
fore every block of the original design is contained in every design of the
mosaic, which shows that each design is an exact copy of the original resolv-
able design. �

Example 3.5. A 2 -(15, 3, 1) resolvable design arranged by parallel classes.

D :=



















































1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0
0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0



















































We choose a simple cyclic shift for the latin square

L :=













1 5 4 3 2
2 1 5 4 3
3 2 1 5 4
4 3 2 1 5
5 4 3 2 1













and calculate the incidence matrix of a mosaic as M = D(I7 ⊗ L) .
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M :=



















































1 5 4 3 2 1 5 4 3 2 5 4 3 2 1 3 2 1 5 4 4 3 2 1 5 5 4 3 2 1 4 3 2 1 5
2 1 5 4 3 1 5 4 3 2 1 5 4 3 2 5 4 3 2 1 5 4 3 2 1 3 2 1 5 4 3 2 1 5 4
3 2 1 5 4 2 1 5 4 3 1 5 4 3 2 4 3 2 1 5 1 5 4 3 2 4 3 2 1 5 4 3 2 1 5
4 3 2 1 5 2 1 5 4 3 2 1 5 4 3 5 4 3 2 1 2 1 5 4 3 5 4 3 2 1 1 5 4 3 2
5 4 3 2 1 1 5 4 3 2 2 1 5 4 3 1 5 4 3 2 1 5 4 3 2 1 5 4 3 2 2 1 5 4 3
1 5 4 3 2 5 4 3 2 1 1 5 4 3 2 1 5 4 3 2 2 1 5 4 3 2 1 5 4 3 5 4 3 2 1
2 1 5 4 3 2 1 5 4 3 5 4 3 2 1 2 1 5 4 3 3 2 1 5 4 1 5 4 3 2 5 4 3 2 1
3 2 1 5 4 3 2 1 5 4 2 1 5 4 3 2 1 5 4 3 4 3 2 1 5 2 1 5 4 3 3 2 1 5 4
4 3 2 1 5 3 2 1 5 4 3 2 1 5 4 1 5 4 3 2 3 2 1 5 4 3 2 1 5 4 4 3 2 1 5
5 4 3 2 1 4 3 2 1 5 3 2 1 5 4 5 4 3 2 1 4 3 2 1 5 4 3 2 1 5 5 4 3 2 1
1 5 4 3 2 4 3 2 1 5 4 3 2 1 5 2 1 5 4 3 1 5 4 3 2 3 2 1 5 4 1 5 4 3 2
2 1 5 4 3 3 2 1 5 4 4 3 2 1 5 3 2 1 5 4 2 1 5 4 3 4 3 2 1 5 2 1 5 4 3
3 2 1 5 4 5 4 3 2 1 3 2 1 5 4 3 2 1 5 4 5 4 3 2 1 1 5 4 3 2 1 5 4 3 2
4 3 2 1 5 4 3 2 1 5 5 4 3 2 1 4 3 2 1 5 5 4 3 2 1 2 1 5 4 3 2 1 5 4 3
5 4 3 2 1 5 4 3 2 1 4 3 2 1 5 4 3 2 1 5 3 2 1 5 4 5 4 3 2 1 3 2 1 5 4



















































The earlier examples on affine planes can be constructed in this fashion as
well.

4. q -analogues of Mosaics

To define mosaics of q -designs a q -analogue of the disjoint property of
blocks is necessary. It seems most natural to consider a set of blocks to be
’disjoint’ if they are linearly independent, i.e.

dim

(

∑

i

Bi

)

=
∑

i

dim(Bi)

or, in other words, their sum is direct.

Definition 4.1. Let c be a positive integer and let Bi be q -designs with
parameters ti -(v, ki, λi; q) , 1 ≤ i ≤ c , with the same number of blocks b .

We denote by Bj
i , 1 ≤ j ≤ b , the different blocks of design Bi . We say

the designs Bi form a c -mosaic if

∑

i

ki = dim

(

∑

i

Bj
i

)

= v, for all j.

Remark 4.2. If we have designs such that
∑

i ki = dim
(

∑

i B
j
i

)

for all

j, we speak of a partial mosaic of q -designs.

Remark 4.3. As in remark 2.2 the following necessary conditions for a
(partial) mosaic of q -designs follow from the existence of the involved q -
designs:

(1) The integrality conditions for each parameter set ti -(v, ki, λi; q) are
satisfied
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(2) b = λ1

[ vt1]q
[k1t1 ]q

= λ2

[ vt2]q
[k2t2 ]q

= · · · = λc

[ vtc]q
[kctc ]q

Remark 4.4. Similar to remark 2.3 for a c -mosaic of q -designs as de-
scribed above the following equations holds:

(1) k1 + k2 + · · ·+ kc = v
(2) b(qki − 1) = (qv − 1)ri .

We can put these equations together and see that

qv =
∏

i

(

qv − 1

b
ri + 1

)

Example 4.5. It is well known that the Fano plane not only describes a
2 -(7, 3, 1) design but can also be seen as a 2 -(3, 2, 1; 2) design over F

3
2 .

We can add a trivial 1 -(3, 1, 1; 2) design to form a 2 -mosaic. See 1.1 and
consider only the colors 1 and 2 .

Example 4.6. In [3] the authors construct the first known 2 -(13, 3, 1; 2)
designs. They use the well known isomorphisms F

13
2

∼= F213 and F
∗

213
∼=

Z213−1 where the latter is defined through a generator α ∈ F
∗

213
with minimal

polynomial x13 + x12 + x10 + x9 + 1 . The design is described as the union
of 15 orbits under the action of the group Aα := Gal(F213/F2)⋉Cα , where
Cα is the group generated by Mα the multiplication with α . The following
list contains one representative from each orbit, described by the exponents
of the non-zero elements in the vector space.

V1 := [0, 1, 1249, 5040, 7258, 7978, 8105], V2 := [0, 7, 1857, 6681, 7259, 7381, 7908],

V3 := [0, 9, 1144, 1945, 6771, 7714, 8102], V4 := [0, 11, 209, 1941, 2926, 3565, 6579],

V5 := [0, 12, 2181, 2519, 3696, 6673, 6965], V6 := [0, 13, 4821, 5178, 7823, 8052, 8110],

V7 := [0, 17, 291, 1199, 5132, 6266, 8057], V8 := [0, 20, 1075, 3939, 3996, 4776, 7313],

V9 := [0, 21, 2900, 4226, 4915, 6087, 8008], V10 := [0, 27, 1190, 3572, 4989, 5199, 6710],

V11 := [0, 30, 141, 682, 2024, 6256, 6406], V12 := [0, 31, 814, 1161, 1243, 4434, 6254],

V13 := [0, 37, 258, 2093, 4703, 5396, 6469], V14 := [0, 115, 949, 1272, 1580, 4539, 4873],

V15 := [0, 119, 490, 5941, 6670, 6812, 7312]

It is possible to arrange four copies of this design into a partial 4 -mosaic.
We found that the first vector space and its images under multiplication with
α2, α4, and α8 form a direct sum.

V1 ⊕M2
αV1 ⊕M4

αV1 ⊕M8
αV1.

Applying the group action to these four summands gives us the first 106483
blocks of our mosaic. Similarly computer search finds that the following are
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direct sums

V1 ⊕M2
αV1 ⊕M4

αV1 ⊕M8
αV1, V2 ⊕M1

αV2 ⊕M4
αV2 ⊕M12

α V2

V3 ⊕M1
αV3 ⊕M2

αV3 ⊕M3
αV3, V4 ⊕M1

αV4 ⊕M2
αV4 ⊕M3

αV4

V5 ⊕M1
αV5 ⊕M2

αV5 ⊕M3
αV5, V6 ⊕M1

αV6 ⊕M2
αV6 ⊕M3

αV6

V7 ⊕M1
αV7 ⊕M2

αV7 ⊕M3
αV7, V8 ⊕M1

αV8 ⊕M2
αV8 ⊕M3

αV8

V9 ⊕M1
αV9 ⊕M2

αV9 ⊕M3
αV9, V10 ⊕M1

αV10 ⊕M2
αV10 ⊕M3

αV10

V11 ⊕M1
αV11 ⊕M2

αV11 ⊕M3
αV11, V12 ⊕M1

αV12 ⊕M2
αV12 ⊕M4

αV12

V13 ⊕M1
αV13 ⊕M2

αV13 ⊕M4
αV13, V14 ⊕M1

αV14 ⊕M2
αV14 ⊕M3

αV14

V15 ⊕M1
αV15 ⊕M2

αV15 ⊕M4
αV15

We therefore have a partial mosaic of four copies of the 2 -(13, 3, 1; 2) de-
sign. We can complete the mosaic with a trivial multi 1 -(13, 1, 195; 2) de-
sign containing 195 copies of each one dimensional vector space. This is
achieved by completing each of the above direct sums with a fifth summand
of dimension one and having the group Cα act on it. The group acts transi-
tively on the one dimensional vector spaces with stabilizer of size 13 . There-
fore every one dimensional vector space is repeated 13 times within each of
the 15 orbits and therefore 195 times in total.

5. Applications of Mosaics

Combinatorial design theory has its roots in the design of experiments [4],
arranging test subjects in suitable test groups, or arranging players in a tour-
nament. Assume v players and a game that needs exactly k participants,
then using a t -(v, k, λ) design ensures that when playing b games every
subset of t subjects play together exactly λ times. Resolvable designs have
been very useful, since they allow for a parallelization of test runs that are
in the same parallel class.
With games and experiments it is quite often the case that a parallelization
in this manner is not possible, either because only one gameboard is at hand
or it is required for the test to be supervised by the same person to ensure
consistency. In this case a mosaic can be used to parallelize several different
games/tests, each with its own required number of players ki , on the same
set of subjects. Assume a mosaic of the form

t1 -(v, k1, λ1)⊕ · · · ⊕ tc -(v, kc, λc)

then every column of the mosaic partitions the different players onto the
different games, while preserving the properties of the designs used in the
mosaic.
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A different application of mosaics lies in media access control. Mosaics of
2 -designs generated from disjoint difference sets have been shown to provide
significant improvements in rendevouz probability when channel hopping is
used while avoiding the need for any centralized organization [5].

Furthermore applications of designs in distributed storage systems (DSS)
have recently been discussed in several papers under the notion Fractional
Repetition Codes (FRC). For more information, see [6] and its bibliography.
It is conceivable that mosaics will provide novel features to these systems,
as they will contribute to parallelisation and thus increased efficiency.

Conclusion

In this paper we have introduced the notion of a mosaic to the theory of
combinatorial designs. Mosaics may be thought of as tilings of the ambient
space of a design with disjoint copies of this design or otherwise with disjoint
blocks of designs with different parameters. We were able to generalize our
ideas to q -analogs of t -designs and show the first results in this context.

Beside the rather immediate constructions of infinite families of mosaics
derived from resolvable designs, we have a few open problems: How can
mosaics be derived from non-resolvable designs? How can the concrete open
case after example 1.1 (before the second section of this paper) be tackled?
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