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Abstract

Entanglement-assisted quantum error correcting codes (EAQECCs) are a simple

and fundamental class of codes. They allow for the construction of quantum codes from

classical codes by relaxing the duality condition and using pre-shared entanglement

between the sender and receiver. However, in general it is not easy to determine the

number of shared pairs required to construct an EAQECC. In this paper, we show

that this number is related to the hull of the classical code. Using this fact, we give

methods to construct EAQECCs requiring desirable amount of entanglement. This

leads to design families of EAQECCs with good error performance. Moreover, we

construct maximal entanglement EAQECCs from LCD codes. Finally, we prove the

existence of asymptotically good EAQECCs in the odd characteristic case.

1 Introduction

Quantum codes are used to reduce decoherence over quantum information channels. Several

constructions for these codes have been proposed, the most important of which is the CSS

construction [3, 16] which provides stabilizer codes by exploiting the link between classical

and quantum codes. Other constructions of good quantum codes from classical codes in-

clude the operator quantum error-correcting codes (OQECCs) introduced by Krib et al. [12].

Although the OQECC construction provides good codes, the performance of the quantum

system cannot be predicted from the properties of the underlying classical codes. A sim-

ple and fundamental class of quantum codes called entanglement-assisted quantum error
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correcting codes (EAQECCs) was introduced by Hsieh et al. [8]. These codes have the ad-

vantages of both entanglement-assisted and operator quantum error correction. They also

showed that it is possible to construct entanglement-assisted operator quantum error cor-

recting codes (EAOQECCs) from EAQECCs, and in some cases EAQECCs can be used to

obtain catalytic codes [2]. EAQECCs allow the use of arbitrary classical codes (not necessar-

ily self-orthogonal) for quantum data transmission via pre-shared entanglement bits (ebits).

Further, the performance of the resulting quantum codes is determined by the performance

of the underlying classical codes. Fujiwara et al. [6] gave a general method for construct-

ing entanglement-assisted quantum low-density parity check (LDPC) codes. Hsieh et al. [9]

constructed EAQECC QC-LDPC codes which require only a small amount of initial shared

entanglement. Fan, Chen and Xu [5] provided a construction of entanglement-assisted quan-

tum maximum distance separable (MDS) codes with a small number of pre-shared maxi-

mally entangled states. In addition, Qian and Zhang [15] constructed maximal-entanglement

EAQECCs and proved the existence of asymptotically good EAQECCs in the binary case.

In this paper, good entanglement-assisted quantum codes are constructed. First, a link

between the number of maximally shared qubits required to construct an EAQECC from

a classical code and the hull of the classical code is given. Further, we give methods to

construct EAQECCs requiring desirable amounts of entanglement. This gives code designers

flexibility in the choice of parameters, e.g. MDS or near MDS EAQECCs with a small

number of pre-shared maximally entangled states. These codes differ from those given

in [5]. In addition, EAQECCs are obtained from Reed-Solomon (RS) and generalized Reed-

Solomon (GRS) codes. Codes based on linear codes with complementary dual (LCD) are

also given which give rise to so-called maximal-entanglement EAQECCs introduced by Lai

et al. [13]. It was shown in [13] that maximal-entanglement EAQECCs are close to the

hashing bound. Motivated by this fact we construct EAQECC from LCD codes, further we

prove the existence of a family of good EAQECCs from LCD codes. LCD codes are also

useful in that they provide flexibility in the choice of code parameters and can easily be

decoded as shown by Massey [14].

The remainder of this paper is organized as follows. In Section 2 we provide some defini-

tions and preliminary results. In Section 3 we prove that the number of maximally entangled

states is related to the hull of the classical codes. Several constructions of EAQECCs with

good performance and also with few shared states are presented in Section 4. In Section

5 EAQECCs are constructed from linear codes with complementary dual (LCD). Some of

these codes are MDS. Finally, an asymptotically good family of EAQECCs is obtained for

the odd characteristic case.
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2 Preliminaries

Let Fq denote the finite field of q elements, where q is a prime power. For positive integers

k ≤ n and d, an [n, k, d]q linear code is defined to be a k-dimensional subspace of Fn
q with

minimum Hamming distance d. An [n, k, d]q code is called maximum distance separable

(MDS) if the parameters satisfy d = n− k + 1.

Let ¯ : Fq2 → Fq2 be the map defined by a := aq for all a ∈ Fq2. For a k × n matrix

A = (aij)k×n and a vector v = (v1, v2, . . . , vn) over Fq2 (viewed as a 1 × n matrix), let

A := (aij)k×n and v := (v1, v2, . . . , vn). Denote by A† and v† the transpose matrices of A and

v, respectively. For v = (v1 . . . vn) and w = (w1 . . . wn) in Fn
q , the Euclidean inner product is

defined by 〈v, w〉 :=
∑

viwi, and the Hermitian inner product is defined by [v, w] :=
∑

viwi.

The Euclidean and Hermitian dual codes of C are defined as

C⊥ := {v ∈ Fn
q | 〈v, w〉 = 0 for all w ∈ C},

and

C⊥h := {v ∈ Fn
q2 | [v, w] = 0 for all w ∈ C}.

A linear code C of length n over Fq is said to be cyclic if it satisfies

(cn−1, c0, . . . , cn−2) ∈ C, whenever (c0, c1, . . . , cn−1) ∈ C.

Further, a cyclic code of length n is generated by a monic polynomial g(x) which divides

xn − 1. Let α be a primitive nth root of unity in some extension field of Fq. The set T of

all integers 0 ≤ i < n such that αi is a root of of g(x) is called the defining set of C. For

a ∈ {0, . . . , n − 1}, the set {aqj mod n | 0 ≤ j < m} is called a cyclotomic coset modulo n

containing a. It is well known that a defining set of a cyclic code of length n is a union of

cyclotomic cosets modulo n. A polynomial g(x) of degree r over Fq with g(0) 6= 0 is called

a self-reciprocal polynomial if g(x) = g(0)−1xrg(x−1).

Generalized Reed-Solomon (GRS) codes are good codes for constructing EAQECCs.

The GRS codes are defined follows. Let ℓ be a prime power. For each positive integer

n ≤ ℓ, let γ := (γ1, γ2, . . . , γn) and w = (w1, w2, . . . , wn) where γi is a non-zero element and

w1, w2, . . . wn are distinct elements in Fℓ. For each 0 ≤ k ≤ n, denote by Fℓ[X ]k the set of all

polynomials of degree less than k over Fℓ (for convenience, the degree of the zero polynomial

is defined to be −1). A GRS code of length n ≤ q and dimension k ≤ n is defined as

GRSn,k(γ, w) := {(γ1f(w1), γ2f(w2), . . . , γnf(vn)) | f(X) ∈ Fℓ[X ]k} . (1)

Choose the standard basis {1, x, . . . , xk−1} for Fℓ[X ]k. A generator matrix of GRSn,k(w, γ)

is given by

G =









γ1 γ2 . . . γn
γ1w1 γ2w2 . . . γnwn

...
...

. . .
...

γ1w
k−1
1 γ2w

k−1
2 . . . γnw

k−1
n









. (2)
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It is well known that GRSn,k(w, γ) is an MDS code with parameters [n, k, n − k + 1]ℓ and

the Hermitian dual (GRSn,k(w, γ))
⊥h of GRSn,k(w, γ) is also a GRS code GRSn,n−k(v, β)

for some β, v ∈ Fn
q2 .

An [[n, k, d; c]]q entanglement-assisted quantum error-correcting code (EAQECC) en-

codes k logical qudits into n physical qudits using c copies of maximally entangled states.

The performance of an EAQECC is measured by its rate k
n
and net rate (k−c

n
). When the

net rate of an EAQECC is positive it is possible to obtain catalytic codes as shown by Brun

et al. [2]. In [19], Wilde and Brun determined the optimal number of shared qubits. In

particular, they showed that EAQECCs can be constructed using classical linear codes as

follows.

Proposition 2.1 ( [19, Corollary 1]) Let H1 and H2 be parity check matrices of two lin-

ear codes [n, k1, d1]q and [n, k2, d2]q, respectively. Then an [[n, k1+k2−n+c,min{d1, d2}; c]]q
EAQECC can be obtained where c = rank(H1H2

t) is the required number of maximally en-

tangled states.

It is also possible to construct EAQECCs in the Hermitian case using the following result.

Proposition 2.2 ( [19, Corollary 2]) Let H be the parity check matrix of an [n, k, d]q2

linear code over Fq2. Then an [[n, 2k − n + c, d; c]]q EAQECC can be obtained where c =

rank(HH†) is the required number of maximally entangled states.

An [[n, 2k−n+ c, d; c]]q EAQECC such that c = n− k is called a maximal-entanglement

EAQECC. The Singleton bound for an EAQECC is given in the following proposition.

Proposition 2.3 ( [1]) An [[n, k, d; c]]q EAQECC satisfies

n+ c− k ≥ 2(d− 1),

where 0 ≤ c ≤ n− 1.

An EAQECC attaining this Singleton bound is called an MDS EAQECC.

3 The Number of Maximally Entangled States

In this section, the problem of constructing EAQECCs with good performance is reduced

to finding classical codes with good error capability and also with large rank(HH t) or

rank(HH†). For this, we provide a link between the number of maximally entangled states

given by rank(HH t) (resp., rank(HH†)) and the hull of a classical code.

4



3.1 The Euclidean Case

We now provide a means of finding rank(HH t). Let C be a linear [n, k, d]q code with parity

check matrix H . Denote by Hull(C) the Euclidean hull C ∩ C⊥ of C. In the following

proposition, we show that rank(HH t) is independent of H and can be determined in terms

of Hull(C).

Proposition 3.1 Let C be a linear [n, k, d]q code with parity check matrix H and generator

matrix G. Then rank(HH t) and rank(GGt) are independent of H and G so that

rank(HH t) = n− k − dim(Hull(C)) = n− k − dim(Hull(C⊥)),

and

rank(GGt) = k − dim(Hull(C)) = k − dim(Hull(C⊥)).

Proof. Since Hull(C) = Hull(C⊥), the second equality is obvious. Let m = dim(Hull(C))

and B = {h1, h2, . . . , hm} be a basis of Hull(C). Extend B to be a basis {h1, h2, . . . , hm,

hm+1, . . . , hn−k} of C⊥. Then

K =









h1

h2

...

hn−k









,

is a parity check matrix of C. Applying a suitable sequence of elementary row operations,

we have that H = AK for some invertible (n− k)× (n− k) matrix A over Fq, and therefore

HH t = AK(AK)t = AKKtAt.

Since A and At are invertible, we have

rank(HH t) = rank(KKt)

= n− k −m

= n− k − dim(Hull(C))

= n− k − dim(Hull(C⊥)),

which is independent of H as required. Since G is a parity check of C⊥, a similar argument

gives that rank(GGt) = k − dim(Hull(C)) = k − dim(Hull(C⊥)). �

The following corollary is a direct consequence of Propositions 2.1, 2.3 and 3.1.

Corollary 3.2 Let C be a classical [n, k, d]q linear code and C⊥ its Euclidean dual with

parameters [n, n−k, d⊥]q. Then there exist [[n, k−dim(Hull(C)), d;n−k−dim(Hull(C))]]q
and [[n, n − k − dim(Hull(C)), d⊥; k − dim(Hull(C))]]q EAQECCs. Further, if C is MDS

then the two EAQECCs are also MDS.
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3.2 The Hermitian Case

For a linear code C over Fq2 with parity check matrix H , denote by Hullh(C) the Hermitian

hull C ∩ C⊥h of C. We show in the following proposition that rank(HH†) is independent

of H and can be determined in terms of Hullh(C).

Proposition 3.3 Let C be a classical [n, k, d]q2 code with parity check matrix H and gen-

erator matrix G. Then rank(HH†) and rank(GG†)) are independent of H and G so that

rank(HH†) = n− k − dim(Hullh(C)) = n− k − dim(Hullh(C
⊥h)),

and

rank(GG†) = k − dim(Hullh(C)) = k − dim(Hullh(C
⊥h)).

Proof. SinceHullh(C) = Hullh(C
⊥h), the second equality is obvious. Letm = dim(Hullh(C))

andB = {h1, h2, . . . , hm} be a basis ofHullh(C). Extend B to be a basis {h1, h2, . . . , hm, hm+1,

. . . , hn−k} of C⊥h. Let

K =









h1

h2

...

hn−k









,

so K is a parity check matrix of C. After a suitable sequence of elementary row operations,

we have that H = AK for some invertible (n− k)× (n− k) matrix A over Fq2 , and then

HH† = AK(AK)† = AKK
†
A†.

Since A and A† are invertible, we have

rank(HH†) = rank(KK
†
)

= rank(KK†)

= n− k −m

= n− k − dim(Hullh(C))

= n− k − dim(Hullh(C
⊥h))

which is independent ofH as required. Since G is a parity check of of C⊥, a similar argument

gives that rank(GG†) = k − dim(Hull(C)) = k − dim(Hull(C⊥h)). �

The following corollary is a direct consequence of Propositions 2.2, 2.3 and 3.3.

Corollary 3.4 Let C be a classical [n, k, d]q2 code and let C⊥h be its Hermitian dual with pa-

rameters [n, n−k, d⊥h]q. Then there exists [[n, k−dim(Hullh(C)), d;n−k−dim(Hullh(C))]]q2

and [[n, n−k−dim(Hullh(C)), d⊥; k−dim(Hullh(C))]]q EAQECCs. If C is MDS, then the

two EAQECCs are also MDS.
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4 The New Constructions

In this section, we give some constructions of EAQECCs with few shared pairs. Some of the

resulting codes are MDS.

4.1 The Euclidean Case

Two constructions of EAQECCs based on the Euclidean duals of linear codes are given

below.

Proposition 4.1 Let q > 3 be a prime power and let C be a classical [n, k, d]q code such

that C⊥ ⊆ C and dim(C) − dim(C⊥) = ℓ. Then for each 0 ≤ c ≤ ℓ, there exists an

[[n + c, 2k − n, d′; c]]q EAQECC with d ≤ d′ ≤ d+ c.

Proof. Let H be a parity check matrix for C and let D be a linear code such that

C⊥ ⊕D = C. Further, let x1, x2, . . . , xc be linearly independent codewords in D. Moreover,

x1, x2, . . . , xc can be chosen such that xix
t
i 6= 0 and xix

t
j = 0 for all 1 ≤ i < j ≤ c. Since

q > 3 and {a2 | a ∈ F∗
q} contains at least 2 elements, for each i ∈ {1, 2, . . . , c} there exists

αi ∈ F∗
q such that α2

i 6= −xix
t
i. Note that the αi are not necessarily distinct. Let C ′ be the

code with parity check matrix

H ′ =









0 H

α1 x1

. . .
...

αc xc









.

Since αi 6= −xix
t
i for all 1 ≤ i ≤ c, we have that rank(H ′(H ′)t) = c. Further, as every

d− 1 columns of H are linearly independent and αi 6= 0 for all i ∈ {1, 2, . . . , c}, every d− 1

columns of H ′ are linearly independent. It follows that C is an [n + 1, k, d′]q code where

d ≤ d′ ≤ d+ c. Then by Proposition 2.1, there exists an [[n+ c, 2k− n, d′; c]]q EAQECC. �

Example 4.2 An excellent family of classical codes to obtain EAQECCs using the proposed

construction is the class of Reed-Solomon (RS)codes. Recall that an RS code denoted RSn,k

is a cyclic MDS codes of length n := q − 1 over Fq with generator polynomial g(x) =

(x − α) . . . (x − αr−1) and parameters [n, n − r + 1, r]q, where α is a primitive element of

Fq. In this case, each cyclotomic coset contains only one element. The code RS⊥
n,k is equal

to RSn,n−k. Hence if n < 2k or equivalently r < n+1
2
, then RSn,k will be dual containing.

Thus is T = {1, . . . , r} is the defining set of RSn,k, then the dual code has defining set

T = {1, . . . , r−l}, so from Proposition 4.1 there exists a [[q+c−1, 2k+1−q, d′ ≥ n−k+1; c]]q
code for all c ≤ l.
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Proposition 4.3 Let q be a prime power, C be an [n, k, d]q code such that C⊥ ⊆ C, and

c ≤ n − k + 1 be a positive integer. Then there exists an [[n + 1, 2k − n − 1 + c, d′; c]]q
EAQECC where d′ ∈ {d, d+ 1} if one of the following conditions holds.

(i) q = 2 and c is odd.

(ii) q = 3 and 3 ∤ c.

(iii) q ≥ 4.

Proof. Two cases need to be considered, 1) gcd(q, c) = 1, and 2) q ≥ 4 and gcd(q, c) 6= 1.

Let x be an element in Fn−k
q defined by

x :=







(0, 0, . . . , 0) if c = 1,

(1, . . . , 1
︸ ︷︷ ︸

c−1 copies

, 0, . . . , 0) if 2 ≤ c ≤ n− k + 1.

Then there exists a ∈ Fq \ {−1} such that

xxt = c− 1 =







a 6= −1 if gcd(q, c) = 1,

−1 if gcd(q, c) 6= 1.

Let ω be a primitive element of Fq and let α be an element of Fq defined by

α :=







1 if gcd(q, c) = 1,

ω if q ≥ 4 and gcd(q, c) 6= 1.

Since ω2 6= 1 for all q ≥ 4, it follows that xxt 6= −α2

Without loss of generality, assume that H = (In−k A) is a parity check matrix of C. Let

C ′ be the linear code with parity check matrix

H ′ =

(

α x 0

0 In−k A

)

.

Since

H ′(H ′)t =






α2 + xxt x 0

xt Ic−1 0

0 0 0




 ,

and −xxt 6= α2, we have rank(H ′(H ′)t) = c. It is not difficult to determine that every d− 1

columns ofH ′ are linearly independent. Hence C ′ is an [n+1, k, d′]q code with d′ ∈ {d, d+1}.

Then by Proposition 2.1, there exists an [[n + 1, 2k − n− 1 + c, d′; c]]q EAQECC. �

8



Remark 4.4 From the well-known CSS construction [3, 16] of symmetric quantum codes

based on Euclidean dual-containing codes, an [[n, 2k − n, d]]q CSS code can be constructed

if and only if there exists a Euclidean dual-containing [n, k, d]q code. Then combined with

Propositions 4.1 and 4.3, it can be concluded that if there exists an [[n, 2k−n, d]]q CSS code,

then EAQECCs with the following parameters can be constructed

i) [[n+ c, 2k − n, d′; c]]q with d′ ≥ d for all 0 ≤ c ≤ n− k, and

ii) [[n+ 1, 2k − n− 1 + c, d′; c]]q with d′ ≥ d for all 1 ≤ c ≤ n− k + 1.

Therefore, many EAQECCs can be constructed from Propositions 4.1 and 4.3.

4.2 The Hermitian Case

In this subsection, we construct EAQECCs based on Hermitian dual-containing classical

linear codes. We first extend the Euclidean constructions given previously to the Hermitian

case.

Proposition 4.5 Let q > 2 be a prime power and C be an [n, k, d]q2 code such that C⊥h ⊆ C

and dim(C)− dim(C⊥h) = ℓ. Then for each 0 ≤ c ≤ ℓ, there exists an [[n+ c, 2k− n, d′; c]]q
EAQECC with d ≤ d′ ≤ d+ c.

Proof. Let H be a generator matrix for C⊥h, D be a linear code such that C⊥h ⊕D = C,

and x1, x2, . . . , xc be linearly independent codewords in D. Moreover, x1, x2, . . . , xc can be

chosen such that xix
†
i 6= 0 and xix

†
j = 0 for all 1 ≤ i < j ≤ c. For each i ∈ {1, 2, . . . , c},

there exist αi ∈ F∗
q2 such that αi

q+1 6= −xix
†
i . Let C

′ be the code with parity check matrix

H ′ =









0 H

α1 x1

. . .
...

αc xc









.

Since αq+1
i 6= −xix

†
i for all 1 ≤ i ≤ c, we have that rank(H ′(H ′)†) = c. As every d − 1

columns of H are linearly independent and αi 6= 0 for all i ∈ {1, 2, . . . , c}, every d − 1

columns of H ′ are linearly independent. It follows that C is an [n + 1, k, d′]q2 code where

d ≤ d′ ≤ d+c, and then by Proposition 2.2 there exists an [[n+c, 2k−n, d′; c]]q EAQECC. �

In the following proposition, MDS EAQECCs are obtained using the construction given

in Proposition 4.5 and the dual-containing GRS codes defined in (1).
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Proposition 4.6 Let q > 2 be a prime power and 1 ≤ n ≤ q2 be an integer. Further, let C

be an [n, k, n− k + 1]q2 Hermitian dual-containing GRS code. C⊥h is generated by

H =









β1 β2 . . . βn

β1v1 β2v2 . . . βnvn
...

...
. . .

...

β1v
n−k−1
1 β2v

n−k−1
2 . . . βnv

n−k−1
n









,

for some non-zero βi and distinct elements vi in Fq2. If x = (β1v
n−k
1 , β2v

n−k
2 , . . . , βnv

n−k
n )

and α ∈ F∗
q2 such that αq+1 6= −xx†, then

H ′ =

(

0 H

α x

)

,

is a parity check matrix of an [n + 1, k, n− k + 2]q2 MDS code with rank(H ′(H ′)†) = 1. In

this case, [[n + 1, 2k − n, n− k + 2; 1]]q and [[n + 1, 1, k + 1, 2k − n− 1]]q MDS EAQECCs

can be constructed.

Proof. Let C ′ be a linear code with parity check matrix H ′. Then by Proposition 4.5, C ′

is an [n + 1, k, d]q2 code with n− k + 1 ≤ d ≤ n− k + 2 and rank(H ′(H ′)†) = 1. Since the

code with parity check matrix

(

H

x

)

is GRS, C ′ is an extended GRS code which is MDS.

Hence, C ′ is an [n+ 1, k, n− k + 2]q2 MDS code, and an [[n+ 1, 2k− n, n− k + 2; 1]]q MDS

EAQECC exists by Proposition 4.5.

By Proposition 3.3, (C ′)⊥h is an [n+1, n−k+1, k+1]q2 code with dim(Hullh(C
′)) = n−k.

Hence there exists an [[n + 1, 1, k + 1; 2k − n− 1]]q MDS EAQECC by Corollary 3.4. �

From Proposition 4.6, an MDS EAQECC can be constructed whenever a Hermitian dual-

containing (or equivalently self-orthogonal) GRS code exists. Hermitian dual-containing

GRS codes have been extensively studied, e.g. [11,20]. For the parameters given in Table 1,

there exists an [n, k, n−k+1]q2 Hermitian dual-containing GRS code (see the corresponding

references). Then by Proposition 4.6, there exists an [n + 1, k, n − k + 2]q2 code C with

dim(Hullh(C)) = n− k, so [[n + 1, 2k − n, n− k + 2; 1]]q and [[n + 1, 1, k + 1; 2k − n− 1]]q
MDS EAQECCs can be constructed.

Proposition 4.7 Let q > 2 be a prime power, C be an [n, k, d]q2 code such that C⊥h ⊆ C,

and c ≤ n− k + 1 be a positive integer. Then there exists an [[n + 1, 2k − n− 1 + c, d′; c]]q
EAQECC where d′ ∈ {d, d+ 1}.

10



q n k Reference

arbitrary rm ≤ n ≤ rm+ 1, 1 ≤ k ≤ m−1
q+1

[11, Theorem 2.3]

m|(q2 − 1) and

0 ≤ r ≤ q2−1
m

arbitrary mq − q + 1 ≤ n ≤ mq, n− (q−1−⌊r/m⌋)
2

≤ k ≤ n− 2 [11, Theorem 3.4]

1 ≤ m ≤ q

q = 2am+ 1 q2−1
a

n− (a + 1)m ≤ k ≤ n− 1 [20, Theorem 3.2]

q = 2am− 1 q2−1
2a

− q + 1 n− (a+ 1)m+ 3 ≤ k ≤ n− 1 [20, Theorem 3.7]

Table 1: Parameters for Constructing MDS EAQECCs

Proof. Let x be an element in Fn−k
q2 defined by

x :=







(0, 0, . . . , 0) if c = 1,

(1, . . . , 1
︸ ︷︷ ︸

c−1 copies

, 0, . . . , 0) if 2 ≤ c ≤ n− k + 1.

Then there exists a ∈ Fq2 \ {−1} such that

xx† = c− 1 =







a 6= −1 if gcd(q, c) = 1,

−1 if gcd(q, c) 6= 1.

Let ω be a primitive element of Fq2 and α be an element of Fq2 defined by

α :=







1 if gcd(q, c) = 1,

ω if gcd(q, c) 6= 1.

Since ωq+1 6= 1, it follows that xx† 6= −αq+1. Without loss of generality, assume that

H = (In−k A) is a generator matrix for C⊥h. Let C ′ be the code with parity check matrix

H ′ =

(

α x 0

0 In−k A

)

.

Since

H ′(H ′)† =






αq+1 + xx† x 0

x† Ic−1 0

0 0 0




 ,

and−xx† 6= αq+1, rank(H ′(H ′)†) = c. It is not difficult to determine that every d−1 columns

of H ′ are linearly independent. Hence C ′ is an [n+1, k, d′]q2 code with d′ ∈ {d, d+1}. Then

by Proposition 2.2, there exists an [[n+ 1, 2k − n− 1 + c, d′; c]]q EAQECC. �
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Remark 4.8 From the well-known CSS construction [3,11,16] of symmetric quantum codes

based on Hermitian dual-containing codes, an [[n, 2k−n, d]]q CSS code can be constructed if

and only if there exists a Hermitian dual-containing [n, k, d]q2 code. Then with Propositions

4.5 and 4.7, it can be concluded that if there exists an [[n, k, d]]q CSS code, then EAQECCs

with the following parameters can be constructed:

i) [[n+ c, 2k − n, d′; c]]q with d′ ≥ d for all 0 ≤ c ≤ n− k, and

ii) [[n+ 1, 2k − n− 1 + c, d′; c]]q with d′ ≥ d for all 1 ≤ c ≤ n− k + 1.

Therefore many EAQECCs can be constructed from Propositions 4.5 and 4.7.

4.3 MDS EAQECCs from the Hermitian Hulls of GRS Codes

In this section, a construction of MDS EAQECCs is presented which is based on the dimen-

sion of the Hermitian hull of GRS codes. In order to determined Hullh(GRSn,k(γ, w)), we

begin with the following lemma regarding finite fields.

Lemma 4.9 Let ℓ be a prime power and i ≥ 0 be an integer. Then
∑

a∈F∗

ℓ

ai = 0 if and only

if (ℓ− 1) ∤ i.

Proof. If (ℓ−1)|i, then ai = 1 for all a ∈ F∗
ℓ , and then

∑

a∈F∗

ℓ

ai = ℓ−1 6= 0 ∈ Fℓ. Conversely,

assume that (ℓ−1) ∤ i. If ω is a primitive element of Fℓ, then ωi 6= 1 and (ωi)ℓ−1 = 1. Hence
∑

a∈F∗

ℓ

ai =
l−2∑

j=0

(ωi)j = ((ωi)ℓ−1 − 1)(ωi − 1)−1 = 0 as required. �

The dimension of the Hermitian hull of some GRS codes is determined in the following

proposition.

Proposition 4.10 Let q > 2 be a prime power, n ∈ {(q − 1)r, (q − 1)r + 1 | 1 ≤ r ≤ q + 1,

and gcd(r, q) = 1}. Then there exist distinct elements γ ∈ (F∗
q2)

n and w ∈ Fn
q2 such that:

(i) dim(Hullh(GRS(n,0)(γ, w))) = 0, and

(ii) for each 1 ≤ k ≤ n, (i− 1)(q − 1) < k ≤ i(q − 1) for some positive integer i and

dim(Hullh(GRS(n,k)(γ, w)))

=







dim(Hullh(GRS(n,k−1)(γ, w))) if k = (i− 1)(q − 1),

dim(Hullh(GRS(n,k−1)(γ, w)))− 1 if (i− 1)(q − 1) + 1 < k ≤ q(i− 1) + i+ 1,

dim(Hullh(GRS(n,k−1)(γ, w))) + 1 if q(i− 1) + i+ 1 < k ≤ i(q − 1).

12



Proof. Let ω be a primitive element of Fq and {β0 = 1, β1, β2, . . . , βq} be a complete set

of representatives of the cosets of the multiplicative group F∗
q in F∗

q2. First consider the case

n ∈ {(q − 1)r | 1 ≤ r ≤ q + 1 and gcd(r, q) = 1}. For each 1 ≤ r ≤ q, let

w := (β0, β0ω, . . . , β0ω
q−2, β1, β1ω, . . . , β1ω

q−2, . . . , βr−1, βr−1ω, . . . , βr−1ω
q−2)

and let γ := (1, 1, . . . , 1) ∈ Fn
q2 . Then the elements in w are distinct.

The first statement is obvious. To prove the second statement, assume that 1 ≤ k ≤ n.

Clearly, (i − 1)(q − 1) < k ≤ i(q − 1) for some positive integer i. For convenience, denote

by gj the jth row of the generator matrix of GRS(n,k)(γ, w) as given in (2). Consider the

following three cases.

Case 1: k = (i− 1)(q− 1) + 1. Then (q2 − 1)|(k− 1 + q(k − 1)) and (q2 − 1) ∤ (k − 1 + qj) for

all 0 ≤ j < k − 1. It follows from Lemma 4.9 that

gkg
†
j+1 =

r−1∑

t=0

(

βk−1+qj
t

q−2
∑

m=0

ωm(k−1+qj)

)

=
r−1∑

t=0

(

βk−1+qj
t · 0

)

= 0, (3)

for all 0 ≤ j < k − 1 and gkg
†
k 6= 0 ∈ Fq2. Consequently

Hullh(GRS(n,k)(γ, w)) = Hullh(GRS(n,k−1)(γ, w)).

Case 2: (i− 1)(q − 1) + 1 < k ≤ q(i− 1) + i + 1. Then there exists a unique positive integer

s < k − 1 such that (q2 − 1)|(k − 1 + sq). Similar to (3), it follows from Lemma 4.9

that gkg
†
j+1 = 0 for all 0 ≤ j < s and s < j ≤ k − 1, and gkg

†
s+1 6= 0. We have that

Hullh(GRS(n,k−1)(γ, w)) = Hullh(GRS(n,k)(γ, w))⊕ 〈gs+1〉, and hence

dim(Hullh(GRS(n,k)(γ, w))) = dim(Hullh(GRS(n,k−1)(γ, w)))− 1.

Case 3: q(i− 1) + i+ 1 < k ≤ i(q − 1). In this case, there are no integers s ≤ k − 1 such that

(q2− 1)|(k− 1+ qi). Similar to (3), we have that gkg
†
j = 0 for all 1 ≤ j ≤ k. It follows

that Hullh(GRS(n,k)(γ, w)) = Hullh(GRS(n,k−1)(γ, w))⊕ 〈gk〉, and hence

dim(Hullh(GRS(n,k)(γ, w))) = dim(Hullh(GRS(n,k−1)(γ, w))) + 1.

We now consider n ∈ {(q − 1)r + 1 | 1 ≤ r ≤ q + 1 and gcd(r, q) = 1}. In this case, there

exists α ∈ F∗
q2 such that αq+1 6= −γγ†. Let γ′ = (α, 1, 1, . . . , 1) and

w′ = (0, 1, ω, ω2, . . . , ωq−2, β1, β1ω, β1ω
2, . . . , β1ω

q−2, . . . , βr−1, βr−1ω, βr−1ω
2, . . . , βr−1ω

q−2).

Using arguments similar to the previous case, it can be shown that GRS(n,k)(γ
′, w′) has the

required properties. �
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From Proposition 4.10, the dimension of the Hermitian hull of GRS(n,k)(γ, w) can be

determined recursively on k. Therefore, MDS EAQECCs corresponding to these codes can

be constructed.

Using the fact thatHullh(GRS(n,k)(γ, w)) = Hullh((GRS(n,k)(γ, w))
⊥h), Proposition 4.10

and Corollary 3.4, some parameters can be explicitly stated as in the following corollaries.

Corollary 4.11 Let q > 2 be a prime power, n ∈ {(q − 1)r, (q − 1)r + 1 | 1 ≤ r ≤

q + 1 and gcd(n, q) = 1}, and 1 ≤ k < q − 1. Then there exist [n, k, n − k + 1]q2 and

[n, n− k, k+ 1]q2 MDS codes such that dim(Hullh(C)) = k− 1, so there exist [[n, 1, n− k +

1;n− 2k + 1]]q and [[n, n− 2k + 1, k + 1; 1]]q MDS EAQECCs.

Corollary 4.12 Let q > 2 be a prime power, n ∈ {(q − 1)r, (q − 1)r + 1 | 1 ≤ r ≤

q + 1 and gcd(n, q) = 1}, and q − 1 ≤ k < 2(q − 1). Then there exist [n, k, n− k + 1]q2 and

[n, n− k, k+ 1]q2 MDS codes such that dim(Hullh(C)) = k− 2, so there exist [[n, 2, n− k +

1;n− 2k + 2]]q and [[n, n− 2k + 2, k + 1; 2]]q MDS EAQECCs.

Corollary 4.13 Let q > be a prime power, n ∈ {(q − 1)r, (q − 1)r + 1 | 1 ≤ r ≤ q +

1 and gcd(n, q) = 1}, and k = 2(q−1). Then there exist [n, k, n−k+1]q2 and [n, n−k, k+1]q2

MDS codes such that dim(Hullh(C)) = k − 3, so there exist [[n, 3, n − k + 1;n − 2k + 3]]q
and [[n, n− 2k + 3, k + 1; 3]]q MDS EAQECCs.

5 EAQECCs from LCD codes

Linear codes with complementary dual (LCD) are defined to be linear codes C whose dual

codes C⊥ satisfy C ∩ C⊥ = {0} [14]. In this section, we construct EAQECCs from LCD

codes. We have the following result from [14] which is a corollary of Proposition 3.3.

Proposition 5.1 If H is a parity check matrix of an [n, k]q linear code C, then C is an

LCD code if and only if the (n− k)× (n− k) matrix HH t is nonsingular.

It is obvious that if C is an [n, k, d]q LCD code, then its dual is an [n, n − k, d⊥]q LCD

code. From Proposition 3.3, it can be determined that the largest entanglement occurs with

LCD codes. Using Corollary 3.2, we obtain the following result.

Proposition 5.2 If there exists an [n, k, d]q LCD code C, then there exist [[n, k, d, n− k]]q
and [[n, n− k, d⊥, k]]q maximal-entanglement EAQECCs where d⊥ is the minimum distance

of C⊥.

In [18], the following result was given concerning cyclic LCD codes.

Lemma 5.3 Assuming that (n, q) = 1, if g(x) is the generator polynomial of an [n, k, d]q
cyclic code C, then C is an LCD code if and only if g(x) is a self-reciprocal polynomial.
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We now give an infinite family of maximal-entanglement EAQECCs which are also MDS.

Theorem 5.4 If q is even, then there exists MDS maximal-entangled EAQECC with param-

eters [[q+1, k, q−k+2, q+1−k]]q for all integers k such that 1 ≤ k ≤ q+1. If q is odd, then

there exists MDS maximal-entangled EAQECC with parameters [[q+1, k, q−k+2, q+1−k]]q
for all odd integers k such that 1 ≤ k ≤ q + 1.

Proof. From [4, Theorem 8], if q + 1 − k is odd (this case correspond to q and k both

even or odd), then the cyclic code generated by the polynomial g1(x) =
∏µ

i=−µ(z − αi) is a

[q + 1, q − 2µ, 2µ+ 2]q MDS cyclic code. Since g1(x) is self-reciprocal, the codes are LCD.

The results then follow from Proposition 5.2.

If q is even and k is odd, then the polynomial g2(x) =
∏q/2

i=q/2−µ(z − αi)(z − α−i) gen-

erates a [q + 1, q − 1 − 2µ, 2µ + 3]q MDS cyclic code from [4, Theorem 8]. Since g2(x) is

self-reciprocal, the codes are LCD by Lemma 5.3. The results then follow from Proposition

5.2. �

Theorem 5.5 Assume that q = pr is a prime power integer. If an [n, k, d]q linear code over

Fq exists, then there exists an [[N, k, d′; c]]q EAQECC with sd − 1 ≥ d′ ≥ d and (N, c) as

follows:

(i) (N, c) = (2n− k, 2n− 2k) if q is even and s = 2,

(ii) (N, c) = (3n− 2k, 3n− 3k) if q ≡ 1 mod 4 and s = 3,

(iii) (N, c) = (4n− 3k, 4n− 4k)) if q ≡ 3 mod 4 and s = 4, and

(iv) (N, c) = (5n− 4k, 5n− 5k) for any q and s = 5.

Proof. Let C be a linear code with parameters [n, k, d]q and generator matrix G = (Ik A).

For even q and s = 2, let C ′ be a linear code with generator matrix G′ = (Ik A A).

A simple calculation shows G′(G′)t = Ik. Hence, C ′ is a [2n − k, k, d′ ≥ d]q code with

parity check matrix H ′ such that rank(H ′(H ′)t) = 2n − 2k, and therefore, there exists a

[[2n− k, k, d′ ≥ d; 2n− 2k]]q EAQECC.

If q ≡ 1 mod 4 and s = 3, then there exists α ∈ Fq such that α2 + 1 = 0. The matrix

G′ = (Ik A αA) generates an LCD code C ′ over Fq with parity check matrix H ′ such that

rank(H(H ′)t) = 3n − 3k. Hence from Proposition 5.2 there exists a [[3n − 2k, k, d′ ≥

d; 3n− 3k]]q EAQECC.

If q ≡ 3 mod 4 and s = 4, then from [10, p. 281] there exist α, β ∈ Fq such that

α2+β2+1 = 0. Hence the matrix G′ = (In A αA βA) generates a [4n− 3k, k, d′ ≥ d]q LCD

code C ′ over Fq with parity check matrix H ′ such that rank(H(H ′)t) = 4n− 4k. Therefore

from Proposition 5.2 there exists a [[4n− 3k, k, d′ ≥ d; 4n− 4k]]q EAQECC.
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If q is a prime power and s = 5, then from [7, Theorem 370] we have that every prime is

the sum of four squares. Then there exist α, β, γ and δ in Fq such that α2+β2+γ2+ δ2 = p,

and the matrix G′ = (In AαA βA δA γA) generates an LCD code over Fq with parity check

matrix H ′ such that rank(H(H ′)t) = 5n − 5k. Hence from Proposition 5.2 there exists a

[[5n− 4k, k, 5n− 5k, d′; 5n− 5k]]q EAQECC with d′ ≥ d.

Finally, if G contains a codeword of minimum weight, then in each construction above

d′ ≤ sd− 1. �

One may ask if the EAQECCs obtained in Proposition 5.5 are good, i.e., if they have

good rate and positive net rate. A simple calculation gives the following results.

Corollary 5.6 If an [n, k, d]q linear code exists, then from Theorem 5.5 there exists an

[[N, k, d′; c]]q LCD EAQECC with positive net rate and rate larger than 1/2 if we have the

following:

(i) k/n > 2/3 if q is even,

(ii) k/n > 3/4 if q ≡ 1 mod 4, or

(iii) k/n > 4/5 if q ≡ 3 mod 4.

5.1 Asymptotically Good EAQECCs

Qian and Zhang [15] used binary LCD codes which are transitive to prove the existence of

an asymptotically good family of EAQECCs [17]. We prove in this section that the same

arguments are valid for finite fields of odd characteristic.

Definition 5.7 Let C be a family of [ni, ki, di]q linear codes. Then C is called asymptotically

good if R > 0 and δ > 0 where R is the asymptotic rate of C defined as R = limi→∞
ki
ni

and

δ is the relative distance of C defined as δ := limi→∞
di
ni
.

Definition 5.8 Let C be an [n, k, d1]qm code over Fqm and β := {b1, . . . , bm} be a basis of Fqm

over Fq. Then the q-ary expansion of C with respect to β, denoted by β(C), is a linear q-ary

code with parameters [nm,mk, d2 ≥ d1]q given by β(C) := {(cij)i,j ∈ Fmn
q |(c1, c2, . . . , cn) ∈

C and ci =
∑

j

cijbj}.

A subgroup G of the symmetric group Sn is called transitive if for any pair (i, j), 1 ≤

i, j ≤ n, there exists a permutation σ ∈ G such that σ(i) = j. A permutation σ ∈ Sn is

called an automorphism of the code C ⊆ Fn
q provided that for each vector (c1, . . . , cn) ∈ C,

the vector (cσ(1), . . . , cσ(n)) is also in C. Then Aut(C) is the group of all automorphisms of

C.
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Definition 5.9 A code C over Fq of length n is said to be transitive if its automorphism

group Aut(C) is a transitive subgroup of Sn.

Using the geometric Goppa codes, Stichtenoth [17] proved the following result.

Theorem 5.10 Let q = l2 and R, δ > 0 be real numbers with R = 1− δ − 1/(l − 1). Then

there exists a sequence (Cj)j≥0 of linear codes Cj = [nj , kj, dj]q with the following properties:

(i) Cj is a transitive code,

(ii) nj → ∞ as j → ∞, and

(iii) limj→∞
kj
nj

≥ R and limj→∞
dj
nj

≥ δ.

Then we have the following result which gives an asymptotically good family of EAQECCs.

Theorem 5.11 If q = l2m, where l is an odd prime, then there exists a family of EAQECCs

Qj with parameters [[nj , kj, dj; cj ]]q such that limj→∞
kj
nj

> 0 and limj→∞
dj
nj

> 0.

Proof. Let C := (Cj)j≥0 be the transitive family of cides in Theorem 5.10. Then the code

expansion β(Cj) has parameters [mnj , mnj ,≥ dj]l2 over Fl2 . Since l is odd, we have that

l2 ≡ 1 mod 4, and then by Theorem 5.5 there exists an [[nh, kh, dh; ch]]l2 EAQECC, where

nh = 3mnj − 2mkj, kh = mkj, dh ≥ dj, and ch = 3mnj − 3mkj . From Theorem 5.10 it can

be concluded that

R = lim
kj
nj

= lim
mkj

3mnj − 2mkj
≥ lim

mkj
3nj

> 0,

and

δ = lim
dh
nh

≥ lim
mkj

3mnj − 2mkj
≥ lim

dj
3mnj

> 0,

as required. �
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