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Multi-point Codes over Kummer Extensions
Chuangqiang Hu and Shudi Yang

Abstract

This paper is concerned with the construction of algebraic geometric codes defined from Kummer extensions. It plays a
significant role in the study of such codes to describe bases for the Riemann-Roch spaces associated with totally ramifiedplaces.
Along this line, we give an explicit characterization of Weierstrass semigroups and pure gaps. Additionally, we determine the
floor of a certain type of divisor introduced by Maharaj, Matthews and Pirsic. Finally, we apply these results to find multi-point
codes with good parameters. As one of the examples, a presented code with parameters[254, 228,> 16] over F64 yields a new
record.

Index Terms

Algebraic geometric codes, Kummer extension, Weierstrasssemigroup, Weierstrass pure gap.

I. I NTRODUCTION

T HE algebraic geometric (AG) codes were introduced by V.D. Goppa [1], which were defined as the image of the Riemann-
Roch space by the evaluation at several rational places. Since then, the study of AG codes becomes an important instrument

in theory and practice. The famous Tsfasman-Vlǎduţ-Zink theorem says that the parameters of the AG codes associated with
asymptotically good towers are better that the Gilbert-Varshamov bound [2], [3]. Pellikaan, Shen and van Wee [4] showedthat
any arbitrary linear code is in fact an AG code.

Given an AG code of fixed length, the first task is to determine its parameters: dimension and minimum distance. In order
to determine the dimension and construct the generator matrix, it is necessary to calculate the related Riemann-Roch space. By
means of the Riemann-Roch theorem, one obtains a non-trivial lower bound, Goppa bound, for the minimum distance in a very
general setting [5]. Garcia, Kim and Lax improved the Goppa bound using arithmetical structure of the Weierstrass gaps at
one place in [6], [7]. Homma and Kim [8] introduced the concept of pure gaps and demonstrated a similar result for a divisor
concerning a pair of places. And this was generalized to several places by Carvalho and Torres in [9]. Maharaj, Matthews and
Pirsic [10], [11] extended this construction by introducing the notion of the floor of a divisor and obtained improved bounds
on the parameters of AG codes.

Codes over specific Kummer extensions were well-studied in the literature. For instance, Hermitian curves play an important
role in coding theory due to their efficient encoding and decoding algorithms. Almost all of the known maximal curves arise
from Hermitian curves. See [12], [13] and the references therein. Many authors examined one-point codes from Hermitian
curves and developed efficient methods to decode them [5], [14], [15], [16]. The minimum distance of Hermitian two-point
codes had been first determined by Homma and Kim [17], [18], [19], [20]. In [10], Maharaj and Matthews determined explicit
bases for the Riemann-Roch space of a divisor of the formrP∞ + E, where the support ofE lies on a line. This allowed
them to give an explicit formula for the floor of such a divisor. In [21], Geil considered codes from norm-trace curves and
determined the true minimum distance of these codes. Matthews [13] determined the Weierstrass semigroup of anyr-tuple
rational points on the quotient of the Hermitian curve defined by the equationyq+ y = xm overFq2 wherem > 2 is a divisor
of q+1. Sepúlveda and Tizziotti [22] investigated two-point codes over a specific Kummer extension given byyq

l+1 = xq+x.
In this paper, we extend the results of one- and two-point codes over Kummer extensions studied by Masuda, Quoos and

Sepúlveda [23], to multi-point codes. We consider Kummer extensions given byym = f(x)λ wheref(x) is a polynomial
overFq of degreer with gcd(m, rλ) = 1, and all the roots off(x) are pairwise distinct. LetG be a divisor such that whose
support is contained in one of the principal divisor ofy. An explicit basis for the Riemann-Roch spaceL(G) is determined
by constructing a related set of lattice points. Employing this result, we characterize the Weierstrass semigroups andthe pure
gaps with respect to several totally ramified places. In addition, we give an effective algorithm to compute the floor of the
divisor G. Finally, all these results lead us to find new codes with better parameters in comparison with the existing codes in
the MinT’s Tables [24]. A new record-giving[254, 228,> 16]-code overF64 is presented as one of the examples.

The remaider of the paper is organized as follows. In SectionII we briefly recall some preliminary results over arbitrary
function fields. Section III focuses on the construction of bases for the Riemann-Roch space over Kummer extensions. In
Section IV we compute the Weierstrass semigroups and the pure gaps. Finally, in Section VI we construct multi-point codes
with good parameters by employing our results.
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II. PRELIMINARY RESULTS OVER ARBITRARY FUNCTION FIELDS

Let q be a power of a primep andFq be a finite field of cardinalityq, with characteristicp. We denote byF a function
field overFq and byPF the set of places ofF . The free abelian group generated by the places ofF is denoted byDF , whose
element is called a divisor. If a divisorD is given byD =

∑

P∈PF
nPP and almost allnP = 0, then the degree ofD is

deg(D) =
∑

P∈PF
nP . For a functionf ∈ F , vP (f) represents the valuation off at a rational placeP . The divisor off will

be denoted by(f) and the divisor of poles off will be denoted by(f)∞. The Riemann-Roch vector space with respect toD
is defined by

L(D) =
{

f ∈ F
∣

∣

∣
(f) +D > 0

}

∪ {0}.

Let ℓ(D) be the dimension ofL(D). From the Riemann-Roch Theorem, we know that

ℓ(D)− ℓ(W −D) = 1 + g − deg(D),

whereW is the canonical divisor andg is the genus of the associated curve.
Let G be a divisor ofF and letD := Q1 + · · · + Qn be another divisor ofF such thatQ1, · · · , Qn are distinct rational

places, each not belonging to the support ofG. The AG codesCL andCΩ are defined as follows. The codeCL is constructed
from the Riemann-Roch spaceL(G),

CL :=
{

(f(Q1), · · · , f(Qn))
∣

∣

∣
f ∈ L(G)

}

⊆ F
n
q .

It is known thatCL is an [n, k, d] code with parametersk = ℓ(G) − ℓ(G −D) andd > n− deg(G). The codeCΩ depends
on the space of differentialsΩ(G−D),

CΩ :=
{

(resQ1
(η), · · · , resQn(η))

∣

∣

∣
η ∈ Ω(G−D)

}

.

ThenCΩ is an [n, kΩ, dΩ] code with parameterskΩ = ℓ(W +D −G)− ℓ(W −G) anddΩ > deg(G)− (2g − 2). Under the
hypothesis thatdeg(G) > 2g − 2, we havekΩ = ℓ(W +D −G) > n+ g − 1 − deg(G). If moreover2g − 2 < deg(G) < n
then

kΩ = n+ g − 1− deg(G). (1)

The codesCL andCΩ are dual codes. We refer the reader to [5] for more information.
We follow the notations in [25]. Givenl distinct rational places ofF , namedQ1, · · · , Ql, the Weierstrass semigroup

H(Q1, · · · , Ql) is defined by
{

(s1, · · · , sl) ∈ N
l
0

∣

∣

∣
∃f ∈ F with (f)∞ =

l
∑

i=1

siQi

}

,

and the Weierstrass gap setG(Q1, · · · , Ql) is defined byNl
0\H(Q1, · · · , Ql), whereN0 := N ∪ {0} denotes the set of

nonnegative integers.
An important subset of the Weierstrass gap set is the set of pure gaps. Homma and Kim [8] introduced the pure gap set of

two rational places. Carvalho and Torres [9] generalized this notion to several rational places, denoted byG0(Q1, · · · , Ql),
which is given by

{

(s1, · · · , sl) ∈ N
l
∣

∣

∣
ℓ(G) = ℓ(G−Qj) for 1 6 j 6 l,

whereG =

l
∑

i=1

siQi

}

.

In addition, they showed that(s1, · · · , sl) is a pure gap at(Q1, · · · , Ql) if and only if

ℓ(s1Q1 + · · ·+ slQl) = ℓ((s1 − 1)Q1 + · · ·+ (sl − 1)Ql).

The main motivation why one is interested in pure gap sets comes from constructing codes with excellent parameters, which
will make use of the following theorem.

Theorem 1 ([8], [9]) . Let Q1, · · · , Ql be rational places ofF . For t1, · · · , tl ∈ N, assume that
{

(k1, · · · , kl) ∈ N
l
∣

∣

∣
β1 6 k1 6 β1 + t1, · · · , βl 6 kl 6 βl + tl

}

is a subset ofG0(Q1, · · · , Ql). If G =
∑l

i=1(2βi + ti − 1)Qi, then

dΩ > deg(G)− (2g − 2) +

l
∑

i=1

ti + l.
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The following lemma, which is an easy generalization of a result due to Kim [26], provides us with a way to calculate the
Weierstrass semigroups.

Lemma 2. For rational placesQ1, · · · , Ql with 1 6 l 6 r, thenH(Q1, · · · , Ql) is given by
{

(s1, · · · , sl) ∈ N
l
0

∣

∣

∣
ℓ(G) 6= ℓ(G−Qj) for 1 6 j 6 l,

whereG =

l
∑

i=1

siQi

}

.

III. B ASES FORRIEMANN -ROCH SPACES OVERKUMMER EXTENSIONS

Let m > 2 and gcd(p,m) = 1. In this paper, we consider a Kummer extensionFK/Fq(x) defined byym = f(x)λ =
∏r

i=1(x − αi)
λ, wheregcd(m, rλ) = 1, αi ∈ Fq and theαi’s are pairwise distinct for1 6 i 6 r. The function fieldFK

has genusg = (r − 1)(m − 1)/2. Let P1, · · · , Pr be the places of the rational function fieldFK associated to the zeros of
x− α1, · · · , x−αr, respectively, andP∞ be the unique place at infinity. It follows from [27] that theyare totally ramified in
this extension.

The following proposition describes some principle divisors of a Kummer extension.

Proposition 3. Let FK/Fq(x) be a Kummer extension given by

ym = f(x)λ =

r
∏

i=1

(x− αi)
λ, (2)

whereαi ∈ Fq and gcd(m, rλ) = 1. Then we have the following divisors inF :

1) (x− αi) = mPi −mP∞, for 1 6 i 6 r,
2) (y) = λP1 + · · ·+ λPr − rλP∞,
3) (f(x)) =

∑r
i=1 mPi − rmP∞.

Let G :=
∑r

µ=1 sµPµ+ tP∞. Maharaj [28] showed that the Riemann-Roch spaceL(G) can be decomposed as a direct sum
of Riemann-Roch spaces of divisors of the projective line. For applications to computing pure gaps, we would like to give
an explicit basis ofL(G), which consists of monomials ofr elements. Actually, we generalize the result of [10] concerning
about the basis of Hermitian curves.

Since gcd(m,λ) = 1, there exist integersA andB such thatAλ+Bm = 1, and thus, if we denotez = yAf(x)B, then we
obtain

(z) = P1 + · · ·+ Pr − rP∞. (3)

Suppose thati, j2, j3, · · · , jr ∈ Z, we define

Ei,j2,j3,··· ,jr := zi(x − α2)
j2(x− α3)

j3 · · · (x− αr)
jr . (4)

By Proposition 3 and Equation (3), one can compute the divisor of Ei,j2,j3,··· ,jr :

(Ei,j2,j3,··· ,jr) =iP1 + (i+mj2)P2 + · · ·+ (i +mjr)Pr

− (ri +m(j2 + · · ·+ jr))P∞. (5)

For later use, we denote by⌊x⌋ the largest integer not greater thanx and by⌈x⌉ the smallest integer not less thanx. It is

easy to show thatj =

⌈

α

β

⌉

if and only if 0 6 βj − α < β, whereβ ∈ Z
+ andα ∈ Z.

Let us denote the lattice point set

Ωs1,··· ,sr ,t :=
{

(i, j2, j3, · · · , jr)
∣

∣

∣
i+ s1 > 0,

0 6 i+mjµ + sµ < m for µ = 2, · · · , r,

ri+m(j2 + · · ·+ jr) 6 t
}

,

or equivalently,

Ωs1,··· ,sr ,t :=
{

(i, j2, j3, · · · , jr)
∣

∣

∣
i+ s1 > 0,

jµ =

⌈

−i− sµ
m

⌉

for µ = 2, · · · , r,

ri +m(j2 + · · ·+ jr) 6 t
}

. (6)
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The following lemma is crucial for the proof of our key result. However, the proof of this lemma is technical, and will be
completed later.

Lemma 4. The number of lattice points inΩs1,··· ,sr ,t can be expressed as:

#Ωs1,··· ,sr,t = 1− g + s1 + · · ·+ sr + t,

for s1 + · · ·+ sr + t > (2r − 1)m.

Now we can easily prove the main result of this section.

Theorem 5. Let G :=
∑r

µ=1 sµPµ + tP∞. The elementsEi,j2,j3,··· ,jr with (i, j2, j3, · · · , jr) ∈ Ωs1,··· ,sr ,t form a basis for
the Riemann-Roch spaceL(G). Moreover, we haveℓ(G) = #Ωs1,··· ,sr ,t.

Proof: Let (i, j2, j3, · · · , jr) ∈ Ωs1,··· ,sr ,t. It follows from the definition thatEi,j2,j3,··· ,jr ∈ L(G), whereG =
∑r

µ=1 sµPµ+
tP∞. From Equation (5), we havevP1

(Ei,j2,j3,··· ,jr) = i, which indicates that the valuation ofEi,j2,j3,··· ,jr at the rational
placeP1 uniquely depends oni. Since lattice points inΩs1,··· ,sr ,t provide distinct values ofi, the elementsEi,j2,j3,··· ,jr are
linearly indepedent of each other, with(i, j2, j3, · · · , jr) ∈ Ωs1,··· ,sr ,t. To show that they form a basis forL(G), the only thing
is to prove that

ℓ(G) = #Ωs1,··· ,sr,t.

For the case ofs1 sufficiently large, it follows from the Riemann-Roch Theorem and Lemma 4 that

ℓ(G) = 1− g + deg(G)

= 1− g + s1 + · · ·+ sr + t

= #Ωs1,··· ,sr,t.

And this implies thatL(G) is spanned by elementsEi,j2,j3,··· ,jr with (i, j2, j3, · · · , jr) ∈ Ωs1,··· ,sr ,t.
For the general case, we chooses′1 > s1 large enough and setG′ := s′1P1 +

∑r
µ=2 sµPµ + tP∞. From above argument,

we know that the elementsEi,j2,j3,··· ,jr with (i, j2, j3, · · · , jr) ∈ Ωs′
1
,··· ,sr ,t span the whole space ofL(G′). Remember that

L(G) is a linear subspace ofL(G′), which can be written as

L(G) =
{

f ∈ L(G′)
∣

∣

∣
vP1

(f) > −s1

}

. (7)

Thus, we choosef ∈ L(G), and suppose that

f =
∑

(i,j2,··· ,jr)∈Ωs′
1
,··· ,sr,t

aiEi,j2,··· ,jr ,

sincef ∈ L(G′). The valuation off at P1 is vP1
(f) = minai 6=0{i}. Then the inequalityvP1

(f) > −s1 gives that, ifai 6= 0,
then i > −s1. Equivalently, if i < −s1, thenai = 0. From the definition ofΩs1,··· ,sr,t andΩs′

1
,··· ,sr,t, we get that

f =
∑

(i,j2,··· ,jr)∈Ωs1,··· ,sr,t

aiEi,j2,··· ,jr .

Then the theorem follows.
We now turn to prove Lemma 4 which requires a series of resultslisted as follows.

Lemma 6. Let g = (r − 1)(m− 1)/2 and gcd(r,m) = 1. Let t ∈ Z. Consider the lattice point set

Ψ(t) =
{

(I, k)
∣

∣

∣
0 6 I < m, rI 6 t−mk, k > 0

}

.

If t > rm, then the number#Ψ(t) of Ψ(t) verifies the formula

#Ψ(t) = 1− g + t.
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I

A

O B

C

l : rI +mk = t

Ψ(t)

Fig. 1. The lattice point setΨ(t)

Proof: Let t0 = rm. As shown in Fig.1, we denote by#△OAB the number of lattice points in the triangle△OAB
including the edgesOA, OB andAB, with O = (0, 0), A = (0, r) andB = (m, 0). It is easy to see that the number of
lattice points in the rectangle#�AOBC (including all the edges) satisfies#�AOBC = (m+1)(r+1), whereC = (m, r).
Clearly#△OAB +#△ABC = #�AOBC + 2. This indicates that#△OAB = (m+ 1)(r+ 1)/2+ 1. But Ψ(t0) contains
exactly the lattice points in the triangle△OAB except the vertexB, so

#Ψ(t0) = #△OAB − 1

=
(m+ 1)(r + 1)

2
= 1− g + t0.

For t > t0, consider the lattice points in the setΨ(t)\Ψ(t− 1), which can be represented by

∆ :=
{

(I, k)
∣

∣

∣
0 6 I < m, rI +mk = t

}

.

The equationrI +mk = t has integer solutions sincegcd(r,m) = 1 and we assume that(I0, k0) is such a solution. Notice
that all the other solutions are given by(I0 +mγ, k0 − rγ) with γ ∈ Z. This implies that

∆ =
{

(I0 +mγ, k0 − rγ)
∣

∣

∣
0 6 I0 +mγ < m

}

,

which gives that#∆ = 1. Thus we conclude that

#Ψ(t) = t− t0 +#Ψ(t0) = 1− g + t.

From Lemma 6, we obtain the number of lattice points inΩ0,··· ,0,t.

Lemma 7. If t > rm, then the number of lattice points inΩ0,··· ,0,t is

#Ω0,··· ,0,t = 1− g + t. (8)

Proof: Note that

Ω0,··· ,0,t =
{

(i, j2, j3, · · · , jr)
∣

∣

∣
i > 0,

0 6 i+mjµ < m for µ = 2, · · · , r,

ri +m(j2 + · · ·+ jr) 6 t
}

, (9)

Let I := i +mj2. We will show that the number of lattice points inΩ0,··· ,0,t equals

#
{

(I, k)
∣

∣

∣
0 6 I < m, rI 6 t−mk, k > 0

}

. (10)

Then the assertion follows at once from Lemma 6.
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SetJµ := jµ − j2, for µ > 3. Then Equation (9) gives that

Ω0,··· ,0,t
∼=
{

(I, j2, J3, · · · , Jr)
∣

∣

∣
I > mj2,

0 6 I < m,

0 6 I +mJµ < m, for µ > 3,

rI −mj2 +m

r
∑

µ=3

Jµ 6 t
}

,

Here and thereafter,A ∼= B means that two lattice point setsA, B are bijective. From0 6 I < m and I > mj2, we must
havej2 6 0. Hence

Ω0,··· ,0,t
∼=
{

(I, j2, J3, · · · , Jr)
∣

∣

∣
j2 6 0, 0 6 I < m,

0 6 I +mJµ < m, for µ > 3,

rI −mj2 +m

r
∑

µ=3

Jµ 6 t
}

.

However,0 6 I < m gives thatJµ = 0 for µ > 3. This implies that

Ω0,··· ,0,t
∼=
{

(I, j2)
∣

∣

∣
j2 6 0, 0 6 I < m, rI −mj2 6 t

}

.

Then Equation (10) follows from the above discussions and the assumptionk = −j2.

Lemma 8. Let s2 = 0. The following equality holds:

#Ωs1,0,s3,··· ,sr,t = 1− g + t+

r
∑

i=1

si,

where1 6 si 6 m for i = 1, 3, 4, · · · , r, and t > rm.

Proof: It follows from the definition that

Ωs1,0,s3,··· ,sr ,t =
{

(i, j2, j3, · · · , jr)
∣

∣

∣
i+ s1 > 0,

0 6 i+mj2 < m,

0 6 i+mjµ + sµ < m for µ > 3,

ri +m(j2 + · · ·+ jr) 6 t
}

.

Put I := i+mj2, Jµ := jµ − j2 for µ > 3. Then

Ωs1,0,s3,··· ,sr ,t
∼=
{

(I, j2, J3, · · · , Jr)
∣

∣

∣
I > mj2 − s1,

0 6 I < m,

0 6 I +mJµ + sµ < m for µ > 3,

rI −mj2 +m(J3 + · · ·+ Jr) 6 t
}

. (11)

It turns out thatj2 6 1, since1 6 s1 6 m, I > mj2 − s1 and0 6 I < m. Hence

#Ωs1,0,s3,··· ,sr,t =
1
∑

j2=−∞

#Ψj2 ,

whereΨj2 denotes the right hand side of Equation (11) with a fixedj2. We first calculate#Ψ1, where

Ψ1 =
{

(I, J3, · · · , Jr)
∣

∣

∣
m− s1 6 I < m,

Jµ =

⌈

−I − sµ
m

⌉

for µ > 3,

rI +m(J3 + · · ·+ Jr) 6 t+m
}

.
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SinceJµ ∈ {0,−1} for µ > 3, andm(J3 + · · · + Jr) 6 0, if we chooseC := r(m − 1)−m, then the last inequality inΨ1

holds for all t > C. This shows that#Ψ1 is determined by the first inequality. Then#Ψ1 = s1. Therefore

#Ωs1,0,s3,··· ,sr,t =

0
∑

j2=−∞

#Ψj2 + s1. (12)

Next, we turn to calculate the total number of lattice pointsin Ψj2 for all j2 6 0. For this purpose, we write

#Ψj2 = #Ψ′
j2 +#Ψ′′

j2 , (13)

where

Ψ′
j2 :=

{

(I, J3, · · · , Jr)
∣

∣

∣
0 6 I < m,

− s3 6 I +mJ3 < 0,

0 6 I +mJµ + sµ < m for µ > 4,

rI +m(J3 + · · ·+ Jr) 6 t+mj2

}

,

and

Ψ′′
j2 :=

{

(I, J3, · · · , Jr)
∣

∣

∣
0 6 I < m,

0 6 I +mJ3 < m− s3,

0 6 I +mJµ + sµ < m for µ > 4,

rI +m(J3 + · · ·+ Jr) 6 t+mj2

}

.

If we let J ′
3 := J3 + 1, then the following assertion holds:

Ψ′
j2

∼=
{

(I, J ′
3, · · · , Jr)

∣

∣

∣
0 6 I < m,

m− s3 6 I +mJ ′
3 < m,

0 6 I +mJµ + sµ < m for µ > 4,

rI +m(J ′
3 + · · ·+ Jr) 6 t+m(j2 + 1)

}

.

Observe that#Ψ′
j2−1 +#Ψ′′

j2
is equivalent to#Φj2 , where

Φj2 :=
{

(I, J3, · · · , Jr)
∣

∣

∣
0 6 I < m,

0 6 I +mJ3 < m,

0 6 I +mJµ + sµ < m for µ > 4,

rI +m(J3 + · · ·+ Jr) 6 t+mj2

}

,

and since#Ω0,0,0,s4··· ,sr ,t =
∑0

j2=−∞ #Φj2 , we have

#Ω0,0,0,s4··· ,sr,t =

0
∑

j2=−∞

(#Ψ′
j2−1 +#Ψ′′

j2)

=

0
∑

j2=−∞

(#Ψ′
j2 +#Ψ′′

j2)−#Ψ′
0. (14)

Precisely speaking,

Ψ′
0
∼=
{

(I, J3, · · · , Jr)
∣

∣

∣
0 6 I < m,

− s3 6 I +mJ3 < 0,

0 6 I +mJµ + sµ < m for µ > 4,

rI +m(J3 + · · ·+ Jr) 6 t
}

.

In a similar way as we calculate#Ψ1, we can see that#Ψ′
0 = s3. This, together with Equations (12), (13) and (14), shows

that

#Ωs1,0,s3,··· ,sr,t = #Ω0,0,0,s4··· ,sr,t + s1 + s3.
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Repeating the above routine gives that

#Ωs1,0,s3,··· ,sr ,t = #Ω0,0,··· ,0,t + s1 + s3 + · · ·+ sr.

The desired conclusion then follows from Lemma 7.
Now we are in a position to give the proof of Lemma 4.

Proof of Lemma 4:
Let us consider the lattice point setΩs1,s2,··· ,sr,t, which is given by

Ωs1,s2,··· ,sr ,t =
{

(i, j2, j3, · · · , jr)
∣

∣

∣
i+ s1 > 0,

0 6 i+mj2 + s2 < m,

0 6 i+mjµ + sµ < m for µ > 3,

ri+m(j2 + · · ·+ jr) 6 t
}

.

Let ĩ := i+ s2, t̃ := t+ rs2 and s̃µ := sµ − s2 for µ > 1. ThenΩs1,s2,··· ,sr ,t becomes

Ωs̃1,0,s̃3,··· ,s̃r ,t̃ =
{

(̃i, j2, j3, · · · , jr)
∣

∣

∣
ĩ+ s̃1 > 0,

0 6 ĩ+mj2 < m,

0 6 ĩ+mjµ + s̃µ < m for µ > 3,

rĩ +m(j2 + · · ·+ jr) 6 t̃
}

.

By writing s̃µ as s̃µ = mAµ +Bµ, where1 6 Bµ 6 m for µ > 1, and takingI := ĩ+mA1, Jµ := jµ −A1 +Aµ for µ > 3,
J2 := j2 −A1 andT := t̃+m(A1 +

∑r
µ=3 Aµ), we can reduceΩs̃1,0,s̃3,··· ,s̃r ,t̃

to

ΩB1,0,B3,··· ,Br,T =
{

(I, J2, J3, · · · , Jr)
∣

∣

∣
I +B1 > 0,

0 6 I +mJ2 < m,

0 6 I +mJµ +Bµ < m for µ > 3,

rI +m(J2 + · · ·+ Jr) 6 T
}

.

Since the inequalitys1 + · · ·+ sr + t > (2r − 1)m means thatT > rm, it follows from Lemma 8 that

#ΩB1,0,B3,··· ,Br ,T = 1− g + T +

r
∑

µ=1

µ6=2

Bµ

= 1− g + t̃+

r
∑

µ=1

µ6=2

s̃µ

= 1− g + t+

r
∑

µ=1

sµ.

Note that

#Ωs1,s2,··· ,sr ,t = #ΩB1,0,B3,··· ,Br,T .

This finishes the proof of Lemma 4.

We finish this section with a result that allows us to give a newform of the base for our Riemann-Roch spaces. Since
gcd(r,m) = 1, we writear + bm = 1 for integersa andb. Denote

Λu,v2,v3,··· ,vr := βu
r
∏

µ=2

hvµ
µ ,

wherehµ :=
x− αµ

x− α1
for µ > 2, andβ := z−a(x− α1)

−b. The divisor ofΛu,v2,v3,··· ,vr is given by

(Λu,v2,··· ,vr) =(−(a+ bm)u−m(v2 + · · ·+ vr))P1

+

r
∑

µ=2

(−au+mvµ)Pµ + uP∞.
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Corollary 9. Let G :=
∑r

µ=1 sµPµ + tP∞. Then the elementsΛu,v2,··· ,vr with (u, v2, v3, · · · , vr) ∈ Θs1,··· ,sr,t form a basis
for the Riemann-Roch spaceL(G), where

Θs1,··· ,sr ,t :=
{

(u, v2, · · · , vr)
∣

∣

∣

− (a+ bm)u−m(v2 + · · ·+ vr) + s1 > 0,

0 6 −au+mvµ + sµ < m for µ > 2,

u > −t
}

. (15)

And then#Θs1,··· ,sr,t = #Ωs1,··· ,sr,t.

Proof: Note thatym = f(x)λ andAλ + Bm = 1. ThenyAm = f(x)Aλ, which gives thatf(x) = yAmf(x)Bm = zm,
wherez = yAf(x)B. From Equation (2), we get

x− α1 = zm(x− α2)
−1 · · · (x− αr)

−1.

We claim that the set
{

Λu,v2,··· ,vr

∣

∣

∣
(u, v2, · · · , vr) ∈ Θs1,··· ,sr,t

}

equals the set
{

Ei,j2,··· ,jr

∣

∣

∣
(i, j2, · · · , jr) ∈ Ωs1,··· ,sr ,t

}

.

In fact, for fixed(u, v2, v3, · · · , vr) ∈ Z
r, we obtainΛu,v2,··· ,vr equalsEi,j2,··· ,jr with

i = −(a+ bm)u−m(v2 + · · ·+ vr),

jµ = bu+ (v2 + · · ·+ vr) + vµ,

for µ > 2. On the contrary, if we set

u = −ri−m(j2 + · · ·+ jr),

vµ = bi− a(j2 + · · ·+ jr) + jµ,

for µ > 2, thenEi,j2,··· ,jr is exactly the elementΛu,v2,··· ,vr . Therefore, if we restrict(i, j2, · · · , jr) in Ωs1,··· ,sr ,t, then we
must have(u, v2, · · · , vr) is in Θs1,··· ,sr,t and vice versa. This completes the proof of the claim and hence of this corollary.

IV. W EIERSTRASS SEMIGROUPS AND PURE GAP SETS

In this section, we calculate the Weierstrass semigroups and the pure gap sets at the totally ramified placesP1, · · · , Pl, P∞,
which will require auxiliary results described below.

Lemma 10. The lattice point setΩs1,··· ,sr ,t is symmetric with respect tos1, · · · , sr, which means that#Ωs1,··· ,sr,t =
#Ωs′

1
,··· ,s′r ,t

, where{s1, · · · , sr} = {s′1, · · · , s
′
r}.

Proof: Recall thatΩs1,··· ,sr,t is defined by

Ωs1,··· ,sr ,t =
{

(i′, j′2, j
′
3, · · · , j

′
r)
∣

∣

∣
i′ + s1 > 0,

j′µ =

⌈

−i′ − sµ
m

⌉

for µ = 2, · · · , r,

ri′ +m(j′2 + · · ·+ j′r) 6 t
}

.

It is important to writei′ = i+mk with 0 6 i 6 m− 1. Let j′µ = jµ − k for µ > 2. Then

Ωs1,··· ,sr,t
∼=
{

(i, k, j2, j3, · · · , jr)
∣

∣

∣
i+mk > −s1,

0 6 i 6 m− 1,

jµ =

⌈

−i− sµ
m

⌉

for µ = 2, · · · , r,

ri +m(k + j2 + · · ·+ jr) 6 t
}

.
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The first inequality gives thatk > j1 :=
⌈

−i−s1
m

⌉

. So we writek = j1 + ι with ι > 0. Then

Ωs1,··· ,sr ,t
∼=
{

(i, ι, j1, j2, j3, · · · , jr)
∣

∣

∣

0 6 i 6 m− 1, ι > 0,

jµ =

⌈

−i− sµ
m

⌉

for µ = 1, · · · , r,

ri+m(j1 + j2 + · · ·+ jr) +mι 6 t
}

.

The right hand side means that the number of the lattice points does not depend on the order ofsµ with 1 6 µ 6 r, which
concludes the desired assertion.

Lemma 11. Let Ωs1,s2,··· ,sr ,t be the lattice point set defined by Equation(6). The following assertions hold.

1) #Ωs1,s2,··· ,sr,t = #Ωs1−1,s2,··· ,sr ,t + 1 if and only ifm
r
∑

µ=2

⌈

s1 − sµ
m

⌉

6 t+ rs1.

2) #Ωs1,··· ,sr ,t = #Ωs1,··· ,sr ,t−1 + 1 if and only if m
r
∑

µ=2

⌈

−at− sµ
m

⌉

6 s1 + (a+ bm)t.

Proof: We begin with the first assertion. Consider two lattice pointsetsΩs1,s2,··· ,sr,t andΩs1−1,s2,··· ,sr ,t, which are given
in Equation (6). Clearly, the latter one is a subset of the former one, and the complementary setΦ of Ωs1−1,s2,··· ,sr ,t in
Ωs1,s2,··· ,sr ,t is given by

Φ :=
{

(i, j2, · · · , jr)
∣

∣

∣
i+ s1 = 0,

jµ =

⌈

−i− sµ
m

⌉

for µ = 2, · · · , r,

ri +m(j2 + · · ·+ jr) 6 t
}

.

It follows immediately that the setΦ is not empty if and only if−rs1 + m
r
∑

µ=2

⌈

s1 − sµ
m

⌉

6 t, which concludes the first

assertion.
It follows from Corollary 9 that the difference between#Ωs1,··· ,sr ,t and #Ωs1,··· ,sr ,t−1 is exactly the same as the one

between#Θs1,··· ,sr,t and#Θs1,··· ,sr ,t−1. Similar to the argument of the first assertion, we defineΨ as the complementary
set ofΩs1,s2,··· ,sr,t−1 in Ωs1,s2,··· ,sr ,t, namely

Ψ :=
{

(u, v2, v3, · · · , vr)
∣

∣

∣
u = −t

− (a+ bm)u−m(v2 + · · ·+ vr) + s1 > 0,

0 6 −au+mvµ + sµ < m for µ = 2, · · · , r
}

.

The setΨ is not empty if and only ifm
r
∑

µ=2

⌈

−at− sµ
m

⌉

6 s1 + (a+ bm)t, which finishes the proof of the second assertion.

We are now ready for the main results of the section dealing with the Weierstrass semigroups and the pure gap sets, which
play an interesting role in finding codes with good parameters.

Theorem 12. Let P1, · · · , Pl be the rational places defined previously. For0 6 l 6 r, the following assertions hold.

1) H(P1, · · · , Pl) is given by

{

(s1, · · · , sl) ∈ N
l
0

∣

∣

∣
m

l
∑

i=1

i6=j

⌈

sj − si
m

⌉

+m(r − l)
⌈sj
m

⌉

6 rsj for all j, 1 6 j 6 l
}

.
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2) H(P1, · · · , Pl, P∞) is given by

{

(s1, · · · , sl, t) ∈ N
l+1
0

∣

∣

∣
m

l
∑

i=2

⌈

−at− si
m

⌉

+m(r − l)

⌈

−at

m

⌉

6 s1 + (a+ bm)t,

m
l
∑

i=1

i6=j

⌈

sj − si
m

⌉

+m(r − l)
⌈sj
m

⌉

6 t+ rsj ,

for all j, 1 6 j 6 l
}

.

3) The pure gap setG0(P1, · · · , Pl) is given by

{

(s1, · · · , sl) ∈ N
l
∣

∣

∣
m

l
∑

i=1

i6=j

⌈

sj − si
m

⌉

+m(r − l)
⌈sj
m

⌉

> rsj for all j, 1 6 j 6 l
}

.

4) The pure gap setG0(P1, · · · , Pl, P∞) is given by

{

(s1, · · · , sl, t) ∈ N
l
∣

∣

∣
m

l
∑

i=2

⌈

−at− si
m

⌉

+m(r − l)

⌈

−at

m

⌉

> s1 + (a+ bm)t,

m

l
∑

i=1

i6=j

⌈

sj − si
m

⌉

+m(r − l)
⌈sj
m

⌉

> t+ rsj ,

for all j, 1 6 j 6 l
}

.

Proof: The desired conclusions follow from Theorem 5, Lemmas 2, 10 and 11.
In recent preprints by Abdónet.al. [23], [29], the authors determined the Weierstrass semigroup at totally ramified places.

Here, we will give another proof by applying our previous results.

Corollary 13 ([23], [29]). With notation as before, we have the following.

1) H(P1) =
{

α ∈ N0

∣

∣

∣
− rα +m(r − 1)

⌈ α

m

⌉

6 0
}

.

2) H(P∞) =
{

mk + rj ∈ N0

∣

∣

∣
0 6 j 6 m− 1, k > 0

}

.

3) G(P1) is given by
{

mk + j ∈ N

∣

∣

∣
1 6 j 6 m− 1−

⌊m

r

⌋

,

0 6 k 6 r − 2−

⌊

rj

m

⌋

}

.

4) G(P∞) is given by
{

mk − rj ∈ N

∣

∣

∣
1 6 j 6 m− 1−

⌊m

r

⌋

,
⌈

rj

m

⌉

6 k 6 r − 1
}

.

Proof: The first assertion follows from Theorem 12.
We now focus on the second assertion. It follows from Theorem12 that the Weierstrass semigroupH(P∞) can be expressed

by
{

t ∈ N0

∣

∣

∣
t− (r − 1)at−m(r − 1)

⌈

−at

m

⌉

> 0
}

, (16)
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wherear + bm = 1 for integersa and b sincegcd(r,m) = 1. We write the elementt in H(P∞) as t = mk + rj, where

0 6 j 6 m− 1. Then

⌈

−at

m

⌉

= bj − ak. Substituting this to Equation (16), we can deduce that

H(P∞) =
{

mk + rj ∈ N0

∣

∣

∣
0 6 j 6 m− 1, j + km > 0

}

=
{

mk + rj ∈ N0

∣

∣

∣
0 6 j 6 m− 1, k > 0

}

,

which concludes the second assertion.
It follows from the third assertion of Theorem 12 that the Weierstrass gap set atP1 is

G(P1) =
{

α ∈ N

∣

∣

∣
− rα+m(r − 1)

⌈ α

m

⌉

> 0
}

. (17)

Let α ∈ G(P1) and writeα = mk + j, where0 6 j 6 m− 1 andk > 0. We find that the casej = 0 does not occur, since

otherwise−rα+m(r − 1)
⌈ α

m

⌉

= −rkm+m(r − 1)k = −α < 0, which contradict toα ∈ N. So 1 6 j 6 m− 1.
Substitutingα = mk + j to the condition of Equation (17), we obtain that

− rα+m(r − 1)
⌈ α

m

⌉

= −r(mk + j) +m(r − 1)(k + 1)

= −rj −mk +mr −m > 0.

This yields that0 6 k 6

⌊

r − 1−
rj

m

⌋

= r − 2 −

⌊

rj

m

⌋

, sincem does not dividerj. For the existence ofk, we require

r − 1−
rj

m
> 0, which leads to1 6 j 6 m− 1−

⌊m

r

⌋

. Thus the Weierstrass gap setG(P1) equals
{

mk + j ∈ N

∣

∣

∣
1 6 j 6 m− 1−

⌊m

r

⌋

,

0 6 k 6 r − 2−

⌊

rj

m

⌋

}

,

and we get the desired conclusion.
From Equation (16), we have

G(P∞) =
{

t ∈ N

∣

∣

∣
t− (r − 1)at−m(r − 1)

⌈

−at

m

⌉

< 0
}

.

Write t = mk−rj, where0 6 j 6 m−1. In a similar way as done previously for the third assertion,we see that1 6 j 6 m−1.
Therefore, substitutingt = mk − rj to the inequality ofG(P∞), we havek 6 r − 1. Sincemk − rj ∈ N, 1 6 j 6 m − 1

andk 6 r − 1, we obtain

⌈

rj

m

⌉

6 k 6 r − 1. Also note that
rj

m
< r − 1, which yields that1 6 j 6 m − 1 −

⌊m

r

⌋

. This

completes the proof of the last assertion.
The following is an immediate consequence of Theorem 12 which generalizes the results of Theorems 3.2 and 4.4 in [23].

Corollary 14. The following assertions hold.
1) H(P1, P2) is given by

{

(k, l) ∈ N
2
0

∣

∣

∣
m

⌈

k − l

m

⌉

+m(r − 2)

⌈

k

m

⌉

6 kr,

m

⌈

l − k

m

⌉

+m(r − 2)

⌈

l

m

⌉

6 lr
}

.

2) G0(P1, P2) is given by
{

(k, l) ∈ N
2
∣

∣

∣
m

⌈

k − l

m

⌉

+m(r − 2)

⌈

k

m

⌉

> kr,

m

⌈

l − k

m

⌉

+m(r − 2)

⌈

l

m

⌉

> lr
}

.

3) H(P1, P∞) is given by
{

(k, t) ∈ N
2
0

∣

∣

∣
m(r − 1)

⌈

k

m

⌉

6 t+ kr,

m(r − 1)

⌈

−at

m

⌉

6 k + (a+ bm)t
}

.
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4) G0(P1, P∞) is given by
{

(k, t) ∈ N
2
∣

∣

∣
m(r − 1)

⌈

k

m

⌉

> t+ kr,

m(r − 1)

⌈

−at

m

⌉

> k + (a+ bm)t
}

.

V. THE FLOOR OF DIVISORS

In this section, we investigate the floor of divisors of function fields. The significance of this concept is that it provides a
useful tool for evaluating parameters of AG codes, as well aspure gaps. We begin with general function fields.

Definition 15 ([10]). Given a divisorG of a function fieldF/Fq with ℓ(G) > 0, the floor ofG is the unique divisorG′ of F
of minimum degree such thatL(G) = L(G′). The floor ofG will be denoted by⌊G⌋.

The floor of a divisor can be used to characterize Weierstrasssemigroups and pure gap sets. LetG = s1Q1 + · · ·+ slQl.
It is not hard to see that(s1, · · · , sl) ∈ H(Q1, · · · , Ql) if and only if ⌊G⌋ = G. Moreover,(s1, · · · , sl) is a pure gap at
(Q1, · · · , Ql) if and only if

⌊G⌋ = ⌊(s1 − 1)Q1 + · · ·+ (sl − 1)Ql⌋.

Maharaj, Matthews and Pirsic in [10] defined the floor of a divisor and characterized it by the basis of the Riemann-Roch
space.

Theorem 16 ([10]). Let G be a divisor of the function fieldF/Fq and let b1, · · · , bt ∈ L(G) be a spanning set forL(G).
Then

⌊G⌋ = − gcd
{

(bi)
∣

∣

∣
i = 1, · · · , t

}

.

The next theorem extends Theorem 1, which shows the lower bound of minimal distance in a more general situation.

Theorem 17([10]). Let F/Fq be a function field of genusg. LetD := Q1+ · · ·+Qn whereQ1, · · · , Qn are distinct rational
places ofF , and letG := H + ⌊H⌋ be a divisor ofF such thatH is an effective divisor whose support does not contain any
of the placesQ1, · · · , Qn. Then the distance ofCΩ satisfies

dΩ > 2 deg(H)− (2g − 2).

To finish this section, we provide a characterization of the floor over Kummer extensions. The following theorem is a
generalization of Theorem 3.9 in [10] related to Hermitian function fields.

Theorem 18. Let H := s1P1 + s2P2 + · · ·+ srPr + tP∞ be a divisor of the Kummer extension given by(2). Then the floor
of H is given by

⌊H⌋ = s′1P1 + s′2P2 + · · ·+ s′rPr + t′P∞,

where

s′1 = max
{

− i
∣

∣

∣
(i, j2, · · · , jr) ∈ Ωs1,··· ,sr ,t

}

,

s′µ = max
{

− i−mjµ

∣

∣

∣
(i, j2, · · · , jr) ∈ Ωs1,··· ,sr ,t

}

,

for µ = 2, · · · , r,

t′ = max
{

ri +m

r
∑

µ=2

jµ

∣

∣

∣
(i, j2, · · · , jr) ∈ Ωs1,··· ,sr,t

}

.

Proof: Let H = s1P1 + · · · + srPr + tP∞. It follows from Theorem 5 that the elementsEi,j2,j3,··· ,jr of Equation (4)
with (i, j2, · · · , jr) ∈ Ωs1,··· ,sr,t form a basis for the Riemann-Roch spaceL(H). Note that the divisor ofEi,j2,··· ,jr is

iP1 +
r
∑

µ=2

(i+mjµ)Pµ −

(

ri +m
r
∑

µ=2

jµ

)

P∞.

By Theorem 16, we get that

⌊H⌋ = − gcd
{

(Ei,j2,··· ,jr )
∣

∣

∣
(i, j2, · · · , jr) ∈ Ωs1,··· ,sr ,t

}

.

The desired conclusion then follows.
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VI. EXAMPLES OF CODES INKUMMER EXTENSIONS

In this section we treat several examples of codes to illustrate our results. All the codes in our examples have better parameters
than the corresponding ones in the MinT’s tables [24].

Example 19. Now, we study codes arising from plane quotients of the Hermitian curve, defined by affine equations of the
form ym = xq + x over Fq2 , whereq is a prime power andm is a positive integer which dividesq + 1. Take q = 9 and
m = 5 for example. It follows from [30] that the number of rationalplaces of the curvey5 = x9 + x with genusg = 16 is
N = 1+ q(1+ (q− 1)m) = 370. From Corollary 14, we can get all the pure gaps at(P1, P∞), which are showed in Figure 2.
Choosen (for example360 6 n 6 368) rational places with the exceptions ofP1 andP∞ and consider the divisorD as the
sum of these places. We choose a pure gap(26, 1) for instance. It follows from Theorem 1 that, if we takeG = 51P1 + P∞,
then the minimum distance ofCΩ satisfiesdΩ > 24. One can easily check that the condition2g − 2 < deg(G) < n holds, so
Equation (1) yields that the dimension ofCΩ is kΩ = n−37. Thus we obtain a class of codes with parameters[n, n−37,> 24].
The minimum distance of each code exceeds the minimum distance of the best known codes overF81 with the same length
and dimension in the MinT’s Tables [24].

0 5 10 15 20 25 30

5

10

15

20

25

30

Fig. 2. The pure gaps at(P1, P∞)

Example 20. The Hermitian curveyq+1 = xq+x overFq2 hasq3+1 rational places and genusg = q(q−1)/2. If we takeq = 5,
theng = 10. From Corollary 14, one can verify that(13, 1) and(14, 1) are pure gaps at(P1, P2). Choosen arbitrary rational
places on the curve exceptP1 andP2, where120 6 n 6 124. By Theorem 1, if we takeG = 26P1 + P2, then the minimum
distance ofCΩ satisfiesdΩ > 12. Since2g−2 < deg(G) < n, the dimension of such code iskΩ = n+g−1−deg(G) = n−18.
This is to say that we obtain a class of codes with parameters[n, n− 18,> 12]. Based on MinT’s Tables, these codes improve
the minimum distance.

Example 21. Consider the curveym = (xqt/2 − x)q
t/2−1 over Fqt , wheret is even,q is a prime power,m

∣

∣ (qt − 1) and
gcd(m, qt/2 − 1) = 1. From [31], we know that this curve has genusg = (qt/2 − 1)(m− 1)/2 and the number ofFqt -rational
places isN = (qt − qt/2)m + qt/2 + 1. Let t = 2, q = 5 andm = 6. The curve becomesy6 = (x5 − x)4 with g = 10 and
N = 126 overF25. By Theorem 12, one can verify that

{

(i, j, k)
∣

∣

∣
8 6 i 6 9, j = 1, 1 6 k 6 3

}

⊆ G0(P1, P2, P∞).

Let D be the divisor consisting of all rational places away from placesP1, P2 andP∞. TakingG = 16P1 + P2 + 3P∞, we
produce the codesCΩ of lengthn = deg(D) = 123. It follows from Theorem 1, that the minimum distance ofCΩ satisfies
dΩ > 8. Since2g − 2 < deg(G) < n, the dimension ofCΩ is kΩ = n+ g − 1 − deg(G) = n− 11. So the three-point code
CΩ has parameters[n, n− 11,> 8], which improves the minimum distance according to MinT’s Tables.

Example 22. Let us consider the maximal curve [32]yq+1 =
∑t

i=1 x
q/2i overFq2 , with genusg = q(q−2)/4, whereq = 2t.

Taking t = 3, the curve becomesy9 = x4 + x2 + x overF64 with N = 257 rational places. LetH = γP1 +P2 +4P∞, where
γ is an integer such that14 6 γ 6 18. We putγ = 14 for instance. In this caseH = 14P1 + P2 + 4P∞, it can be computed
from Equation (6) that the elements(−i,−i−mj2,−i−mj3,−i−mj4, ri+m(j2+ j3+ j4)), with (i, j2, j3, j4) ∈ Ω14,1,0,0,4,
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are as follows

( 14,−4,−4,−4,−2 ),

( 13,−5,−5,−5, 2 ),

( 9, 0, 0, 0,−9 ),

( 8,−1,−1,−1,−5 ),

( 7,−2,−2,−2,−1 ),

( 6,−3,−3,−3, 3 ),

( 0, 0, 0, 0, 0 ),

(−1,−1,−1,−1, 4 ).

We obtain from Theorem 18 that⌊H⌋ = 14P1 + 4P∞. Choosen = 254 rational places with the exceptions ofP1, P2 and
P∞. According to Theorem 17, if we letG = H+ ⌊H⌋ = 28P1+P2+8P∞, then the codeCΩ is a [254, 228,> 16] code. For
14 6 γ 6 18, one can verify that all of the resulting codes with parameters [254, 256− 2γ,> 2γ − 12] improve the minimum
distance with respect to MinT’s Tables.
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