SWITCHED GRAPHS OF SOME STRONGLY REGULAR GRAPHS RELATED TO THE SYMPLECTIC GRAPH

ALICE M.W. HUI, BERNARDO RODRIGUES

huimanwa@gmail.com, Rodrigues@ukzn.ac.za, May 30, 2018

ABSTRACT. Applying a method of Godsil and McKay [6] to some graphs related to the symplectic graph, a series of new infinite families of strongly regular graphs with parameters $(2^n \pm 2^{(n-1)/2}, 2^{n-1} \pm 2^{(n-1)/2}, 2^{n-2} \pm 2^{(n-3)/2}, 2^{n-2} \pm 2^{(n-1)/2})$ are constructed for any odd $n \ge 5$. The construction is described in terms of geometry of quadric in projective space. The binary linear codes of the switched graphs are $[2^n \mp 2^{\frac{n-1}{2}}, n+3, 2^{t+1}]_2$ -code or $[2^n \mp 2^{\frac{n-1}{2}}, n+3, 2^{t+2}]_2$ -code.

Keywords: strongly regular graph, cospectral graphs, linear code of a graph

MSC 2010: 05E30 05C50 94B25 51A50

1. INTRODUCTION

Consider the *n*-dimensional projective space PG(n, 2) over the finite field \mathbb{F}_2 . That is, $PG(n, 2) = \mathbb{F}_2^{n+1} \setminus \{0\}$. When *n* is odd, there are two non-equivalent nonsingular quadrics in PG(n, 2), namely elliptic and hyperbolic. For general references, see [9, Ch. 5] and [10, Ch. 22]. Both quadrics define a symplectic polarity (null polarity) in PG(n, 2) [9, Theorem 5.28].

Let $n \geq 5$ be an odd number. Let \mathcal{Q} be a non-singular quadric in $\mathrm{PG}(n, 2)$. Define the graph $\Gamma_{\mathcal{Q}} = (V_{\mathcal{Q}}, E_{\mathcal{Q}})$ as follows. The vertex set $V_{\mathcal{Q}}$ is the set of points of $\mathrm{PG}(n, 2)$ not in \mathcal{Q} . Two vertices x and y are adjacent in $\Gamma_{\mathcal{Q}}$ if and only if the line xy joining them is an external line of \mathcal{Q} . $\Gamma_{\mathcal{Q}}$ is the complement of a subgraph of the symplectic graph Sp(n+1,2), which is the graph of the perpendicular relation induced by a non-degenerate symplectic form of \mathbb{F}_2^{n+1} on the non-zero vectors of \mathbb{F}_2^{n+1} . In [8, 7, 11], $\Gamma_{\mathcal{Q}}$ is denoted by $\overline{\mathcal{N}_{n+1}^{\epsilon}}$, where ϵ is + (plus) if \mathcal{Q} is hyperbolic, and -(minus) if \mathcal{Q} is elliptic.

A strongly regular graph with parameters (v, k, λ, μ) is a graph with v vertices such that each vertex lies on exactly k edges; any two adjacent vertices have exactly λ neighbours in common; and any two non-adjacent vertices have exactly μ neighbours in common. The adjacency matrix of a strongly regular graph has exactly three eigenvalues. One is k with multiplicity 1, and the remaining two are usually denoted by r and s, r > s with multiplicities f and g respectively. For general references, see

[4, Ch.9] and [5, Ch.2]. It is well-known that $\Gamma_{\mathcal{Q}}$ defined above is a strongly regular graph. Table 1 shows the parameters of $\Gamma_{\mathcal{Q}}$ for the different quadrics in PG(n, 2) (see [7]).

\mathcal{Q}	graph	v	k	λ	μ
elliptic	$\Gamma_{\mathcal{Q}} = \overline{\mathcal{N}_{n+1}^{-}}$	$2^n + 2^{\frac{n-1}{2}}$	$2^{n-1} + 2^{\frac{n-1}{2}}$	$2^{n-2} + 2^{\frac{n-3}{2}}$	$2^{n-2} + 2^{\frac{n-1}{2}}$
hyperbolic	$\Gamma_{\mathcal{Q}} = \overline{\mathcal{N}_{n+1}^+}$	$2^n - 2^{\frac{n-1}{2}}$	$2^{n-1} - 2^{\frac{n-1}{2}}$	$2^{n-2} - 2^{\frac{n-3}{2}}$	$2^{n-2} - 2^{\frac{n-1}{2}}$
Q	graph	r	S	f	g
\mathcal{Q} elliptic	$\frac{\text{graph}}{\Gamma_{\mathcal{Q}} = \overline{\mathcal{N}_{n+1}^{-}}}$	$\frac{r}{2^{\frac{n-3}{2}}}$	$\frac{s}{-2^{\frac{n-1}{2}}}$	$\frac{f}{\frac{1}{3}(2^{n+1}-4)}$	$\frac{g}{\frac{2^{n}+1}{3}+2^{\frac{n-1}{2}}}$

TABLE 1. Parameters of $\Gamma_{\mathcal{Q}}$

Godsil and McKay (1982) introduced a method to generate graphs with the same adjacency spectrum [6] i.e. the adjacency matrices of the graphs have equal multisets of eigenvalues. The method is described as follows. Let Γ be a graph. Let S be a subset of the vertex set such that the subgraph of Γ with vertex set S is regular. Suppose any vertex outside S has 0, |S| or $\frac{1}{2}|S|$ neighbours in S. Consider the graph Γ' obtained by switching Γ as follows: for any vertex x of Γ outside S, if x has $\frac{1}{2}|S|$ neighbours in S, then delete those $\frac{1}{2}|S|$ edges and join x to the other $\frac{1}{2}|S|$ vertices. We call S a *Godsil and McKay switching set* of Γ . By Godsil and McKay [6], Γ' has the same adjacency spectrum as Γ . In the case where Γ is a strongly regular graph, Γ' has the same adjacency spectrum as Γ and thus is also a strongly regular graph with the same parameters (see [4]). Recently, there has been interest in constructing new strongly regular graphs from known ones using the method of Godsil-McKay described above, see for example [1] and [3].

In this article, we apply the method of Godsil-McKay to $\Gamma_{\mathcal{Q}}$ as described above. The paper is organized as follows: After a brief description of our terminology in Section 2, we give two constructions of Godsil-McKay switching sets for $\Gamma_{\mathcal{Q}}$ in Section 3. In Sections 4 and 5, we study the binary code spanned by the rows of the adjacency matrix $\Gamma_{\mathcal{Q}}$ and that of its switched graphs. In Section 6, we give a number of switched graphs found and find the parameters of the codes of the switched graphs.

2. Terminology and notation

For any $m = 0, 1, 2, \dots, n-1$, a subspace of dimension m, or m-space, of PG(n, 2) is a set of points all of whose representing vectors form, together with the zero, a subspace of dimension m+1 of \mathbb{F}_2^{n+1} . The number of points of an m-space in PG(n, 2) is $2^{m+1} - 1$ [9, Theorem 3.1].

A quadric Q_n in PG(n, 2) is the set of points $[X_0, X_1, \dots, X_n]$ satisfying a non-zero homogeneous equation of degree two, i.e. $\sum_{i \leq j, i, j=0}^n a_{ij} X_i X_j = 0$ for some $a_{ij} \in \mathbb{F}_q$,

not all zero. If the equation can be reduced to fewer than n+1 variables by a change of basis, Q_n is called *singular*. Otherwise, it is *non-singular*.

Depending on the parity of n, there is one or there are two quadrics under the action of the automorphism group of PG(n, 2). For n odd, there are two distinct non-singular quadrics, respectively the elliptic quadric with canonical equation $f(X_0, X_1) + X_2X_3 + \cdots + X_{n-1}X_n = 0$ where f is an irreducible binary quadratic form, and the hyperbolic quadric with canonical equation $X_0X_1 + X_2X_3 + \cdots + X_{n-1}X_n = 0$. For n even, there is the parabolic quadric with canonical equation $X_0^2 + X_1X_2 + \cdots + X_{n-1}X_n = 0$. For a parabolic quadric Q_n , there is an unique point in $PG(n, 2) \setminus Q_n$, called *the nucleus* of Q_n , such that all line through the nucleus is tangent to Q_n (see [10, page10]). Table 2 shows the number of points of different non-singular quadrics.

quadric Q_n	Elliptic	Hyperbolic	Parabolic
number of points	$2^n - 2^{\frac{n-1}{2}} - 1$	$2^n + 2^{\frac{n-1}{2}} - 1$	$2^{n} - 1$

TABLE 2. Number of points in non-singular quadrics

A singular quadric in PG(n, 2) is either an *m*-space, m < n, or a cone $\prod_{n-t-1}Q_t$ which is the set of points on the lines joining an (n - t - 1)-space \prod_{n-t-1} to a nonsingular quadric Q_t in a *t*-space \prod_t with $\prod_{n-t-1} \cap \prod_t = \emptyset$. The number of points of such a cone is

(2.1)
$$|\Pi_{n-t-1}Q_t| = (2^{n-t} - 1) + 2^{n-t}|Q_t|.$$

A polarity ρ of PG(n, 2) is an order-two bijection on its subspaces that reverses containment. That is, for an *m*-space Π_m and *m'*-space $\Pi_{m'}$ of PG(n, 2), if $\Pi_m \subset \Pi_{m'}$, then $\Pi_{m'}^{\rho} \subset \Pi_m^{\rho}$. In particular, a polarity interchanges *m*-spaces and (n - 1 - m)spaces. For a general reference on polarities, see [9, Section 2.1].

The (binary linear) code $C(\Gamma)$ of a graph $\Gamma = (V, E)$ is the subspace in the vector space $\mathbb{F}_2^{|V|}$ generated by the rows of the adjacency matrix of Γ modulo 2. The length n of $C(\Gamma)$ is |V|, and the dimension k of $C(\Gamma)$ is the dimension of $C(\Gamma)$ as a subspace in $\mathbb{F}_2^{|V|}$. For any vector $w = (w_x)_{x \in V} \in \mathbb{F}_2^{|V|}$, the weight $\operatorname{wt}(w)$ of w is

$$\operatorname{wt}(w) = |\{x \in V | w_x \neq 0\}|.$$

The minimum weight d of a code is the minimum of the weight of its non-zero codewords. A binary linear code of length n, dimension k and minimum weight d will be referred to as an $[n, k, d]_2$. For any subset $U \subset V$, the characteristic vector of U, denoted by v^U , is the vector $(w_x)_{x \in V}$ where $w_x = 1$ if $x \in U$, and $w_x = 0$ if $x \notin U$. For a general reference on codes, see [2].

For the graph $\Gamma_Q = (V_Q, E_Q)$ defined in Section 1, $C(\Gamma_Q)$ is a $[2^n + 2^{\frac{n-1}{2}}, n + 1, 2^{n-1}]_2$ code if Q is elliptic, and is a $[2^n + 2^{\frac{n-1}{2}}, n + 1, 2^{n-1} - 2^{\frac{n-1}{2}}]_2$ code if Q is hyperbolic. A vector $w \in \mathbb{F}_2^{|V_Q|}$ is a codeword of $C(\Gamma_Q)$ if and only if it is the

characteristic vector of $(PG(n, 2) \setminus Q) \setminus \Sigma$ for some (n - 1)-space Σ in PG(n, 2). The weight distribution of $C(\Gamma_Q)$ is shown in Tables 3 and 4 (see for example [7]).

weight	0	2^{n-1}	$2^{n-1} + 2^{\frac{n-1}{2}}$
number of codewords	1	$2^n - 2^{\frac{n-1}{2}} - 1$	$2^n + 2^{\frac{n-1}{2}}$

TABLE 3. Weight distribution of $C(\Gamma_{\mathcal{Q}})$ if \mathcal{Q} is elliptic

weight	0	$2^{n-1} - 2^{\frac{n-1}{2}}$	2^{n-1}
number of codewords	1	$2^n - 2^{\frac{n-1}{2}}$	$2^n + 2^{\frac{n-1}{2}} - 1$

TABLE 4. Weight distribution of $C(\Gamma_{\mathcal{Q}})$ if \mathcal{Q} is hyperbolic

3. Two constructions of Godsil-McKay switching sets of Γ_{Q}

In this section, we will prove Theorems 3.A and 3.B, which give constructions of Godsil-McKay switching sets of the graph $\Gamma_{\mathcal{Q}}$ defined in Section 1 for quadrics \mathcal{Q} in PG(n, 2).

Theorems 3.A and 3.B are as follows.

Theorem 3.A. Let \mathcal{Q} be a non-singular quadric in PG(n, 2) where $n \geq 5$ is odd. Let t be an integer such that $0 < t \leq \frac{n-3}{2}$, α be a t-space in \mathcal{Q} , and Π be a (t+1)-space meeting \mathcal{Q} in exactly α . Let $\Gamma_{\mathcal{Q}}$ be as defined in Section 1. Then

$$(3.1) S_t := \Pi \setminus \alpha$$

is a Godsil-McKay switching set of $\Gamma_{\mathcal{Q}}$ of size 2^{t+1} . Let $\Gamma_{\mathcal{Q},t}$ be the graph obtained by Godsil-McKay switching with switching set S_t . Then $\Gamma_{\mathcal{Q},t}$ is a strongly regular graph with the same parameters as $\Gamma_{\mathcal{Q}}$ (which are listed as in Table 1). Furthermore, if \perp is the polarity of PG(n, 2) induced by \mathcal{Q} , then

(3.2)
$$T_t := (\operatorname{PG}(n,2) \setminus \mathcal{Q}) \setminus \alpha^{\perp}$$

is the set of vertices in $\Gamma_{\mathcal{Q}}$ outside S_t which have exactly $\frac{1}{2}|S_t|$ neighbours in S_t .

Theorem 3.B. Let \mathcal{Q} be a non-singular quadric in $\mathrm{PG}(n, 2)$ where $n \geq 5$ is odd. If \mathcal{Q} is elliptic, then let t be an integer such that $0 < t \leq \frac{n-3}{2}$. If \mathcal{Q} is hyperbolic, then let t be an integer such that $0 < t \leq \frac{n-5}{2}$. In $\mathrm{PG}(n, 2)$ where $n \geq 5$ is odd, let \mathcal{Q} be a non-singular quadric. Let α be a t-space in \mathcal{Q} . Let Π, Π' be distinct (t+1)-spaces meeting \mathcal{Q} in exactly α such that the space spanned by Π and Π' meet \mathcal{Q} in exactly α . Let $\Gamma_{\mathcal{Q}}$ be as defined in Section 1. Then

$$(3.3) S_{t,t} := (\Pi \cup \Pi') \setminus \alpha$$

is a Godsil-McKay switching set of $\Gamma_{\mathcal{Q}}$. Let $\Gamma_{\mathcal{Q},t,t}$ be the graph obtained by Godsil-McKay switching with switching set $S_{t,t}$. Then $\Gamma_{\mathcal{Q},t,t}$ is a strongly regular graph with the same parameters as $\Gamma_{\mathcal{Q}}$ (these are listed as in Table 1). Furthermore, if \perp is the polarity of PG(n, 2) induced by \mathcal{Q} , then

(3.4)
$$T_{t,t} = T_t \cup \left[\left(\left(\Pi^{\perp} \triangle \Pi'^{\perp} \right) \setminus S_{t,t} \right) \setminus \mathcal{Q} \right]$$

is the set of vertices in $\Gamma_{\mathcal{Q}}$ outside $S_{t,t}$ which have exactly $|\frac{1}{2}S_{t,t}|$ neighbours in $S_{t,t}$, where Δ is the symmetric difference.

Remark. In both Theorems 3.A and 3.B, $t \leq \frac{n-3}{2}$ or $t \leq \frac{n-5}{2}$. This is a necessary and sufficient condition for the existence of α , Π and Π' by [10, Theorem 22.8.3].

Remark. In Theorem 3.B, by the dimension theorem for subspaces, the space $\langle \Pi, \Pi' \rangle$ spanned by Π and Π' is an (t + 2)-subspace. By [9, Theorem 3.1], there are exactly three planes through α in $\langle \Pi, \Pi' \rangle$. Let Π'' be the plane through α other than Π and Π' . Since \mathcal{Q} is a quadric, either $\langle \Pi, \Pi' \rangle \cap \mathcal{Q} = \Pi''$ or $\langle \Pi, \Pi' \rangle \cap \mathcal{Q} = \alpha$ holds by [10, Theorem 22.8.3]. In the former case, since $\langle \Pi, \Pi' \rangle$ is one dimension higher than that of $\Pi'', (\Pi \cup \Pi') \setminus \alpha = \langle \Pi, \Pi' \rangle \setminus \Pi''$ is a Godsil-McKay switching set of $\Gamma_{\mathcal{Q}}$ by Theorem 3.A. The latter case is treated in Theorem 3.B.

Throughout this article, we will work under the assumptions of Theorems 3.A or 3.B. In particular, the symbols $n, \mathcal{Q}, \perp, t, \alpha, \Pi, \Pi', \Gamma_{\mathcal{Q}}, \Gamma_{\mathcal{Q},t}, \Gamma_{\mathcal{Q},t,t}, S_t, S_{t,t}, T_t$ and $T_{t,t}$ are preserved as defined in Theorems 3.A or 3.B.

We first check the size of switching sets described in Theorems 3.A and 3.B.

Lemma 3.1. The size $|S_t|$ of S_t and the size $|S_{t,t}|$ of $S_{t,t}$ are respectively 2^{t+1} and 2^{t+2} .

Proof. Since Π is a (t+1)-space and α is a t-space,

$$|S_t| = |\Pi \setminus \alpha| = (2^{t+2} - 1) - (2^{t+1} - 1) = 2^{t+1}.$$

For $S_{t,t}$, because of $\Pi \cap \Pi' = \alpha$, we have

$$|S_{t,t}| = |(\Pi \cup \Pi') \setminus \alpha| = 2(2^{t+2} - 1) - (2^{t+1} - 1) - (2^{t+1} - 1) = 2^{t+2}.$$

We now determine the structure of the subgraphs of $\Gamma_{\mathcal{Q}}$ with vertex sets S_t and $S_{t,t}$ respectively.

Lemma 3.2. The subgraph of $\Gamma_{\mathcal{Q}}$ with vertex set S_t is null.

Proof. Since α is one dimension less than that of Π , a line in Π either lies in α or is tangent to α , and thus to \mathcal{Q} . In other words, no two vertices are joined in $\Gamma_{\mathcal{Q}}$. \Box

Lemma 3.3. The subgraph of $\Gamma_{\mathcal{Q}}$ with vertex set $S_{t,t}$ is a regular subgraph of degree 2^{t+1} .

Proof. Let x be a point in $S_{t,t}$. Without loss of generality, assume $x \in \Pi$. We count the number of neighbours of x. By the same argument used in Lemma 3.2, x is not adjacent to any vertex in $\Pi \setminus \alpha$.

Since the span of Π and Π' meets \mathcal{Q} in exactly α by assumption, any line through x and a point in $\Pi' \setminus \alpha$ is an external line of \mathcal{Q} . In other words, the vertex is adjacent to any vertex in $\Pi' \setminus \alpha$. Since the size of $\Pi' \setminus \alpha$ is 2^{t+1} , the result follows. \Box

Lemma 3.4. S_t is a Godsil-McKay switching set of Γ_Q .

Proof. By Lemma 3.2, the subgraph of $\Gamma_{\mathcal{Q}}$ with vertex set S_t is null.

By Lemma 3.1, $|S_t| = 2^{t+1}$. Let x be a point in $(\operatorname{PG}(n, 2) \setminus \mathcal{Q}) \setminus S_t$. It suffices to show that either any line joining x and a point of S_t meets \mathcal{Q} , or there are exactly 2^t or 2^{t+1} points y in S_t such that the line xy is an external line to \mathcal{Q} . Since any line in $\operatorname{PG}(n, 2)$ has exactly three points, any line through two external points of \mathcal{Q} is either a tangent or an external line. Thus, it also suffices to show that either any line joining x and a point of S_t is an external line, or there are exactly 2^{t+1} , 2^t points y in S_t such that the line xy is tangent to \mathcal{Q} .

Suppose the line xy joining x and a point y of S_t is tangent to Q. Since every line has only three points, the unique point z on xy other than x and y is a point of Q. Let Σ be the (t + 1)-space spanned by z and α . Then Σ meets Q in the t-space α and at least one point not in α , namely z. By [10, Theorem 22.8.3], Σ either lies in Q or meets Q in exactly two t-spaces.

If Σ lies in \mathcal{Q} , then every line through x and a point of S_t is a tangent to \mathcal{Q} , and we are done.

If Σ meets \mathcal{Q} in exactly two *t*-spaces, say α and α' , then α and α' meet in a (t-1)-space. Then a line xy' through x and a point y' of S_t is tangent to \mathcal{Q} if and only if y' is in $S_t \cap \langle x, \alpha' \rangle$. Since

$$S_t \cap \langle x, \alpha' \rangle = (\Pi \setminus \alpha) \cap \langle x, \alpha' \rangle$$
$$= (\Pi \cap \langle x, \alpha' \rangle) \setminus (\alpha \cap \langle x, \alpha' \rangle)$$
$$= \langle y, \alpha \cap \alpha' \rangle \setminus (\alpha \cap \alpha')$$

has $(2^{t+1} - 1) - (2^t - 1) = 2^t$ points, the result follows.

We need to make use of a property of \perp to prove the following two lemmas. Recall from [10, Lemma 22.3.3] that, for any point $y \in \mathcal{Q}$, y^{\perp} comprises the points on the tangents to \mathcal{Q} at y and the lines in \mathcal{Q} through y; for any point $y \notin \mathcal{Q}$, y^{\perp} consists of the points on the tangents to \mathcal{Q} through y.

Lemma 3.5. The following inclusions hold:

(1)
$$S_t \subset \Pi^{\perp} \subset \alpha^{\perp}$$
.
(2) $S_{t,t} \subset \Pi^{\perp} \Delta \Pi'^{\perp} \subset \alpha^{\perp}$.

Proof. Since α is a subset of Π and Π' , by the definition of a polarity, Π^{\perp} and Π'^{\perp} are subsets of α^{\perp} .

Since the line through any two points of Π is either a tangent of \mathcal{Q} or a line of \mathcal{Q} . By [10, Lemma 22.3.3], Π is a subset of Π^{\perp} . Similarly, Π' is a subset Π'^{\perp} . Hence $S_t \subset \Pi^{\perp}$ and $S_{t,t} \subset \Pi^{\perp} \cup \Pi'^{\perp}$.

As stated in Theorem 3.B, the space spanned by Π and Π' meets \mathcal{Q} in exactly α . Thus, any line through joining a point of $\Pi \setminus \alpha$ and a point of $\Pi' \setminus \alpha$ is an external line of \mathcal{Q} . By [10, Lemma 22.3.3], $\Pi \cap \Pi'^{\perp} = \emptyset$ and $\Pi^{\perp} \cap \Pi' = \emptyset$, and so $S_{t,t} \cap \Pi^{\perp} \cap \Pi'^{\perp} = \emptyset$. The result follows.

To determine T_t , we prepare a lemma about polarities in PG(n, 2).

Lemma 3.6. Let ρ be a polarity of PG(n, 2). Let Σ be an (m + 1)-space of PG(n, 2)where $0 \le m < n-1$. Let x be a point in PG(n, 2). Then exactly one of the following cases occurs.

(1) x is in Σ^{ρ} .

(2) x is in $\pi^{\rho} \setminus \Sigma^{\rho}$ for exactly one m-space π in Σ .

Proof. By [9, Theorem 3.1], there are exactly $N = 2^{m+2} - 1$ m-spaces in Σ . Let $\pi_1, \pi_2, \cdots, \pi_N$ be the m-spaces contained in Σ . Since ρ is a polarity, π_i^{ρ} , $i = 1, 2, \cdots, N$, are (n-1-m)-spaces containing the (n-2-m)-space Σ^{ρ} . For distinct $i, j \in \{1, 2, \cdots, N\}, \pi_i^{\rho} \cap \pi_j^{\rho} = \langle \pi_i, \pi_j \rangle^{\rho} = \Sigma^{\rho}$. Thus, the number of points in $\bigcup_{i=1}^N \pi_i^{\rho}$ is $|\Sigma^{\rho}| + \sum_{i=1}^N |\pi_i^{\rho} \setminus \Sigma^{\rho}| = (2^{n-1-m}-1) + N[(2^{n-m}-1) - (2^{n-1-m}-1)] = 2^{n+1} - 1$, which is the number of points in $\mathrm{PG}(n, 2)$. Now, the result follows.

Lemma 3.7. Let x be a point not in Q. Then exactly one of the following cases occurs.

- (1) x is in Π^{\perp} ; any line joining x and a point in S_t is not an external line of Q.
- (2) $x \text{ is } in \pi^{\perp} \setminus \Pi^{\perp}$ for exactly one t-space $\pi \neq \alpha$ in Π ; the line xy through x and $a \text{ point } y \in S_t$ is an external line of \mathcal{Q} if and only if $y \notin \pi$. Furthermore, there are 2^t such points y.
- (3) x is in $\alpha^{\perp} \setminus \Pi^{\perp}$; any line through a point of S_t and x is an external line of \mathcal{Q} .

Proof. By [9, Theorem 3.1], there are exactly $N = 2^{t+2} - 1$ t-spaces in Π . Let $\pi_0, \pi_1, \dots, \pi_{N-1}$ be the t-spaces contained in Π . Without loss of generality, assume $\pi_0 = \alpha$.

Let x be a point not in \mathcal{Q} . By Lemma 3.6, x is either in Π^{\perp} or in $\pi_i^{\perp} \setminus \Pi^{\perp}$ for exactly one $i \in \{0, 1, \dots, N-1\}$.

(1) Suppose $x \in \Pi^{\perp}$. Then $x \in y^{\perp}$ for all $y \in \Pi$. Thus the line through x and a point $y \in \Pi \setminus Q$ is a tangent to Q. In order words, no point y in $\Pi \setminus Q = \Pi \setminus \alpha = S_t$ satisfies the condition that the line xy is an external line of Q.

(2) Suppose $x \in \pi_i^{\perp} \setminus \Pi^{\perp}$ for exactly one $i \neq 0$. By a similar argument, it follows that no point y in $\pi_i \setminus \mathcal{Q} = \pi_i \setminus \alpha$ satisfies the condition that the line xy is an external line of \mathcal{Q} . Suppose there exists $z \in S_t \setminus \pi_i$ such that the line through xz is not an external line of \mathcal{Q} . Since every line contains exactly three points, that line is tangent to \mathcal{Q} and thus x is in z^{\perp} . Then $x \in z^{\perp} \cap \pi_i^{\perp} = \langle z, \pi_i \rangle^{\perp} = \Pi^{\perp}$. This gives a contradiction, and thus the line through x and a point $y \in S_t$ is an external line of \mathcal{Q} if and only if $y \notin \pi_i$. Since $\alpha \cap \pi_i$ is a (t-1)-space, there are exactly

$$|S_t \setminus \pi_i| = |(\Pi \setminus \pi_i) \setminus (\alpha \setminus \pi_i)| = [(2^{t+2} - 1) - (2^{t+1} - 1)] - [(2^{t+1} - 1) - (2^t - 1)] = 2^t$$

points y in S_t such that the line xy is an external line of Q.

(3) Suppose $x \in \alpha^{\perp} \setminus \Pi^{\perp}$. Suppose there exists $y \in S_t$ such that the line xy is not an external line of \mathcal{Q} . Then that line is a tangent to \mathcal{Q} and thus $x \in y^{\perp}$. Then $x \in y^{\perp} \cap \alpha^{\perp} = \langle y, \alpha \rangle^{\perp} = \Pi^{\perp}$. This gives a contradiction and the result follows.

We are ready to give a proof of Theorem 3.A.

Proof of Theorem 3.A. By Lemma 3.4, S_t is a Godsil-McKay switching set for Γ_{Q} .

By Godsil and McKay [6], $\Gamma_{Q,t}$ has a same adjacency spectrum as Γ_Q . Since Γ_Q is a strongly regular graph, $\Gamma_{Q,t}$ is also a strongly regular graph with the same parameters (see the first three paragraphs on [4, Subsection 14.5.1]), where the parameters are listed as in Table 1 on 2.

By the definition of T_t and Lemma 3.7,

$$T_t = (\mathrm{PG}(n,2) \setminus \mathcal{Q}) \cap \left[\left(\bigcup_{\pi \neq \alpha} \pi^{\perp} \setminus \Pi^{\perp} \right) \setminus S_t \right]$$

where π runs over all *t*-space of Π except α . By Lemma 3.6, $\left(\bigcup_{\pi \neq \alpha} \pi^{\perp} \setminus \Pi^{\perp}\right) = PG(n,2) \setminus \alpha^{\perp}$. Since S_t is in α^{\perp} , the result follows. \square

With Lemma 3.7, we prove Theorem 3.B.

Proof of Theorem 3.B. By Lemma 3.3, the subgraph of $\Gamma_{\mathcal{Q}}$ with vertex set $S_{t,t}$ is a regular subgraph of degree 2^{t+1} .

Let x be a point in $(PG(n, 2) \setminus Q) \setminus S_{t,t}$. By Lemma 3.6, one of the following cases occurs.

(1) $x \in \Pi^{\perp}$ and $x \in \Pi'^{\perp}$. (2) $x \in \Pi^{\perp}$ and $x \in \alpha^{\perp} \setminus \Pi'^{\perp}$. (3) $x \in \Pi^{\perp}$ and $x \in \pi' \setminus \Pi'^{\perp}$ for some *t*-space $\pi' \neq \alpha$ of Π' . (4) $x \in \alpha^{\perp} \setminus \Pi^{\perp}$ and $x \in \Pi'^{\perp}$. (5) $x \in \alpha^{\perp} \setminus \Pi^{\perp}$ and $x \in \alpha^{\perp} \setminus \Pi'^{\perp}$.

(6) $x \in \pi^{\perp} \setminus \Pi^{\perp}$ for some t-space $\pi \neq \alpha$ of Π , and $x \in \Pi'^{\perp}$.

(7) $x \in \pi^{\perp} \setminus \Pi^{\perp}$ for some t-space $\pi \neq \alpha$ of Π , and $x \in \pi'^{\perp} \setminus \Pi'^{\perp}$ for some t-space $\pi' \neq \alpha$ of Π' .

Note that case (3) never occurs. Indeed, since α is a subset of Π , we have $\Pi^{\perp} \subset \alpha^{\perp}$. Indeed, if x is in Π^{\perp} , then x is in α^{\perp} by Lemma 3.5. By Lemma 3.6, $\alpha^{\perp} = (\alpha^{\perp} \setminus \Pi'^{\perp}) \cup \Pi'^{\perp}$ is disjoint from $\pi'^{\perp} \setminus \Pi'^{\perp}$. Similarly, case (6) never occurs.

For the remaining cases, by Lemma 3.7, there are respectively $0+0 = 0, 0+2^{t+1} = 2^{t+1}, 2^{t+1} + 0 = 2^{t+1}, 2^{t+1} + 2^{t+1} = 2^{t+2}, 2^t + 2^t = 2^{t+1}$ points y in $(\Pi \cup \Pi') \setminus \alpha$ such that the line xy is an external line of Q. Therefore, $S_{t,t}$ is a Godsil-McKay switching set of Γ_Q because we have $|S_{t,t}| = 2^{t+2}$ by Lemma 3.1.

Similarly, by Godsil and McKay [6], $\Gamma_{Q,t,t}$ has a same adjacency spectrum as Γ_Q . By [4], $\Gamma_{Q,t,t}$ is also a strongly regular graph with the same parameters, where the parameters are listed as in Table 1.

The vertex x is adjacent to none or all vertices in $S_{t,t}$, if and only if case (1) or (5) holds, if and only if $x \in \alpha^{\perp} \setminus (\Pi^{\perp} \triangle \Pi'^{\perp})$. The result for $T_{t,t}$ now follows. \Box

4. Some codewords of the switched graphs

We shall use the same notation $n, \mathcal{Q}, \perp, t, \alpha, \Pi, \Pi', \Gamma_{\mathcal{Q}}, \Gamma_{\mathcal{Q},t}, \Gamma_{\mathcal{Q},t,t}, S_t, S_{t,t}, T_t, T_{t,t}$, as described in Theorems 3.A or 3.B. Recall from Section 2 that $C(\Gamma_{\mathcal{Q},t})$ and $C(\Gamma_{\mathcal{Q},t,t})$ are respectively the code of $C(\Gamma_{\mathcal{Q},t})$ and $C(\Gamma_{\mathcal{Q},t,t})$. In this section, we aim to prove $v^{S_t}, v^{T_t} \in C(\Gamma_{\mathcal{Q},t})$ and $v^{S_{t,t}}, v^{T_{t,t}} \in C(\Gamma_{\mathcal{Q},t,t})$.

Since we will need frequently the number of external lines of a non-singular quadric through a point, we give these numbers in the following lemma for ease of reference.

Lemma 4.1. Let Q_m be a non-singular quadric in PG(m, 2). Let x be a point not in Q_m . If m is odd, there are $2^{m-2} \pm 2^{\frac{m-3}{2}}$ external lines through x, where the upper sign of \pm is taken when if Q_m is elliptic, and otherwise if Q_m is hyperbolic. If m is even, there are 0 or $2^{m-2} - 1$ external lines through x, depending on whether x is the nucleus of Q_m or not.

Proof. When *m* is odd, Q_m has $2^m \mp 2^{\frac{m-1}{2}} - 1$ points (see Table 1). Thus, there are $|\operatorname{PG}(m,2)| - |Q_m| = 2^m \pm 2^{(m-1)/2}$ non-quadric points. By [10, Theorem 22.6.6], these non-quadric points are in the same orbit under the subgroup $\operatorname{Aut}(Q_m)$ of the automorphism group of $\operatorname{PG}(m,2)$ which fixes Q_m . Thus, through each point, there are a same number of external lines. The result follows because there are $\frac{1}{3}(2^{m-2})(2^{\frac{m+1}{2}} \pm 1)(2^{\frac{m-1}{2}} \pm 1)$ external lines in $\operatorname{PG}(m,2)$ [10, Lemma 22.8.1].

Similarly, when m is even, there are 2^m non-quadric points. Recall from Section 2 that all line through the nucleus of Q_n is tangent to Q_n . By [10, Theorem 22.6.6], any

non-quadric points, other than the nucleus, are in the same orbit under $\operatorname{Aut}(Q_m)$. The result follows similarly because there are $\frac{1}{3}(2^{m-2})(2^m-1)$ external lines in $\operatorname{PG}(m,2)$ [10, Lemma 22.8.1].

In the following lemma, whenever we use the signs \pm or \mp , the upper sign is always taken when Q is elliptic, and lower sign is always taken when Q is hyperbolic.

Lemma 4.2. There is an external line l of \mathcal{Q} such that l and α^{\perp} are disjoint.

Proof. Let x be a non-quadric point not in α^{\perp} . Let Σ be the (n - t)-space spanned by $\{x, \alpha^{\perp}\}$. If there is an external line of \mathcal{Q} through x but not in Σ , then such a line will be disjoint from α^{\perp} and we are done.

We first consider the case for t = 1. By Lemma 3.6, $x \in \pi^{\perp}$ for a unique 1-space π of Π . Since x is not in α^{\perp} , we have $\pi \neq \alpha$ and so $\pi \cap \alpha$ is a point of \mathcal{Q} . By Theorem [10, Theorem 22.7.2], $\Sigma \cap \mathcal{Q}$ is a parabolic quadric. If x is the nucleus of $\Sigma \cap \mathcal{Q}$, then there is no external line (of both \mathcal{Q} and $\Sigma \cap \mathcal{Q}$) in Σ and through x, as desired. If x is not the nucleus of $\Sigma \cap \mathcal{Q}$, then there are

$$2^{n-3} - 1$$

external lines in Σ and through x by Lemma 4.1. Since n is not less than 5, this number is less than the number of external lines in PG(n, 2) through x found in Lemma 4.1, and thus there is an external line of Q through x but not in Σ , as desired.

Similarly, in case t = 2, Σ is an (n - 2)-space meeting \mathcal{Q} in a line cone $\Pi_1 \mathcal{Q}_{n-4}^$ over an elliptic quadric \mathcal{Q}_{n-4}^- if \mathcal{Q} is elliptic, and a line cone $\Pi_1 \mathcal{Q}_{n-4}^+$ over a hyperbolic quadric \mathcal{Q}_{n-4}^+ if \mathcal{Q} is hyperbolic. Since $\Pi_1 \mathcal{Q}_{n-4}^-$ has

(4.1)
$$|\Pi_1 \mathcal{Q}_{n-4}^-| = 3 + 4(2^{n-4} - 2^{\frac{n-5}{2}} - 1) = 2^{n-2} - 2^{(n-1)/2} - 1$$

points and $\Pi_1 \mathcal{Q}_{n-4}^+$ has

(4.2)
$$|\Pi_1 \mathcal{Q}_{n-4}^+| = 3 + 4(2^{n-4} + 2^{\frac{n-5}{2}} - 1) = 2^{n-2} + 2^{(n-1)/2} - 1$$

points, there are

$$|\Sigma| - |\Pi_1 \mathcal{Q}_{n-4}^{\epsilon}| = 2^{n-2} \pm 2^{\frac{n-1}{2}}, \epsilon \in \{-,+\}$$

non-quadric points in the (n-2)-space Σ . Thus, there are at most

$$\frac{2^{n-2} \pm 2^{\frac{n-1}{2}}}{2} = 2^{n-3} \pm 2^{\frac{n-3}{2}}$$

external lines in Σ through x. Since this number is less than the number of external lines in PG(n, 2) through x found in Lemma 4.1, there is an external line of \mathcal{Q} through x but not in Σ , as desired.

We now consider the case for t > 2. By [9, Theorem 3.1], through x, there are

$$2^{n-t} - 1$$

lines in the (n-t)-space Σ . Since this number is less than the number of external lines through x found in Lemma 4.1, there is an external line of \mathcal{Q} through x but not in Σ , as desired.

Lemma 4.3. The vector v^{S_t} is in $C(\Gamma_{Q,t})$. The vector $v^{S_{t,t}}$ is in $C(\Gamma_{Q,t,t})$.

Proof. Let $l = \{x_1, x_2, x_3\}$ be an external line of \mathcal{Q} such that l and α^{\perp} are disjoint. This exists by Lemma 4.2.

For each i = 1, 2, 3, let r_i , $\dot{r_i}$ and $\ddot{r_i}$ respectively be the row of the adjacency matrices of $\Gamma_{\mathcal{Q}}$, $\Gamma_{\mathcal{Q},t}$, $\Gamma_{\mathcal{Q},t,t}$ corresponding to x_i . Then r_i is the characteristic vector of $(\operatorname{PG}(n,2) \setminus \mathcal{Q}) \setminus x_i^{\perp}$. By Lemma 3.6, $\operatorname{PG}(n,2) \setminus \mathcal{Q}$ is the disjoint union of $l^{\perp} \setminus \mathcal{Q}$, $(x_1^{\perp} \setminus l^{\perp}) \setminus \mathcal{Q}$, $(x_2^{\perp} \setminus l^{\perp}) \setminus \mathcal{Q}$ and $(x_3^{\perp} \setminus l^{\perp}) \setminus \mathcal{Q}$. Since l^{\perp} is a subset of x_i^{\perp} for i = 1, 2, 3, we have

$$(4.3) r_1 + r_2 + r_3 = 0$$

in $\mathbb{F}_2^{|V_Q|}$.

Since l is disjoint from α^{\perp} , we have $l \subset T_t$ and $l \subset T_{t,t}$. By the definitions of $\Gamma_{Q,t}$ and $\Gamma_{Q,t,t}$, for each i = 1, 2, 3, we have

(4.4)
$$\dot{r_i} = r_i + v^{S_t}$$

and

(4.5)
$$\ddot{r_i} = r_i + v^{S_{t,t}}$$

By (4.3) and (4.4), $\dot{r_1} + \dot{r_2} + \dot{r_3} = v^{S_t}$ and so v^{S_t} is a codeword of $C(\Gamma_{Q,t})$. Similarly, $v^{S_{t,t}}$ is a codeword of $C(\Gamma_{Q,t,t})$ because $\ddot{r_1} + \ddot{r_2} + \ddot{r_3} = v^{S_{t,t}}$ by (4.3) and (4.5).

The purpose and proof of following lemma are similar to those of Lemma 4.2, and we apply this lemma to prove $v^{T_t} \in C(\Gamma_{Q,t})$ and $v^{T_{t,t}} \in C(\Gamma_{Q,t,t})$.

Lemma 4.4. Let x be a non-quadric point in α^{\perp} . Then there is an external line l of Q through x such that l is tangent to α^{\perp} at x.

Proof. To prove the lemma, it suffices to show some of external line through x does not lie in α^{\perp} .

We first consider the case for t = 1. Then α^{\perp} is an (n-2)-space. By [10, Theorem 22.7.2], $\alpha^{\perp} \cap \mathcal{Q}$ is a line cone $\Pi_1 \mathcal{Q}_{n-4}^-$ over an elliptic quadric \mathcal{Q}_{n-4}^- if \mathcal{Q} is elliptic, and a line cone $\Pi_1 \mathcal{Q}_{n-4}^+$ over a hyperbolic quadric \mathcal{Q}_{n-4}^+ if \mathcal{Q} is hyperbolic. For either \mathcal{Q} elliptic or hyperbolic, the set of points y's in $\alpha^{\perp} \cap \mathcal{Q}$ such that the line xy is tangent to $\alpha^{\perp} \cap \mathcal{Q}$ forms a line cone $\Pi_1 \mathcal{Q}_{n-5}$ over a parabolic quadric \mathcal{Q}_{n-5} . Since \mathcal{Q}_{n-5} has $2^{n-5} - 1$ points [9, Theorem 5.21], there are

$$\Pi_1 \mathcal{Q}_{n-5} = [3 + 4(2^{n-5} - 1)] = 2^{n-3} - 1$$

tangents in α^{\perp} through x. Using (4.1) and (4.2), there are

$$\frac{|\alpha^{\perp} \cap \mathcal{Q}| - |\Pi_1 \mathcal{Q}_{n-5}|}{2} = 2^{n-4} \mp 2^{(n-3)/2}$$

secants in α^{\perp} through x. Since there are $2^{n-2} - 1$ lines in α^{\perp} through x [9, Theorem 3.1], there are

(4.6)
$$(2^{n-2}-1) - (2^{n-4} \mp 2^{(n-3)/2}) - (2^{n-3}-1) = 2^{n-4} \pm 2^{(n-3)/2}$$

external lines of \mathcal{Q} in α^{\perp} through x, where the upper signs of \pm and \mp are taken if \mathcal{Q} is elliptic and the lower sign if \mathcal{Q} is hyperbolic. Since the number in (4.6) is less than the number of external lines through x found in Lemma 4.1, there is an external line of \mathcal{Q} through x but not in α^{\perp} , as desired.

We now consider the case for t > 1. By [9, Theorem 3.1], through x, there are only

 $2^{n-1-t} - 1$

lines of the (n-1-t)-space α^{\perp} . Since this number is less than the number of external lines through x found in Lemma 4.1, there is an external line of \mathcal{Q} through x but not in α^{\perp} , as desired.

Lemma 4.5. The vector v^{T_t} is in $C(\Gamma_{\mathcal{Q},t})$. The vector $v^{T_{t,t}}$ is in $C(\Gamma_{\mathcal{Q},t,t})$.

Proof. Let $x_1 \in S_t$. Note that $x_1 \in \alpha^{\perp}$. Take an external line $l = \{x_1, x_2, x_3\}$ of \mathcal{Q} through x such that l is tangent to α^{\perp} at x_1 . It exists by Lemma 4.4.

For each i = 1, 2, 3, let r_i , $\dot{r_i}$ and $\ddot{r_i}$ respectively be the row of the adjacency matrices of Γ_Q , $\Gamma_{Q,t}$, $\Gamma_{Q,t,t}$ corresponding to x_i . By the same argument used in the proof of Lemma 4.3, we have

$$(4.7) r_1 + r_2 + r_3 = 0.$$

Because of $x_1 \in S_t \subset S_{t,t}$, by the definitions of $\Gamma_{\mathcal{Q},t}$ and $\Gamma_{\mathcal{Q},t,t}$, we have

(4.8)
$$\dot{r_1} = r_1 + v^{T_t}$$

and

(4.9)
$$\ddot{r_1} = r_1 + v^{T_{t,t}}$$

Since x_2, x_3 are not in α^{\perp} , they are in T_t and $T_{t,t}$ by (3.2) and (3.4). So, for i = 2, 3, we have

(4.10)
$$\dot{r_i} = r_i + v^{S_i}$$

and

(4.11)
$$\ddot{r_i} = r_i + v^{S_{t,t}}.$$

By (4.7), (4.8) and (4.10), $\dot{r_1} + \dot{r_2} + \dot{r_3} = v^{T_t}$ and so v^{T_t} is a codeword of $C(\Gamma_{\mathcal{Q},t})$. Similarly, $v^{T_{t,t}}$ is a codeword of $C(\Gamma_{\mathcal{Q},t,t})$ because $\ddot{r_1} + \ddot{r_2} + \ddot{r_3} = v^{T_{t,t}}$ by (4.7), (4.9) and (4.11).

5. The minimum word of $C(\Gamma_{Q,t})$ and $C(\Gamma_{Q,t,t})$

In this section, we use the same notation $n, \mathcal{Q}, \perp, t, \alpha, \Pi, \Pi', \Gamma_{\mathcal{Q}}, \Gamma_{\mathcal{Q},t}, \Gamma_{\mathcal{Q},t,t}, S_t, S_{t,t}, T_t \text{ and } T_{t,t} \text{ as in Section 4, except requiring } n \geq 7.$ Let

(5.1)
$$C_t = \left\langle C(\Gamma_{\mathcal{Q},t}), v^{S_t}, v^{T_t} \right\rangle$$

and

(5.2)
$$C_{t,t} = \left\langle C(\Gamma_{\mathcal{Q},t,t}), v^{S_{t,t}}, v^{T_{t,t}} \right\rangle$$

In this section, we aim to prove the minimum word of C_t and $C_{t,t}$ are respectively v^{S_t} and $v^{S_{t,t}}$. This will give the minimum word of $C(\Gamma_{Q,t})$ and $C(\Gamma_{Q,t,t})$ once we prove that $C_t = C(\Gamma_{Q,t})$ and $C_{t,t} = C(\Gamma_{Q,t,t})$ in the next section.

Lemma 5.1. Let $w \in C(\Gamma_{\mathcal{Q}})$. Then $wt(w + v^{S_t}) > 2^{t+1}$ and $wt(w + v^{S_{t,t}}) > 2^{t+2}$.

Proof. From Table 3, if \mathcal{Q} is elliptic, the weight $\operatorname{wt}(w)$ of w satisfies $\operatorname{wt}(w) \geq 2^{n-1}$. By Lemma 3.1, $\operatorname{wt}(v^{S_t}) = 2^{t+1}$ and $\operatorname{wt}(v^{S_{t,t}}) = 2^{t+2}$. So,

$$wt(w + v^{S_t}) \ge wt(w) - wt(v^{S_t}) = 2^{n-1} - 2^{t+1},$$

$$wt(w + v^{S_{t,t}}) \ge wt(w) - wt(v^{S_{t,t}}) = 2^{n-1} - 2^{t+2}.$$

Since we have assumed $n \ge 7$ in this section and we have $t \le \frac{n-3}{2}$ under the assumption in Theorems 3.A and 3.B, it is straightforward to verify that $\operatorname{wt}(w+v^{S_t}) > 2^{t+1}$ and $\operatorname{wt}(w+v^{S_{t,t}}) > 2^{t+2}$.

From Table 4, if \mathcal{Q} is hyperbolic, then $\operatorname{wt}(w) \geq 2^{n-1} - 2^{\frac{n-1}{2}}$. Similarly, since $n \geq 7$, it is straightforward to verify that $\operatorname{wt}(w + v^{S_t}) > 2^{t+1}$ and $\operatorname{wt}(w + v^{S_{t,t}}) > 2^{t+2}$ with t in the range stated in Theorems 3.A and 3.B.

For any subset U of points of PG(n, 2), denoted by \widehat{U} the set $U \setminus Q$. Recall that whenever we use the signs \pm or \mp , the upper sign is always taken when Q is elliptic, and lower sign is always taken when Q is hyperbolic.

Lemma 5.2. (1) $|\widehat{\alpha^{\perp}}| = 2^{n-t-1} \pm 2^{\frac{n-1}{2}}$. (2) Let $A = (\Pi^{\perp} \triangle \Pi'^{\perp}) \setminus S_{t,t}$. Then $|\widehat{A}| = 2^{n-t-2} \pm 2^{\frac{n-1}{2}} - 2^{t+2}$. (3) Let Σ be an (n-1)-space. Then exactly one of the following holds: (a) $\Sigma \cap \mathcal{Q} = \mathcal{Q}_{n-1}; |\widehat{\Sigma}| = 2^{n-1}$. (b) $\Sigma \cap \mathcal{Q} = \Pi_0 \mathcal{Q}_{n-2}$ where \mathcal{Q}_{n-2} and \mathcal{Q} are both elliptic or both hyperbolic; $|\widehat{\Sigma}| = 2^{n-1} \pm 2^{\frac{n-1}{2}}$.

Proof. (1) Since α is in \mathcal{Q} , by [10, Theorem 22.8.3], $\alpha^{\perp} \cap \mathcal{Q}$ is a cone $\prod_{t} Q_{n-2t-2}$ where Q_{n-2t-2} is elliptic if \mathcal{Q} is elliptic, and is hyperbolic otherwise. By (2.1) and Table 1, we have

$$|\alpha^{\perp} \cap \mathcal{Q}| = (2^{t+1} - 1) + 2^{t+1}(2^{n-2t-2} \mp 2^{\frac{n-2t-3}{2}} - 1) = 2^{n-t-1} \mp 2^{\frac{n-1}{2}} - 1.$$

Since α^{\perp} is an (n-t-1)-space, it follows that

$$\begin{aligned} |\widehat{\alpha^{\perp}}| &= |\alpha^{\perp}| - |\alpha^{\perp} \cap \mathcal{Q}| \\ &= (2^{n-t} - 1) - [2^{n-t-1} \mp 2^{\frac{n-1}{2}} - 1] = 2^{n-t-1} \pm 2^{\frac{n-1}{2}}. \end{aligned}$$

(2) Similar to (1), we have

$$\begin{aligned} |\widehat{\Pi^{\perp}}| &= |\Pi^{\perp}| - |\Pi^{\perp} \cap \mathcal{Q}| = |\Pi^{\perp}| - |\Pi_t Q_{n-2t-3}| \\ &= (2^{n-t-1} - 1) - [(2^{t+1} - 1) + 2^{t+1}(2^{n-2t-3} - 1)] = 2^{n-t-2} \end{aligned}$$

and

$$\begin{split} |\langle \Pi, \Pi' \rangle^{\perp}| &= |\langle \Pi, \Pi' \rangle^{\perp} |- |(\langle \Pi, \Pi' \rangle^{\perp}) \cap \mathcal{Q}| = |\langle \Pi, \Pi' \rangle^{\perp} |- |\Pi_t \mathcal{Q}_{n-2t-4}| \\ &= (2^{n-t-2} - 1) - [(2^{t+1} - 1) + 2^{t+1}(2^{n-2t-4} \pm 2^{\frac{n-2t-5}{2}} - 1)] \\ &= 2^{n-t-3} \mp 2^{\frac{n-3}{2}}. \end{split}$$

where \mathcal{Q}_{n-2t-4} is hyperbolic if \mathcal{Q} is elliptic; \mathcal{Q}_{n-2t-4} is elliptic if \mathcal{Q} is hyperbolic. Recall from Lemma 3.5, $S_{t,t} \subset \Pi^{\perp} \triangle \Pi'^{\perp}$. Now using Lemma 3.1, we deduce

$$|\widehat{A}| = |\widehat{\Pi^{\perp}}| + |\widehat{\Pi'^{\perp}}| - 2|\langle \widehat{\Pi,\Pi'} \rangle^{\perp}| - |S_{t,t}| = 2^{n-t-2} \pm 2^{\frac{n-1}{2}} - 2^{t+2}.$$

(3) By [10, Theorem 22.8.5], $\Sigma \cap Q$ is either (a) Q_{n-1} or (b) $\Pi_0 Q_{n-2}$ where Q_{n-2} and Q are both elliptic or both hyperbolic. The result follows by (2.1) and Table 1.

Lemma 5.3. The size of T_t and $T_{t,t}$ are respectively $|T_t| = 2^n - 2^{n-t-1}$ and $|T_{t,t}| = 2^n \pm 2^{\frac{n-1}{2}} - 2^{n-t-2} - 2^{t+2}$. Furthermore, the following holds:

 $\begin{array}{ll} (1) & |T_t| > 2^{t+1}. \\ (2) & |T_t \triangle S_t| > 2^{t+1}. \\ (3) & |T_{t,t}| > 2^{t+2}. \\ (4) & |T_{t,t} \triangle S_{t,t}| > 2^{t+2}. \end{array}$

Proof. Using (3.2) and Lemma 5.2(1), we obtain

$$|T_t| = |\operatorname{PG}(n,2)| - |\mathcal{Q}| - |\widehat{\alpha^{\perp}}| = (2^{n+1}-1) - (2^n \mp 2^{\frac{n-1}{2}} - 1) - (2^{n-t-1} \pm 2^{\frac{n-1}{2}}) = 2^n - 2^{n-t-1}.$$

Since $0 < t \leq \frac{n-3}{2}$, we have

$$|T_t| - 2^{t+1} = 2^{n-t-1}(2^{t+1} - 1) - 2^{t+1} > 3 \cdot 2^{n-t-1} - 2^{t+1} > 0.$$

So, $|T_t| > 2^{t+1}$.

Using (3.4) and Lemma 5.2(2), we have

$$|T_{t,t}| = |T_t| + |\widehat{A}| = 2^n - 2^{n-t-2} \pm 2^{\frac{n-1}{2}} - 2^{t+2}$$

where $A = (\Pi^{\perp} \triangle \Pi'^{\perp}) \setminus S_{t,t}$. Because of t > 0, we have

$$|T_{t,t}| - 2^{t+2} = 2^{n-t-2}(2^{t+2} - 1) \pm 2^{\frac{n-1}{2}} - 2^{t+3} \ge 7 \cdot 2^{n-t-2} \pm 2^{\frac{n-1}{2}} - 2^{t+3}.$$

When \mathcal{Q} is elliptic, $t \leq \frac{n-3}{2}$ and so

$$7 \cdot 2^{n-t-2} + 2^{\frac{n-1}{2}} - 2^{t+3} > 0.$$

When \mathcal{Q} is hyperbolic, $t \leq \frac{n-5}{2}$ and so

$$7 \cdot 2^{n-t-2} - 2^{\frac{n-1}{2}} - 2^{t+3} \ge 7 \cdot 2^{\frac{n-1}{2}} - 2^{\frac{n-1}{2}} - 2^{t+3} > 0.$$

In both cases, $|T_{t,t}| > 2^{t+2}$. The results of $T_t \triangle S_t$ and $T_{t,t} \triangle S_{t,t}$ follow because of $T_t \cap S_t = \emptyset$ and $T_{t,t} \cap S_{t,t} = \emptyset$.

Lemma 5.4. Let $R = (PG(n, 2) \setminus Q) \setminus \Sigma$ for some (n-1)-space Σ of PG(n, 2). Then the following holds:

(1) $|R \triangle T_t| > 2^{t+1}$. (2) $|R \triangle T_t \triangle S_t| > 2^{t+1}$. (3) $|R \triangle T_{t,t}| > 2^{t+2}$. (4) $|R \triangle T_{t,t} \triangle S_{t,t}| > 2^{t+2}$.

Proof. The complement R^c of R in $PG(n, 2) \setminus Q$ is

$$R^c = \widehat{\Sigma}.$$

Let $A := ((\Pi^{\perp} \triangle \Pi'^{\perp}) \setminus S_{t,t}) \setminus \mathcal{Q}$. By (3.2) and (3.4), we have

(5.3)
$$T_t^c = \widehat{\alpha^{\perp}}, \\ T_{t,t} = T_t \cup A$$

Recall for any subsets U_1 , U_2 , U_3 of $PG(n, 2) \setminus Q$, we have $U_1 \triangle U_2 = U_1^c \triangle U_2^c$; $(U_1 \cup U_2)^c = U_1^c \cap U_2^c$; $(U_1 \triangle U_2) \triangle U_3 = U_1 \triangle (U_2 \triangle U_3)$; $U_1 \triangle U_2 \supset U_1 \setminus U_2$, and equality holds if and only if $U_1 \subset U_2$. Further because of $S_t, S_{t,t} \subset \alpha^{\perp}$ by Lemma 3.5 and

 $S_{t,t} \cap A = \emptyset$, we have

$$R \triangle T_{t} = \widehat{\Sigma} \triangle \widehat{\alpha^{\perp}} \supset \widehat{\Sigma} \setminus \widehat{\alpha^{\perp}};$$

$$R \triangle T_{t} \triangle S_{t} = (\widehat{\Sigma} \triangle \widehat{\alpha^{\perp}}) \triangle S_{t} = \widehat{\Sigma} \triangle (\widehat{\alpha^{\perp}} \setminus S_{t}) \supset \widehat{\Sigma} \setminus (\widehat{\alpha^{\perp}} \setminus S_{t}) \supset \widehat{\Sigma} \setminus \widehat{\alpha^{\perp}};$$

$$R \triangle T_{t,t} = \widehat{\Sigma} \triangle (\widehat{\alpha^{\perp}} \cap \widehat{A^{c}}) = \widehat{\Sigma} \triangle (\widehat{\alpha^{\perp}} \setminus \widehat{A}) \supset \widehat{\Sigma} \setminus (\widehat{\alpha^{\perp}} \setminus \widehat{A});$$

$$R \triangle T_{t,t} \triangle S_{t,t} = \widehat{\Sigma} \triangle [(\widehat{\alpha^{\perp}} \setminus \widehat{A}) \setminus S_{t,t}] \supset \widehat{\Sigma} \setminus [(\widehat{\alpha^{\perp}} \setminus \widehat{A}) \setminus S_{t,t}] \supset \widehat{\Sigma} \setminus (\widehat{\alpha^{\perp}} \setminus \widehat{A}).$$

Thus, it suffices to show (i) $|\widehat{\Sigma} \setminus \widehat{\alpha^{\perp}}| > 2^{t+1}$ and (ii) $|\widehat{\Sigma} \setminus (\widehat{\alpha^{\perp}} \setminus \widehat{A})| > 2^{t+2}$ for t within the range mentioned in Theorems 3.A and 3.B. By [10, Theorem 22.8.3], $\Sigma \cap \mathcal{Q}$ is either (a) a parabolic quadric \mathcal{Q}_{n-1} , or (b) a point cone $\Pi_0 \mathcal{Q}_{n-2}$ where \mathcal{Q}_{n-2} and \mathcal{Q} are both elliptic or both hyperbolic.

(a) If Σ ∩ Q = Q_{n-1}, then by [10, Theorem 22.7.2], we have Σ[⊥] ∉ Q and so Σ[⊥] ∉ α. By the definition of a polarity, we have α[⊥] ⊄ Σ. Since Σ is a hyperplane and α[⊥] is an (n − 1 − t)-space, Σ ∩ α[⊥] is a (n − 2 − t)-space.
(i) By Lemma 5.2(3a) and 0 < t ≤ n-3/2, we have

$$\begin{aligned} |\widehat{\Sigma} \setminus \widehat{\alpha^{\perp}}| - 2^{t+1} \ge |\widehat{\Sigma}| - |\Sigma \cap \alpha^{\perp}| - 2^{t+1} \\ = 2^{n-1} - (2^{n-t-1} - 1) - 2^{t+1} = 2^{n-t-1}(2^t - 1) + 1 - 2^{t+1} \\ \ge 2^{n-t-1} - 2^{t+1} + 1 > 0. \end{aligned}$$

(ii) Similarly, since $\widehat{\Sigma} \setminus (\widehat{\alpha^{\perp}} \setminus \widehat{A}) \subset \widehat{\Sigma} \setminus \widehat{\alpha^{\perp}}$, we have

$$\begin{aligned} |\widehat{\Sigma} \setminus (\widehat{\alpha^{\perp}} \setminus \widehat{A})| - 2^{t+2} \geq |\widehat{\Sigma}| - |\Sigma \cap \alpha^{\perp}| - 2^{t+2} \\ \geq 2^{n-t-1} - 2^{t+2} + 1 > 0. \end{aligned}$$

(b) (i) If $\Sigma \cap \mathcal{Q} = \prod_0 \mathcal{Q}_{n-2}$, then by Lemma 5.2(1,3b) and because of t > 0, we have

$$\begin{aligned} |\widehat{\Sigma} \setminus \widehat{\alpha^{\perp}}| - 2^{t+1} \ge |\widehat{\Sigma}| - |\widehat{\alpha^{\perp}}| - 2^{t+1} \\ = (2^{n-1} \pm 2^{\frac{n-1}{2}}) - (2^{n-t-1} \pm 2^{\frac{n-1}{2}}) - 2^{t+1} \\ = 2^{n-1-t}(2^t - 1) - 2^{t+1} \ge 2^{n-1-t} - 2^{t+1} > 0. \end{aligned}$$

(ii) If $\Sigma \cap \mathcal{Q} = \prod_0 \mathcal{Q}_{n-2}$, then by Lemma 5.2(1,2,3b) and because of t > 0, we have

$$(5.5) \qquad \begin{aligned} |\widehat{\Sigma} \setminus (\widehat{\alpha^{\perp}} \setminus \widehat{A})| &- 2^{t+2} \\ &\geq |\widehat{\Sigma}| - |\widehat{\alpha^{\perp}}| + |\widehat{A}| - 2^{t+2} \\ &= (2^{n-1} \pm 2^{\frac{n-1}{2}}) - (2^{n-t-1} \pm 2^{\frac{n-1}{2}}) + (2^{n-t-2} \pm 2^{\frac{n-1}{2}} - 2^{t+2}) - 2^{t+2} \\ &= 2^{n-2-t}(2^{t+1} - 1) \pm 2^{\frac{n-1}{2}} - 2^{t+3} \\ &\geq 3 \cdot 2^{n-2-t} \pm 2^{\frac{n-1}{2}} - 2^{t+3} \end{aligned}$$

where the last equality holds if and only if t = 1. If Q is elliptic, then because of $t \leq \frac{n-3}{2}$, we have

(5.6)
$$3 \cdot 2^{n-2-t} + 2^{\frac{n-1}{2}} - 2^{t+3} \ge 0$$

where the equality holds if and only if $t = \frac{n-3}{2}$. Because of $n \ge 7$, it is impossible to have $1 = t = \frac{n-3}{2}$. Combining (5.5) and (5.6), we have $|\widehat{\Sigma} \setminus (\widehat{\alpha^{\perp}} \setminus \widehat{A})| > 2^{t+2}$.

 \square

If \mathcal{Q} is hyperbolic, then because of $t \leq \frac{n-5}{2}$, we have

(5.7)
$$3 \cdot 2^{n-2-t} - 2^{\frac{n-1}{2}} - 2^{t+3} > 0.$$

Combining (5.5) and (5.7), we have $|\widehat{\Sigma} \setminus (\widehat{\alpha^{\perp}} \setminus \widehat{A})| > 2^{t+2}$.

Proposition 5.5. Let u be a non-zero vector in C_t . Then $wt(u) \ge 2^{t+1}$, and equality holds if and only if $u = v^{S_t}$.

Proof. Let u be a non-zero vector in C_t . Then u is one of the following: $w, w + v^{S_t}$, $w + v^{T_t}, w + v^{T_t} + v^{S_t}, v^{T_t}, w^{T_t} + v^{S_t}$ or v^{S_t} for some $w \in C(\Gamma_Q)$. By Tables 3 and 4, wt $(w) > 2^{t+1}$, and by Lemma 5.1, wt $(w + v^{S_t}) > 2^{t+1}$. Note that for any subsets U_1, U_2 of $PG(n, 2) \setminus Q, v^{U_1} + v^{U_2} = v^{U_1 \triangle U_2}$. The result follows from Lemmas 3.1, 5.3 and 5.4 because $w = v^R$ where $R = (PG(n, 2) \setminus Q) \setminus \Sigma$ for some (n - 1)-space Σ . \Box

Proposition 5.6. Let u be a non-zero vector in $C_{t,t}$. Then $wt(u) \ge 2^{t+2}$, and equality holds if and only if $u = v^{S_{t,t}}$.

Proof. It follows using arguments that are similar to those in the proof of Proposition \Box

6. Numbers of switched graphs found

With the notation as given in Section 5 for $n, \mathcal{Q}, \perp, t, \alpha, \Pi, \Pi', \Gamma_{\mathcal{Q}}, \Gamma_{\mathcal{Q},t}, \Gamma_{\mathcal{Q},t,t}, S_t, S_{t,t}, T_t \text{ and } T_{t,t}$, we assume $n \geq 7$. In this section, we will prove $C(\Gamma_{\mathcal{Q},t}) = C_t$ and

 $C(\Gamma_{\mathcal{Q},t,t}) = C_{t,t}$ as claimed in Section 5, and then count the number of non-isomorphic graphs constructed through Theorems 3.A and 3.B.

Let $A, A_t, A_{t,t}$ be the adjacency matrices of $\Gamma_{\mathcal{Q}}, \Gamma_{\mathcal{Q},t}$ and $\Gamma_{\mathcal{Q},t,t}$.

Since $S_t \subset S_{t,t}$ and $T_t \subset T_{t,t}$, we may assume that the first $|S_t|$ rows and columns of $A, A_t, A_{t,t}$ correspond to points of $PG(n, 2) \setminus Q$ in S_t ; the next $|S_{t,t} \setminus S_t|$ rows and columns correspond to those in $S_{t,t} \setminus S_t$; the last $|T_{t,t}|$ rows and columns correspond to points in $T_{t,t}$ such that the last $|T_t|$ rows and columns correspond to points in T_t . By the definition of $\Gamma_{Q,t}$,

(6.1)
$$A_t = A + M_t, \text{ where } M_t = \begin{pmatrix} O & O & J_t \\ O & O & O \\ J'_t & O & O \end{pmatrix}$$

where J_t is the $|S_t|$ -by- $|T_t|$ all-ones matrix. Similarly, by the definition of $\Gamma_{Q,t,t}$,

(6.2)
$$A_{t,t} = A + M_{t,t}, \text{ where } M_{t,t} = \begin{pmatrix} O & O & J_{t,t} \\ O & O & O \\ J'_{t,t} & O & O \end{pmatrix}$$

where $J_{t,t}$ is the $|S_{t,t}|$ -by- $|T_{t,t}|$ all-ones matrix.

Lemma 6.1. None of v^{T_t} or $v^{T_{t,t}}$ is in $C(\Gamma_Q)$.

Proof. Suppose v^{T_t} is in $C(\Gamma_Q)$. Recall any codeword in $C(\Gamma_Q)$ is v^R where $R = (PG(n,2) \setminus Q) \setminus \Sigma$ for some (n-1)-space Σ . By (3.2),

$$(\mathrm{PG}(n,2)\setminus\mathcal{Q})\setminus\alpha^{\perp}=(\mathrm{PG}(n,2)\setminus\mathcal{Q})\setminus\Sigma.$$

This implies $\Sigma \setminus \mathcal{Q} = \alpha^{\perp} \setminus \mathcal{Q}$. Considering the size of $\Sigma \setminus \mathcal{Q}$ and $\alpha^{\perp} \setminus \mathcal{Q}$ given in Lemma 5.2, we have n = 3 or t = 0, which contradicts the range of n and t stated in Theorem 3.A or Theorem 3.B.

We now prove $C(\Gamma_{Q,t}) = C_t$ and $C(\Gamma_{Q,t,t}) = C_{t,t}$ as announced in Section 5.

Lemma 6.2. $C(\Gamma_{\mathcal{Q},t}) = \langle C(\Gamma_{\mathcal{Q},t}), v^{S_t}, v^{T_t} \rangle$ and the 2-rank of $C(\Gamma_{\mathcal{Q},t})$ is n+3.

Proof. By Lemmas 4.3 and 4.5, v^{S_t} and v^{T_t} are codewords of $C(\Gamma_{\mathcal{Q},t})$. By (6.1), a row of the adjacency matrix of $\Gamma_{\mathcal{Q},t}$ either is a row of the adjacency matrix of $\Gamma_{\mathcal{Q}}$ or differs from such a row by v^{S_t} or v^{T_t} . Thus, any row of the adjacency matrix of $\Gamma_{\mathcal{Q}}$ is a codeword of $C(\Gamma_{\mathcal{Q},t})$.

By Lemma 6.1, $v^{T_t} \notin C(\Gamma_Q)$ and by Proposition 5.5, for any $w \in C(\Gamma_Q)$, we have that none of w and $w + v^{T_t}$ is the vector v^{S_t} . Thus, v^{S_t} , v^{T_t} and a basis of $C(\Gamma_Q)$ form a linearly independent set of size 2 + (n+1) = n+3.

In (6.1), since the 2-rank of M_t is 2, the 2-rank of $C(\Gamma_{\mathcal{Q}})$ differs from that of $C(\Gamma_{\mathcal{Q},t})$ by at most 2. Since v^{S_t} and v^{T_t} and a basis of $C(\Gamma_{\mathcal{Q}})$ form a linearly independent set in $C(\Gamma_{\mathcal{Q},t})$ with size two more than the 2-rank of $C(\Gamma_{\mathcal{Q}})$, they form a basis of $C(\Gamma_{\mathcal{Q},t})$.

Lemma 6.3. $C(\Gamma_{\mathcal{Q},t,t}) = \langle C(\Gamma_{\mathcal{Q},t,t}), v^{S_{t,t}}, v^{T_{t,t}} \rangle$ and the 2-rank of $C(\Gamma_{\mathcal{Q},t,t})$ is n+3.

Proof. The proof is similar to that of Lemma 6.2.

We now give the parameters of $C(\Gamma_{\mathcal{Q},t})$ and $C(\Gamma_{\mathcal{Q},t,t})$. Recall the upper sign of \mp is taken when if Q is elliptic, and otherwise if Q is hyperbolic.

Theorem 6.4. $C(\Gamma_{\mathcal{Q},t})$ is a $[2^n \mp 2^{\frac{n-1}{2}}, n+3, 2^{t+1}]_2$ -code. $C(\Gamma_{\mathcal{Q},t,t})$ is a $[2^n \mp 2^{\frac{n-1}{2}}, n+3, 2^{t+1}]_2$ -code. $3, 2^{t+2}]_2$ -code

Proof. The length of $C(\Gamma_{\mathcal{Q},t})$ and $C(\Gamma_{\mathcal{Q},t,t})$ are the number of vertices of their respective graphs, which is $2^n \mp 2^{\frac{n-1}{2}}$. Other parameters of the codes follow from Lemmas 6.2, 6.3, and Proportions 5.5, 5.6.

Theorem 6.5. The graphs $\Gamma_{\mathcal{Q}}, \Gamma_{\mathcal{Q},1}, \Gamma_{\mathcal{Q},2}, \cdots, \Gamma_{\mathcal{Q},\frac{n-3}{2}}, \Gamma_{\mathcal{Q},1,1}, \Gamma_{\mathcal{Q},2,2}, \cdots, \Gamma_{\mathcal{Q},m,m}$ are distinct up to isomorphism, where $m = \frac{n-3}{2}$ if \mathcal{Q} is elliptic and $m = \frac{n-5}{2}$ if \mathcal{Q} is hyperbolic.

Proof. Γ_{Q} is distinct from other graphs in the list because it has a 2-rank n+1 [11, Theorem 5.3] but others do not by Lemmas 6.2 and 6.3. Let Γ, Γ' be two graphs listed above other than $\Gamma_{\mathcal{Q}}$. Let S and S' be switching sets of $\Gamma_{\mathcal{Q}}$ such that Γ, Γ' are obtained from $\Gamma_{\mathcal{Q}}$ with switching sets respectively S and S'.

Suppose there is an isomorphism ϕ between Γ and Γ' . Then ϕ induces a code isomorphism Φ between $C(\Gamma)$ and $C(\Gamma')$. Since Φ maps minimum word(s) of $C(\Gamma)$ to those of $C(\Gamma')$, we have $\Phi(S) = S'$ by Propositions 5.5 and 5.6. Considering the size of the switching sets given in Lemma 3.1, we may assume without loss of generality that $\Gamma = \Gamma_{\mathcal{Q},t+1}$ and $\Gamma' = \Gamma_{\mathcal{Q},t,t}$ for some t. By Lemma 3.2, the subgraph of $\Gamma_{\mathcal{Q}}$, and hence of Γ , with vertex set $S = S_{t+1}$ is null. But by Lemma 3.3, the subgraph of $\Gamma_{\mathcal{Q}}$, and hence of Γ' , with vertex set $S' = S_{t,t}$ is not null. This contradicts $\Phi(S) = S'$, and so Γ and Γ' are non-isomorphic.

Since we work under the assumption that $n \ge 7$ in Sections 5 and 6, Theorem 6.5 is valid under the same assumption. However, it can be checked directly that in case \mathcal{Q} is elliptic and n = 5, $\Gamma_{\mathcal{Q}}$, $\Gamma_{\mathcal{Q},1}$ and $\Gamma_{\mathcal{Q},1,1}$ are non-isomorphic; in case \mathcal{Q} is hyperbolic and n = 5, $\Gamma_{\mathcal{Q}}$ and $\Gamma_{\mathcal{Q},1}$ are non-isomorphic. In conclusion, for $n \geq 5$, if \mathcal{Q} is an elliptic quadric in PG(n, 2), then Theorems 3.A and 3.B give n-3non-isomorphic graphs, other than $\Gamma_{\mathcal{O}}$, with the same parameters as $\Gamma_{\mathcal{O}}$, where the parameters are shown in Table 1. For $n \ge 5$, if \mathcal{Q} is a hyperbolic quadric in PG(n, 2), then Theorems 3.A and 3.B give n-2 non-isomorphic graphs, other than $\Gamma_{\mathcal{Q}}$, with the same parameters as $\Gamma_{\mathcal{Q}}$.

References

[1] Abiad, A. & Haemers, W.H. Switched symplectic graphs and their 2-ranks. Appeared online in Des. Codes Cryptogr.

- [2] Assmus, E.F. & Key, J.D. (1992). Designs and their codes. Cambridge University Press, Cambridge.
- [3] Barwick, S.G., Jackson, W-A. & Penttila, T. New families of strongly regular graphs. Manuscript.
- [4] Brouwer, A.E. & Haemers, W.H. (2011). Spectra of graphs. Springer, New York.
- [5] Cameron, P.J. & van Lint, J.H. (1991). Designs, graphs, codes and their links, Cambridge University Press, Cambridge.
- [6] Godsil, C.D. & McKay, B.D. (1982). Constructing cospectral graphs. Aequationes Math, 25, 257–268.
- [7] Haemers, W.H., Peeters, M.J.P. & van Rijckevorsel, J.M. (1999). Binary codes of strongly regular graphs. *Des. Codes Cryptogr.*, 17, 187–209.
- [8] Hall, J.I. & Shult, E.E. (1985). Locally cotriangular graphs. Geometriae Dedicata, 18, 113–159.
- [9] Hirschfeld, J.W.P. (1979). Projective geometries over finite fields. Oxford Univ. Press.
- [10] Hirschfeld, J.W.P. & Thas, J.A. (1991). General Galois geometries. Oxford Sci. Publ., Clarendon Press.
- [11] Peeters, M.J.P. (1995). Uniqueness of strongly regular graphs having minimal p-rank. Linear Algebra Appl. 226–228, 9–31.