SWITCHED GRAPHS OF SOME STRONGLY REGULAR GRAPHS RELATED TO THE SYMPLECTIC GRAPH

ALICE M.W. HUI, BERNARDO RODRIGUES

huimanwa@gmail.com, Rodrigues@ukzn.ac.za, May 30, 2018

Abstract

Applying a method of Godsil and McKay [6] to some graphs related to the symplectic graph, a series of new infinite families of strongly regular graphs with parameters $\left(2^{n} \pm 2^{(n-1) / 2}, 2^{n-1} \pm 2^{(n-1) / 2}, 2^{n-2} \pm 2^{(n-3) / 2}, 2^{n-2} \pm 2^{(n-1) / 2}\right)$ are constructed for any odd $n \geq 5$. The construction is described in terms of geometry of quadric in projective space. The binary linear codes of the switched graphs are $\left[2^{n} \mp 2^{\frac{n-1}{2}}, n+3,2^{t+1}\right]_{2}$-code or $\left[2^{n} \mp 2^{\frac{n-1}{2}}, n+3,2^{t+2}\right]_{2}$-code.

Keywords: strongly regular graph, cospectral graphs, linear code of a graph
MSC 2010: 05E30 05C50 94B25 51A50

1. Introduction

Consider the n-dimensional projective space $\operatorname{PG}(n, 2)$ over the finite field \mathbb{F}_{2}. That is, $\mathrm{PG}(n, 2)=\mathbb{F}_{2}^{n+1} \backslash\{0\}$. When n is odd, there are two non-equivalent nonsingular quadrics in $\mathrm{PG}(n, 2)$, namely elliptic and hyperbolic. For general references, see [9, Ch. 5] and [10, Ch. 22]. Both quadrics define a symplectic polarity (null polarity) in $\operatorname{PG}(n, 2)$ [9, Thoerem 5.28].

Let $n \geq 5$ be an odd number. Let \mathcal{Q} be a non-singular quadric in $\operatorname{PG}(n, 2)$. Define the graph $\Gamma_{\mathcal{Q}}=\left(V_{\mathcal{Q}}, E_{\mathcal{Q}}\right)$ as follows. The vertex set $V_{\mathcal{Q}}$ is the set of points of $\operatorname{PG}(n, 2)$ not in \mathcal{Q}. Two vertices x and y are adjacent in $\Gamma_{\mathcal{Q}}$ if and only if the line $x y$ joining them is an external line of $\mathcal{Q} . \Gamma_{\mathcal{Q}}$ is the complement of a subgraph of the symplectic graph $S p(n+1,2)$, which is the graph of the perpendicular relation induced by a non-degenerate symplectic form of \mathbb{F}_{2}^{n+1} on the non-zero vectors of \mathbb{F}_{2}^{n+1}. In [8, 7, 11], $\Gamma_{\mathcal{Q}}$ is denoted by $\overline{\mathcal{N}_{n+1}^{\epsilon}}$, where ϵ is + (plus) if \mathcal{Q} is hyperbolic, and (minus) if \mathcal{Q} is elliptic.

A strongly regular graph with parameters (v, k, λ, μ) is a graph with v vertices such that each vertex lies on exactly k edges; any two adjacent vertices have exactly λ neighbours in common; and any two non-adjacent vertices have exactly μ neighbours in common. The adjacency matrix of a strongly regular graph has exactly three eigenvalues. One is k with multiplicity 1 , and the remaining two are usually denoted by r and $s, r>s$ with multiplicities f and g respectively. For general references, see
[4, Ch.9] and [5, Ch.2]. It is well-known that $\Gamma_{\mathcal{Q}}$ defined above is a strongly regular graph. Table 1 shows the parameters of $\Gamma_{\mathcal{Q}}$ for the different quadrics in $\operatorname{PG}(n, 2)$ (see [7]).

\mathcal{Q}	graph	v	k	λ	μ
elliptic	$\Gamma_{\mathcal{Q}}=\overline{\mathcal{N}_{n+1}^{-}}$	$2^{n}+2^{\frac{n-1}{2}}$	$2^{n-1}+2^{\frac{n-1}{2}}$	$2^{n-2}+2^{\frac{n-3}{2}}$	$2^{n-2}+2^{\frac{n-1}{2}}$
hyperbolic	$\Gamma_{\mathcal{Q}}=\overline{\mathcal{N}_{n+1}^{+}}$	$2^{n}-2^{\frac{n-1}{2}}$	$2^{n-1}-2^{\frac{n-1}{2}}$	$2^{n-2}-2^{\frac{n-3}{2}}$	$2^{n-2}-2^{\frac{n-1}{2}}$
\mathcal{Q}	graph	r	s	f	g
elliptic	$\Gamma_{\mathcal{Q}}=\overline{\mathcal{N}_{n+1}^{-}}$	$2^{\frac{n-3}{2}}$	$-2^{\frac{n-1}{2}}$	$\frac{1}{3}\left(2^{n+1}-4\right)$	$\frac{2^{n+1}}{3}+2^{\frac{n-1}{2}}$
hyperbolic	$\Gamma_{\mathcal{Q}}=\overline{\mathcal{N}_{n+1}^{+}}$	$2^{\frac{n-1}{2}}$	$-2^{\frac{n-3}{2}}$	$2^{n}+1$	
3	$2^{\frac{n-1}{2}}$	$\frac{1}{3}\left(2^{n+1}-4\right)$			

Table 1. Parameters of $\Gamma_{\mathcal{Q}}$
Godsil and McKay (1982) introduced a method to generate graphs with the same adjacency spectrum [6] i.e. the adjacency matrices of the graphs have equal multisets of eigenvalues. The method is described as follows. Let Γ be a graph. Let S be a subset of the vertex set such that the subgraph of Γ with vertex set S is regular. Suppose any vertex outside S has $0,|S|$ or $\frac{1}{2}|S|$ neighbours in S. Consider the graph Γ^{\prime} obtained by switching Γ as follows: for any vertex x of Γ outside S, if x has $\frac{1}{2}|S|$ neighbours in S, then delete those $\frac{1}{2}|S|$ edges and join x to the other $\frac{1}{2}|S|$ vertices. We call S a Godsil and McKay switching set of Γ. By Godsil and McKay [6], Γ^{\prime} has the same adjacency spectrum as Γ. In the case where Γ is a strongly regular graph, Γ^{\prime} has the same adjacency spectrum as Γ and thus is also a strongly regular graph with the same parameters (see 4). Recently, there has been interest in constructing new strongly regular graphs from known ones using the method of Godsil-McKay described above, see for example [1] and [3].

In this article, we apply the method of Godsil-McKay to $\Gamma_{\mathcal{Q}}$ as described above. The paper is organized as follows: After a brief description of our terminology in Section 2, we give two constructions of Godsil-McKay switching sets for $\Gamma_{\mathcal{Q}}$ in Section 3. In Sections 4 and 5, we study the binary code spanned by the rows of the adjacency matrix $\Gamma_{\mathcal{Q}}$ and that of its switched graphs. In Section 6, we give a number of switched graphs found and find the parameters of the codes of the switched graphs.

2. Terminology and notation

For any $m=0,1,2, \cdots, n-1$, a subspace of dimension m, or m-space, of $\operatorname{PG}(n, 2)$ is a set of points all of whose representing vectors form, together with the zero, a subspace of dimension $m+1$ of \mathbb{F}_{2}^{n+1}. The number of points of an m-space in $\operatorname{PG}(n, 2)$ is $2^{m+1}-1$ [9, Theorem 3.1].

A quadric Q_{n} in $\operatorname{PG}(n, 2)$ is the set of points $\left[X_{0}, X_{1}, \cdots, X_{n}\right]$ satisfying a non-zero homogeneous equation of degree two, i.e. $\sum_{i \leq j, i, j=0}^{n} a_{i j} X_{i} X_{j}=0$ for some $a_{i j} \in \mathbb{F}_{q}$,
not all zero. If the equation can be reduced to fewer than $n+1$ variables by a change of basis, Q_{n} is called singular. Otherwise, it is non-singular.

Depending on the parity of n, there is one or there are two quadrics under the action of the automorphism group of $\operatorname{PG}(n, 2)$. For n odd, there are two distinct non-singular quadrics, respectively the elliptic quadric with canonical equation $f\left(X_{0}, X_{1}\right)+X_{2} X_{3}+\cdots+X_{n-1} X_{n}=0$ where f is an irreducible binary quadratic form, and the hyperbolic quadric with canonical equation $X_{0} X_{1}+X_{2} X_{3}+\cdots+X_{n-1} X_{n}=0$. For n even, there is the parabolic quadric with canonical equation $X_{0}^{2}+X_{1} X_{2}+\cdots+$ $X_{n-1} X_{n}=0$. For a parabolic quadric Q_{n}, there is an unique point in $\operatorname{PG}(n, 2) \backslash Q_{n}$, called the nucleus of Q_{n}, such that all line through the nucleus is tangent to Q_{n} (see [10, page10]). Table 2 shows the number of points of different non-singular quadrics.

quadric Q_{n}	Elliptic	Hyperbolic	Parabolic
number of points	$2^{n}-2^{\frac{n-1}{2}}-1$	$2^{n}+2^{\frac{n-1}{2}}-1$	$2^{n}-1$

TABLE 2. Number of points in non-singular quadrics
A singular quadric in $\operatorname{PG}(n, 2)$ is either an m-space, $m<n$, or a cone $\Pi_{n-t-1} Q_{t}$ which is the set of points on the lines joining an $(n-t-1)$-space Π_{n-t-1} to a nonsingular quadric Q_{t} in a t-space Π_{t} with $\Pi_{n-t-1} \cap \Pi_{t}=\emptyset$. The number of points of such a cone is

$$
\begin{equation*}
\left|\Pi_{n-t-1} Q_{t}\right|=\left(2^{n-t}-1\right)+2^{n-t}\left|Q_{t}\right| . \tag{2.1}
\end{equation*}
$$

A polarity ρ of $\mathrm{PG}(n, 2)$ is an order-two bijection on its subspaces that reverses containment. That is, for an m-space Π_{m} and m^{\prime}-space $\Pi_{m^{\prime}}$ of $\operatorname{PG}(n, 2)$, if $\Pi_{m} \subset \Pi_{m^{\prime}}$, then $\Pi_{m^{\prime}}^{\rho} \subset \Pi_{m}^{\rho}$. In particular, a polarity interchanges m-spaces and $(n-1-m)$ spaces. For a general reference on polarities, see [9, Section 2.1].

The (binary linear) code $C(\Gamma)$ of a graph $\Gamma=(V, E)$ is the subspace in the vector space $\mathbb{F}_{2}^{|V|}$ generated by the rows of the adjacency matrix of Γ modulo 2. The length n of $C(\Gamma)$ is $|V|$, and the dimension k of $C(\Gamma)$ is the dimension of $C(\Gamma)$ as a subspace in $\mathbb{F}_{2}^{|V|}$. For any vector $w=\left(w_{x}\right)_{x \in V} \in \mathbb{F}_{2}^{|V|}$, the weight $\mathrm{wt}(w)$ of w is

$$
\operatorname{wt}(w)=\left|\left\{x \in V \mid w_{x} \neq 0\right\}\right| .
$$

The minimum weight d of a code is the minimum of the weight of its non-zero codewords. A binary linear code of length n, dimension k and minimum weight d will be referred to as an $[n, k, d]_{2}$. For any subset $U \subset V$, the characteristic vector of U, denoted by v^{U}, is the vector $\left(w_{x}\right)_{x \in V}$ where $w_{x}=1$ if $x \in U$, and $w_{x}=0$ if $x \notin U$. For a general reference on codes, see [2].

For the graph $\Gamma_{Q}=\left(V_{\mathcal{Q}}, E_{\mathcal{Q}}\right)$ defined in Section 11, $C\left(\Gamma_{\mathcal{Q}}\right)$ is a $\left[2^{n}+2^{\frac{n-1}{2}}, n+\right.$ $\left.1,2^{n-1}\right]_{2}$ code if \mathcal{Q} is elliptic, and is a $\left[2^{n}+2^{\frac{n-1}{2}}, n+1,2^{n-1}-2^{\frac{n-1}{2}}\right]_{2}$ code if \mathcal{Q} is hyperbolic. A vector $w \in \mathbb{F}_{2}^{\left|V_{\mathcal{Q}}\right|}$ is a codeword of $C\left(\Gamma_{\mathcal{Q}}\right)$ if and only if it is the
characteristic vector of $(\operatorname{PG}(n, 2) \backslash \mathcal{Q}) \backslash \Sigma$ for some $(n-1)$-space Σ in $\operatorname{PG}(n, 2)$. The weight distribution of $C\left(\Gamma_{\mathcal{Q}}\right)$ is shown in Tables 3 and 4 (see for example [7]).

weight	0	2^{n-1}	$2^{n-1}+2^{\frac{n-1}{2}}$
number of codewords	1	$2^{n}-2^{\frac{n-1}{2}}-1$	$2^{n}+2^{\frac{n-1}{2}}$

Table 3. Weight distribution of $C\left(\Gamma_{\mathcal{Q}}\right)$ if \mathcal{Q} is elliptic

weight	0	$2^{n-1}-2^{\frac{n-1}{2}}$	2^{n-1}
number of codewords	1	$2^{n}-2^{\frac{n-1}{2}}$	$2^{n}+2^{\frac{n-1}{2}}-1$

TABLE 4. Weight distribution of $C\left(\Gamma_{\mathcal{Q}}\right)$ if \mathcal{Q} is hyperbolic

3. Two constructions of Godsil-McKay switching sets of $\Gamma_{\mathcal{Q}}$

In this section, we will prove Theorems 3.A and 3.B, which give constructions of Godsil-McKay switching sets of the graph $\Gamma_{\mathcal{Q}}$ defined in Section \square for quadrics \mathcal{Q} in PG($n, 2$).

Theorems 3.A and 3.B are as follows.
Theorem 3.A. Let \mathcal{Q} be a non-singular quadric in $\operatorname{PG}(n, 2)$ where $n \geq 5$ is odd. Let t be an integer such that $0<t \leq \frac{n-3}{2}$, α be a t-space in \mathcal{Q}, and Π be a $(t+1)$-space meeting \mathcal{Q} in exactly α. Let $\Gamma_{\mathcal{Q}}$ be as defined in Section 1 . Then

$$
\begin{equation*}
S_{t}:=\Pi \backslash \alpha \tag{3.1}
\end{equation*}
$$

is a Godsil-McKay switching set of $\Gamma_{\mathcal{Q}}$ of size 2^{t+1}. Let $\Gamma_{\mathcal{Q}, t}$ be the graph obtained by Godsil-McKay switching with switching set S_{t}. Then $\Gamma_{\mathcal{Q}, t}$ is a strongly regular graph with the same parameters as $\Gamma_{\mathcal{Q}}$ (which are listed as in Table (1). Furthermore, if \perp is the polarity of $\operatorname{PG}(n, 2)$ induced by \mathcal{Q}, then

$$
\begin{equation*}
T_{t}:=(\operatorname{PG}(n, 2) \backslash \mathcal{Q}) \backslash \alpha^{\perp} \tag{3.2}
\end{equation*}
$$

is the set of vertices in $\Gamma_{\mathcal{Q}}$ outside S_{t} which have exactly $\frac{1}{2}\left|S_{t}\right|$ neighbours in S_{t}.
Theorem 3.B. Let \mathcal{Q} be a non-singular quadric in $\operatorname{PG}(n, 2)$ where $n \geq 5$ is odd. If \mathcal{Q} is elliptic, then let t be an integer such that $0<t \leq \frac{n-3}{2}$. If \mathcal{Q} is hyperbolic, then let t be an integer such that $0<t \leq \frac{n-5}{2}$. In $\mathrm{PG}(n, 2)$ where $n \geq 5$ is odd, let \mathcal{Q} be a non-singular quadric. Let α be a t-space in \mathcal{Q}. Let Π, Π^{\prime} be distinct $(t+1)$-spaces meeting \mathcal{Q} in exactly α such that the space spanned by Π and Π^{\prime} meet \mathcal{Q} in exactly α. Let $\Gamma_{\mathcal{Q}}$ be as defined in Section 11. Then

$$
\begin{equation*}
S_{t, t}:=\left(\Pi \cup \Pi^{\prime}\right) \backslash \alpha \tag{3.3}
\end{equation*}
$$

is a Godsil-McKay switching set of $\Gamma_{\mathcal{Q}}$. Let $\Gamma_{\mathcal{Q}, t, t}$ be the graph obtained by GodsilMcKay switching with switching set $S_{t, t}$. Then $\Gamma_{\mathcal{Q}, t, t}$ is a strongly regular graph with the same parameters as $\Gamma_{\mathcal{Q}}$ (these are listed as in Table (1). Furthermore, if \perp is the polarity of $\operatorname{PG}(n, 2)$ induced by \mathcal{Q}, then

$$
\begin{equation*}
T_{t, t}=T_{t} \cup\left[\left(\left(\Pi^{\perp} \triangle \Pi^{\prime \perp}\right) \backslash S_{t, t}\right) \backslash \mathcal{Q}\right] \tag{3.4}
\end{equation*}
$$

is the set of vertices in $\Gamma_{\mathcal{Q}}$ outside $S_{t, t}$ which have exactly $\left|\frac{1}{2} S_{t, t}\right|$ neighbours in $S_{t, t}$, where \triangle is the symmetric difference.

Remark. In both Theorems 3.A and 3.B, $t \leq \frac{n-3}{2}$ or $t \leq \frac{n-5}{2}$. This is a necessary and sufficient condition for the existence of α, Π and Π^{\prime} by [10, Theorem 22.8.3].
Remark. In Theorem 3.B, by the dimension theorem for subspaces, the space $\left\langle\Pi, \Pi^{\prime}\right\rangle$ spanned by Π and Π^{\prime} is an $(t+2)$-subspace. By [9, Theorem 3.1], there are exactly three planes through α in $\left\langle\Pi, \Pi^{\prime}\right\rangle$. Let $\Pi^{\prime \prime}$ be the plane through α other than Π and Π^{\prime}. Since \mathcal{Q} is a quadric, either $\left\langle\Pi, \Pi^{\prime}\right\rangle \cap \mathcal{Q}=\Pi^{\prime \prime}$ or $\left\langle\Pi, \Pi^{\prime}\right\rangle \cap \mathcal{Q}=\alpha$ holds by [10, Theorem 22.8.3]. In the former case, since $\left\langle\Pi, \Pi^{\prime}\right\rangle$ is one dimension higher than that of $\Pi^{\prime \prime},\left(\Pi \cup \Pi^{\prime}\right) \backslash \alpha=\left\langle\Pi, \Pi^{\prime}\right\rangle \backslash \Pi^{\prime \prime}$ is a Godsil-McKay switching set of $\Gamma_{\mathcal{Q}}$ by Theorem 3.A. The latter case is treated in Theorem 3.B.

Throughout this article, we will work under the assumptions of Theorems 3.A or 3.B. In particular, the symbols $n, \mathcal{Q}, \perp, t, \alpha, \Pi, \Pi^{\prime}, \Gamma_{\mathcal{Q}}, \Gamma_{\mathcal{Q}, t}, \Gamma_{\mathcal{Q}, t, t}, S_{t}, S_{t, t}, T_{t}$ and $T_{t, t}$ are preserved as defined in Theorems 3.A or 3.B.

We first check the size of switching sets described in Theorems 3.A and 3.B,
Lemma 3.1. The size $\left|S_{t}\right|$ of S_{t} and the size $\left|S_{t, t}\right|$ of $S_{t, t}$ are respectively 2^{t+1} and 2^{t+2}.

Proof. Since Π is a $(t+1)$-space and α is a t-space,

$$
\left|S_{t}\right|=|\Pi \backslash \alpha|=\left(2^{t+2}-1\right)-\left(2^{t+1}-1\right)=2^{t+1}
$$

For $S_{t, t}$, because of $\Pi \cap \Pi^{\prime}=\alpha$, we have

$$
\left|S_{t, t}\right|=\left|\left(\Pi \cup \Pi^{\prime}\right) \backslash \alpha\right|=2\left(2^{t+2}-1\right)-\left(2^{t+1}-1\right)-\left(2^{t+1}-1\right)=2^{t+2}
$$

We now determine the structure of the subgraphs of $\Gamma_{\mathcal{Q}}$ with vertex sets S_{t} and $S_{t, t}$ respectively.
Lemma 3.2. The subgraph of $\Gamma_{\mathcal{Q}}$ with vertex set S_{t} is null.
Proof. Since α is one dimension less than that of Π, a line in Π either lies in α or is tangent to α, and thus to \mathcal{Q}. In other words, no two vertices are joined in $\Gamma_{\mathcal{Q}}$.

Lemma 3.3. The subgraph of $\Gamma_{\mathcal{Q}}$ with vertex set $S_{t, t}$ is a regular subgraph of degree 2^{t+1}.

Proof. Let x be a point in $S_{t, t}$. Without loss of generality, assume $x \in \Pi$. We count the number of neighbours of x. By the same argument used in Lemma 3.2, x is not adjacent to any vertex in $\Pi \backslash \alpha$.

Since the span of Π and Π^{\prime} meets \mathcal{Q} in exactly α by assumption, any line through x and a point in $\Pi^{\prime} \backslash \alpha$ is an external line of \mathcal{Q}. In other words, the vertex is adjacent to any vertex in $\Pi^{\prime} \backslash \alpha$. Since the size of $\Pi^{\prime} \backslash \alpha$ is 2^{t+1}, the result follows.

Lemma 3.4. S_{t} is a Godsil-McKay switching set of $\Gamma_{\mathcal{Q}}$.
Proof. By Lemma 3.2, the subgraph of $\Gamma_{\mathcal{Q}}$ with vertex set S_{t} is null.
By Lemma 3.1, $\left|S_{t}\right|=2^{t+1}$. Let x be a point in $(\operatorname{PG}(n, 2) \backslash \mathcal{Q}) \backslash S_{t}$. It suffices to show that either any line joining x and a point of S_{t} meets \mathcal{Q}, or there are exactly 2^{t} or 2^{t+1} points y in S_{t} such that the line $x y$ is an external line to \mathcal{Q}. Since any line in $\operatorname{PG}(n, 2)$ has exactly three points, any line through two external points of \mathcal{Q} is either a tangent or an external line. Thus, it also suffices to show that either any line joining x and a point of S_{t} is an external line, or there are exactly $2^{t+1}, 2^{t}$ points y in S_{t} such that the line $x y$ is tangent to \mathcal{Q}.

Suppose the line $x y$ joining x and a point y of S_{t} is tangent to \mathcal{Q}. Since every line has only three points, the unique point z on $x y$ other than x and y is a point of \mathcal{Q}. Let Σ be the $(t+1)$-space spanned by z and α. Then Σ meets \mathcal{Q} in the t-space α and at least one point not in α, namely z. By [10, Theorem 22.8.3], Σ either lies in \mathcal{Q} or meets \mathcal{Q} in exactly two t-spaces.

If Σ lies in \mathcal{Q}, then every line through x and a point of S_{t} is a tangent to \mathcal{Q}, and we are done.

If Σ meets \mathcal{Q} in exactly two t-spaces, say α and α^{\prime}, then α and α^{\prime} meet in a $(t-1)$-space. Then a line $x y^{\prime}$ through x and a point y^{\prime} of S_{t} is tangent to \mathcal{Q} if and only if y^{\prime} is in $S_{t} \cap\left\langle x, \alpha^{\prime}\right\rangle$. Since

$$
\begin{aligned}
S_{t} \cap\left\langle x, \alpha^{\prime}\right\rangle & =(\Pi \backslash \alpha) \cap\left\langle x, \alpha^{\prime}\right\rangle \\
& =\left(\Pi \cap\left\langle x, \alpha^{\prime}\right\rangle\right) \backslash\left(\alpha \cap\left\langle x, \alpha^{\prime}\right\rangle\right) \\
& =\left\langle y, \alpha \cap \alpha^{\prime}\right\rangle \backslash\left(\alpha \cap \alpha^{\prime}\right)
\end{aligned}
$$

has $\left(2^{t+1}-1\right)-\left(2^{t}-1\right)=2^{t}$ points, the result follows.
We need to make use of a property of \perp to prove the following two lemmas. Recall from [10, Lemma 22.3.3] that, for any point $y \in \mathcal{Q}, y^{\perp}$ comprises the points on the tangents to \mathcal{Q} at y and the lines in \mathcal{Q} through y; for any point $y \notin \mathcal{Q}, y^{\perp}$ consists of the points on the tangents to \mathcal{Q} through y.

Lemma 3.5. The following inclusions hold:
(1) $S_{t} \subset \Pi^{\perp} \subset \alpha^{\perp}$.
(2) $S_{t, t} \subset \Pi^{\perp} \triangle \Pi^{\perp} \subset \alpha^{\perp}$.

Proof. Since α is a subset of Π and Π^{\prime}, by the definition of a polarity, Π^{\perp} and $\Pi^{\perp \perp}$ are subsets of α^{\perp}.

Since the line through any two points of Π is either a tangent of \mathcal{Q} or a line of \mathcal{Q}. By [10, Lemma 22.3.3], Π is a subset of Π^{\perp}. Similarly, Π^{\prime} is a subset Π^{\perp}. Hence $S_{t} \subset \Pi^{\perp}$ and $S_{t, t} \subset \Pi^{\perp} \cup \Pi^{\perp}$.

As stated in Theorem 3.B the space spanned by Π and Π^{\prime} meets \mathcal{Q} in exactly α. Thus, any line through joining a point of $\Pi \backslash \alpha$ and a point of $\Pi^{\prime} \backslash \alpha$ is an external line of \mathcal{Q}. By [10, Lemma 22.3.3], $\Pi \cap \Pi^{\perp}=\emptyset$ and $\Pi^{\perp} \cap \Pi^{\prime}=\emptyset$, and so $S_{t, t} \cap \Pi^{\perp} \cap \Pi^{\perp \perp}=\emptyset$. The result follows.

To determine T_{t}, we prepare a lemma about polarities in $\operatorname{PG}(n, 2)$.
Lemma 3.6. Let ρ be a polarity of $\mathrm{PG}(n, 2)$. Let Σ be an $(m+1)$-space of $\mathrm{PG}(n, 2)$ where $0 \leq m<n-1$. Let x be a point in $\operatorname{PG}(n, 2)$. Then exactly one of the following cases occurs.
(1) x is in Σ^{ρ}.
(2) x is in $\pi^{\rho} \backslash \Sigma^{\rho}$ for exactly one m-space π in Σ.

Proof. By [9, Theorem 3.1], there are exactly $N=2^{m+2}-1 m$-spaces in Σ. Let $\pi_{1}, \pi_{2}, \cdots, \pi_{N}$ be the m-spaces contained in Σ. Since ρ is a polarity, $\pi_{i}^{\rho}, i=$ $1,2, \cdots, N$, are $(n-1-m)$-spaces containing the $(n-2-m)$-space Σ^{ρ}. For distinct $i, j \in\{1,2, \cdots, N\}, \pi_{i}^{\rho} \cap \pi_{j}^{\rho}=\left\langle\pi_{i}, \pi_{j}\right\rangle^{\rho}=\Sigma^{\rho}$. Thus, the number of points in $\bigcup_{i=1}^{N} \pi_{i}^{\rho}$ is $\left|\Sigma^{\rho}\right|+\sum_{i=1}^{N}\left|\pi_{i}^{\rho} \backslash \Sigma^{\rho}\right|=\left(2^{n-1-m}-1\right)+N\left[\left(2^{n-m}-1\right)-\left(2^{n-1-m}-1\right)\right]=2^{n+1}-1$, which is the number of points in $\operatorname{PG}(n, 2)$. Now, the result follows.

Lemma 3.7. Let x be a point not in \mathcal{Q}. Then exactly one of the following cases occurs.
(1) x is in Π^{\perp}; any line joining x and a point in S_{t} is not an external line of \mathcal{Q}.
(2) x is in $\pi^{\perp} \backslash \Pi^{\perp}$ for exactly one t-space $\pi \neq \alpha$ in Π; the line $x y$ through x and a point $y \in S_{t}$ is an external line of \mathcal{Q} if and only if $y \notin \pi$. Furthermore, there are 2^{t} such points y.
(3) x is in $\alpha^{\perp} \backslash \Pi^{\perp}$; any line through a point of S_{t} and x is an external line of \mathcal{Q}.

Proof. By [9, Theorem 3.1], there are exactly $N=2^{t+2}-1 t$-spaces in Π. Let $\pi_{0}, \pi_{1}, \cdots, \pi_{N-1}$ be the t-spaces contained in Π. Without loss of generality, assume $\pi_{0}=\alpha$.

Let x be a point not in \mathcal{Q}. By Lemma 3.6, x is either in Π^{\perp} or in $\pi_{i}^{\perp} \backslash \Pi^{\perp}$ for exactly one $i \in\{0,1, \cdots, N-1\}$.
(1) Suppose $x \in \Pi^{\perp}$. Then $x \in y^{\perp}$ for all $y \in \Pi$. Thus the line through x and a point $y \in \Pi \backslash \mathcal{Q}$ is a tangent to \mathcal{Q}. In order words, no point y in $\Pi \backslash \mathcal{Q}=\Pi \backslash \alpha=S_{t}$ satisfies the condition that the line $x y$ is an external line of \mathcal{Q}.
(2) Suppose $x \in \pi_{i}^{\perp} \backslash \Pi^{\perp}$ for exactly one $i \neq 0$. By a similar argument, it follows that no point y in $\pi_{i} \backslash \mathcal{Q}=\pi_{i} \backslash \alpha$ satisfies the condition that the line $x y$ is an external line of \mathcal{Q}. Suppose there exists $z \in S_{t} \backslash \pi_{i}$ such that the line through $x z$ is not an external line of \mathcal{Q}. Since every line contains exactly three points, that line is tangent to \mathcal{Q} and thus x is in z^{\perp}. Then $x \in z^{\perp} \cap \pi_{i}^{\perp}=\left\langle z, \pi_{i}\right\rangle^{\perp}=\Pi^{\perp}$. This gives a contradiction, and thus the line through x and a point $y \in S_{t}$ is an external line of \mathcal{Q} if and only if $y \notin \pi_{i}$. Since $\alpha \cap \pi_{i}$ is a $(t-1)$-space, there are exactly

$$
\left|S_{t} \backslash \pi_{i}\right|=\left|\left(\Pi \backslash \pi_{i}\right) \backslash\left(\alpha \backslash \pi_{i}\right)\right|=\left[\left(2^{t+2}-1\right)-\left(2^{t+1}-1\right)\right]-\left[\left(2^{t+1}-1\right)-\left(2^{t}-1\right)\right]=2^{t}
$$

points y in S_{t} such that the line $x y$ is an external line of \mathcal{Q}.
(3) Suppose $x \in \alpha^{\perp} \backslash \Pi^{\perp}$. Suppose there exists $y \in S_{t}$ such that the line $x y$ is not an external line of \mathcal{Q}. Then that line is a tangent to \mathcal{Q} and thus $x \in y^{\perp}$. Then $x \in y^{\perp} \cap \alpha^{\perp}=\langle y, \alpha\rangle^{\perp}=\Pi^{\perp}$. This gives a contradiction and the result follows.

We are ready to give a proof of Theorem 3.A.
Proof of Theorem 3.A. By Lemma [3.4, S_{t} is a Godsil-McKay switching set for $\Gamma_{\mathcal{Q}}$.

By Godsil and McKay [6], $\Gamma_{\mathcal{Q}, t}$ has a same adjacency spectrum as $\Gamma_{\mathcal{Q}}$. Since $\Gamma_{\mathcal{Q}}$ is a strongly regular graph, $\Gamma_{\mathcal{Q}, t}$ is also a strongly regular graph with the same parameters (see the first three paragraphs on [4, Subsection 14.5.1]), where the parameters are listed as in Table 1 on 2.

By the definition of T_{t} and Lemma 3.7,

$$
T_{t}=(\mathrm{PG}(n, 2) \backslash \mathcal{Q}) \cap\left[\left(\bigcup_{\pi \neq \alpha} \pi^{\perp} \backslash \Pi^{\perp}\right) \backslash S_{t}\right]
$$

where π runs over all t-space of Π except α. By Lemma 3.6, $\left(\bigcup_{\pi \neq \alpha} \pi^{\perp} \backslash \Pi^{\perp}\right)=$ $\mathrm{PG}(n, 2) \backslash \alpha^{\perp}$. Since S_{t} is in α^{\perp}, the result follows.

With Lemma 3.7, we prove Theorem 3.B.
Proof of Theorem 3.B. By Lemma 3.3, the subgraph of $\Gamma_{\mathcal{Q}}$ with vertex set $S_{t, t}$ is a regular subgraph of degree 2^{t+1}.

Let x be a point in $(\operatorname{PG}(n, 2) \backslash \mathcal{Q}) \backslash S_{t, t}$. By Lemma 3.6, one of the following cases occurs.
(1) $x \in \Pi^{\perp}$ and $x \in \Pi^{\perp}$.
(2) $x \in \Pi^{\perp}$ and $x \in \alpha^{\perp} \backslash \Pi^{\perp}$.
(3) $x \in \Pi^{\perp}$ and $x \in \pi^{\prime} \backslash \Pi^{\perp}$ for some t-space $\pi^{\prime} \neq \alpha$ of Π^{\prime}.
(4) $x \in \alpha^{\perp} \backslash \Pi^{\perp}$ and $x \in \Pi^{\perp}$.
(5) $x \in \alpha^{\perp} \backslash \Pi^{\perp}$ and $x \in \alpha^{\perp} \backslash \Pi^{\perp}$.
(6) $x \in \pi^{\perp} \backslash \Pi^{\perp}$ for some t-space $\pi \neq \alpha$ of Π, and $x \in \Pi^{\perp}$.
(7) $x \in \pi^{\perp} \backslash \Pi^{\perp}$ for some t-space $\pi \neq \alpha$ of Π, and $x \in \pi^{\prime \perp} \backslash \Pi^{\perp}$ for some t-space $\pi^{\prime} \neq \alpha$ of Π^{\prime}.

Note that case (3) never occurs. Indeed, since α is a subset of Π, we have $\Pi^{\perp} \subset \alpha^{\perp}$. Indeed, if x is in Π^{\perp}, then x is in α^{\perp} by Lemma 3.5, By Lemma 3.6, $\alpha^{\perp}=\left(\alpha^{\perp} \backslash \Pi^{\prime \perp}\right) \cup \Pi^{\perp \perp}$ is disjoint from $\pi^{\prime \perp} \backslash \Pi^{\perp \perp}$. Similarly, case (6) never occurs.

For the remaining cases, by Lemma 3.7, there are respectively $0+0=0,0+2^{t+1}=$ $2^{t+1}, 2^{t+1}+0=2^{t+1}, 2^{t+1}+2^{t+1}=2^{t+2}, 2^{t}+2^{t}=2^{t+1}$ points y in $\left(\Pi \cup \Pi^{\prime}\right) \backslash \alpha$ such that the line $x y$ is an external line of \mathcal{Q}. Therefore, $S_{t, t}$ is a Godsil-McKay switching set of $\Gamma_{\mathcal{Q}}$ because we have $\left|S_{t, t}\right|=2^{t+2}$ by Lemma 3.1.

Similarly, by Godsil and McKay [6], $\Gamma_{\mathcal{Q}, t, t}$ has a same adjacency spectrum as $\Gamma_{\mathcal{Q}}$. By [4], $\Gamma_{\mathcal{Q}, t, t}$ is also a strongly regular graph with the same parameters, where the parameters are listed as in Table 1 .

The vertex x is adjacent to none or all vertices in $S_{t, t}$, if and only if case (1) or (5) holds, if and only if $x \in \alpha^{\perp} \backslash\left(\Pi^{\perp} \triangle \Pi^{\perp}\right)$. The result for $T_{t, t}$ now follows.

4. Some codewords of the switched graphs

We shall use the same notation $n, \mathcal{Q}, \perp, t, \alpha, \Pi, \Pi^{\prime}, \Gamma_{\mathcal{Q}}, \Gamma_{\mathcal{Q}, t}, \Gamma_{\mathcal{Q}, t, t}, S_{t}, S_{t, t}, T_{t}$, $T_{t, t}$, as described in Theorems 3.A or 3.B. Recall from Section 2 that $C\left(\Gamma_{\mathcal{Q}, t}\right)$ and $C\left(\Gamma_{\mathcal{Q}, t, t}\right)$ are respectively the code of $C\left(\Gamma_{\mathcal{Q}, t}\right)$ and $C\left(\Gamma_{\mathcal{Q}, t, t}\right)$. In this section, we aim to prove $v^{S_{t}}, v^{T_{t}} \in C\left(\Gamma_{\mathcal{Q}, t}\right)$ and $v^{S_{t, t}}, v^{T_{t, t}} \in C\left(\Gamma_{\mathcal{Q}, t, t}\right)$.

Since we will need frequently the number of external lines of a non-singular quadric through a point, we give these numbers in the following lemma for ease of reference.

Lemma 4.1. Let Q_{m} be a non-singular quadric in $\mathrm{PG}(m, 2)$. Let x be a point not in Q_{m}. If m is odd, there are $2^{m-2} \pm 2^{\frac{m-3}{2}}$ external lines through x, where the upper sign of \pm is taken when if Q_{m} is elliptic, and otherwise if Q_{m} is hyperbolic. If m is even, there are 0 or $2^{m-2}-1$ external lines through x, depending on whether x is the nucleus of Q_{m} or not.

Proof. When m is odd, Q_{m} has $2^{m} \mp 2^{\frac{m-1}{2}}-1$ points (see Table 1). Thus, there are $|\mathrm{PG}(m, 2)|-\left|Q_{m}\right|=2^{m} \pm 2^{(m-1) / 2}$ non-quadric points. By [10, Theorem 22.6.6], these non-quadric points are in the same orbit under the subgroup $\operatorname{Aut}\left(Q_{m}\right)$ of the automorphism group of $\operatorname{PG}(m, 2)$ which fixes Q_{m}. Thus, through each point, there are a same number of external lines. The result follows because there are $\frac{1}{3}\left(2^{m-2}\right)\left(2^{\frac{m+1}{2}} \pm\right.$ 1) $\left(2^{\frac{m-1}{2}} \pm 1\right)$ external lines in $\operatorname{PG}(m, 2)$ [10, Lemma 22.8.1].

Similarly, when m is even, there are 2^{m} non-quadric points. Recall from Section 2 that all line through the nucleus of Q_{n} is tangent to Q_{n}. By [10, Theorem 22.6.6], any
non-quadric points, other than the nucleus, are in the same orbit under $\operatorname{Aut}\left(Q_{m}\right)$. The result follows similarly because there are $\frac{1}{3}\left(2^{m-2}\right)\left(2^{m}-1\right)$ external lines in $\operatorname{PG}(m, 2)$ [10, Lemma 22.8.1].

In the following lemma, whenever we use the signs \pm or \mp, the upper sign is always taken when \mathcal{Q} is elliptic, and lower sign is always taken when \mathcal{Q} is hyperbolic.

Lemma 4.2. There is an external line l of \mathcal{Q} such that l and α^{\perp} are disjoint.
Proof. Let x be a non-quadric point not in α^{\perp}. Let Σ be the $(n-t)$-space spanned by $\left\{x, \alpha^{\perp}\right\}$. If there is an external line of \mathcal{Q} through x but not in Σ, then such a line will be disjoint from α^{\perp} and we are done.

We first consider the case for $t=1$. By Lemma [3.6, $x \in \pi^{\perp}$ for a unique 1 -space π of Π. Since x is not in α^{\perp}, we have $\pi \neq \alpha$ and so $\pi \cap \alpha$ is a point of \mathcal{Q}. By Theorem [10, Theorem 22.7.2], $\Sigma \cap \mathcal{Q}$ is a parabolic quadric. If x is the nucleus of $\Sigma \cap \mathcal{Q}$, then there is no external line (of both \mathcal{Q} and $\Sigma \cap \mathcal{Q}$) in Σ and through x, as desired. If x is not the nucleus of $\Sigma \cap \mathcal{Q}$, then there are

$$
2^{n-3}-1
$$

external lines in Σ and through x by Lemma 4.1. Since n is not less than 5 , this number is less than the number of external lines in $\mathrm{PG}(n, 2)$ through x found in Lemma 4.1, and thus there is an external line of \mathcal{Q} through x but not in Σ, as desired.

Similarly, in case $t=2, \Sigma$ is an $(n-2)$-space meeting \mathcal{Q} in a line cone $\Pi_{1} \mathcal{Q}_{n-4}^{-}$ over an elliptic quadric \mathcal{Q}_{n-4}^{-}if \mathcal{Q} is elliptic, and a line cone $\Pi_{1} \mathcal{Q}_{n-4}^{+}$over a hyperbolic quadric \mathcal{Q}_{n-4}^{+}if \mathcal{Q} is hyperbolic. Since $\Pi_{1} \mathcal{Q}_{n-4}^{-}$has

$$
\begin{equation*}
\left|\Pi_{1} \mathcal{Q}_{n-4}^{-}\right|=3+4\left(2^{n-4}-2^{\frac{n-5}{2}}-1\right)=2^{n-2}-2^{(n-1) / 2}-1 \tag{4.1}
\end{equation*}
$$

points and $\Pi_{1} \mathcal{Q}_{n-4}^{+}$has

$$
\begin{equation*}
\left|\Pi_{1} \mathcal{Q}_{n-4}^{+}\right|=3+4\left(2^{n-4}+2^{\frac{n-5}{2}}-1\right)=2^{n-2}+2^{(n-1) / 2}-1 \tag{4.2}
\end{equation*}
$$

points, there are

$$
|\Sigma|-\left|\Pi_{1} \mathcal{Q}_{n-4}^{\epsilon}\right|=2^{n-2} \pm 2^{\frac{n-1}{2}}, \epsilon \in\{-,+\}
$$

non-quadric points in the $(n-2)$-space Σ. Thus, there are at most

$$
\frac{2^{n-2} \pm 2^{\frac{n-1}{2}}}{2}=2^{n-3} \pm 2^{\frac{n-3}{2}}
$$

external lines in Σ through x. Since this number is less than the number of external lines in $\operatorname{PG}(n, 2)$ through x found in Lemma4.1, there is an external line of \mathcal{Q} through x but not in Σ, as desired.

We now consider the case for $t>2$. By [9, Theorem 3.1], through x, there are

$$
2^{n-t}-1
$$

lines in the $(n-t)$-space Σ. Since this number is less than the number of external lines through x found in Lemma 4.1, there is an external line of \mathcal{Q} through x but not in Σ, as desired.

Lemma 4.3. The vector $v^{S_{t}}$ is in $C\left(\Gamma_{\mathcal{Q}, t}\right)$. The vector $v^{S_{t, t}}$ is in $C\left(\Gamma_{\mathcal{Q}, t, t}\right)$.
Proof. Let $l=\left\{x_{1}, x_{2}, x_{3}\right\}$ be an external line of \mathcal{Q} such that l and α^{\perp} are disjoint. This exists by Lemma 4.2.

For each $i=1,2,3$, let r_{i}, \dot{r}_{i} and \ddot{r}_{i} respectively be the row of the adjacency matrices of $\Gamma_{\mathcal{Q}}, \Gamma_{\mathcal{Q}, t}, \Gamma_{\mathcal{Q}, t, t}$ corresponding to x_{i}. Then r_{i} is the characteristic vector of $(\mathrm{PG}(n, 2) \backslash \mathcal{Q}) \backslash x_{i}^{\perp}$. By Lemma 3.6, $\mathrm{PG}(n, 2) \backslash \mathcal{Q}$ is the disjoint union of $l^{\perp} \backslash \mathcal{Q}$, $\left(x_{1}^{\perp} \backslash l^{\perp}\right) \backslash \mathcal{Q},\left(x_{2}^{\perp} \backslash l^{\perp}\right) \backslash \mathcal{Q}$ and $\left(x_{3}^{\perp} \backslash l^{\perp}\right) \backslash \mathcal{Q}$. Since l^{\perp} is a subset of x_{i}^{\perp} for $i=1,2,3$, we have

$$
\begin{equation*}
r_{1}+r_{2}+r_{3}=0 \tag{4.3}
\end{equation*}
$$

in $\mathbb{F}_{2}^{\left|V_{\mathcal{Q}}\right|}$.
Since l is disjoint from α^{\perp}, we have $l \subset T_{t}$ and $l \subset T_{t, t}$. By the definitions of $\Gamma_{\mathcal{Q}, t}$ and $\Gamma_{\mathcal{Q}, t, t}$, for each $i=1,2,3$, we have

$$
\begin{equation*}
\dot{r_{i}}=r_{i}+v^{S_{t}} \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\ddot{r}_{i}=r_{i}+v^{S_{t, t}} . \tag{4.5}
\end{equation*}
$$

By (4.3) and (4.4), $\dot{r_{1}}+\dot{r_{2}}+\dot{r_{3}}=v^{S_{t}}$ and so $v^{S_{t}}$ is a codeword of $C\left(\Gamma_{\mathcal{Q}, t}\right)$. Similarly, $v^{S_{t, t}}$ is a codeword of $C\left(\Gamma_{\mathcal{Q}, t, t}\right)$ because $\ddot{r_{1}}+\ddot{r_{2}}+\ddot{r}_{3}=v^{S_{t, t}}$ by (4.3) and (4.5).

The purpose and proof of following lemma are similar to those of Lemma 4.2, and we apply this lemma to prove $v^{T_{t}} \in C\left(\Gamma_{\mathcal{Q}, t}\right)$ and $v^{T_{t, t}} \in C\left(\Gamma_{\mathcal{Q}, t, t}\right)$.

Lemma 4.4. Let x be a non-quadric point in α^{\perp}. Then there is an external line l of \mathcal{Q} through x such that l is tangent to α^{\perp} at x.

Proof. To prove the lemma, it suffices to show some of external line through x does not lie in α^{\perp}.

We first consider the case for $t=1$. Then α^{\perp} is an $(n-2)$-space. By [10, Theorem 22.7.2], $\alpha^{\perp} \cap \mathcal{Q}$ is a line cone $\Pi_{1} \mathcal{Q}_{n-4}^{-}$over an elliptic quadric \mathcal{Q}_{n-4}^{-}if \mathcal{Q} is elliptic, and a line cone $\Pi_{1} \mathcal{Q}_{n-4}^{+}$over a hyperbolic quadric \mathcal{Q}_{n-4}^{+}if \mathcal{Q} is hyperbolic. For either \mathcal{Q} elliptic or hyperbolic, the set of points y 's in $\alpha^{\perp} \cap \mathcal{Q}$ such that the line $x y$ is tangent to $\alpha^{\perp} \cap \mathcal{Q}$ forms a line cone $\Pi_{1} \mathcal{Q}_{n-5}$ over a parabolic quadric \mathcal{Q}_{n-5}. Since \mathcal{Q}_{n-5} has $2^{n-5}-1$ points [9, Theorem 5.21], there are

$$
\left|\Pi_{1} \mathcal{Q}_{n-5}\right|=\left[3+4\left(2^{n-5}-1\right)\right]=2^{n-3}-1
$$

tangents in α^{\perp} through x. Using (4.1) and (4.2), there are

$$
\frac{\left|\alpha^{\perp} \cap \mathcal{Q}\right|-\left|\Pi_{1} \mathcal{Q}_{n-5}\right|}{2}=2^{n-4} \mp 2^{(n-3) / 2}
$$

secants in α^{\perp} through x. Since there are $2^{n-2}-1$ lines in α^{\perp} through x [9, Theorem 3.1], there are

$$
\begin{equation*}
\left(2^{n-2}-1\right)-\left(2^{n-4} \mp 2^{(n-3) / 2}\right)-\left(2^{n-3}-1\right)=2^{n-4} \pm 2^{(n-3) / 2} \tag{4.6}
\end{equation*}
$$

external lines of \mathcal{Q} in α^{\perp} through x, where the upper signs of \pm and \mp are taken if \mathcal{Q} is elliptic and the lower sign if \mathcal{Q} is hyperbolic. Since the number in (4.6) is less than the number of external lines through x found in Lemma 4.1, there is an external line of \mathcal{Q} through x but not in α^{\perp}, as desired.

We now consider the case for $t>1$. By [9, Theorem 3.1], through x, there are only

$$
2^{n-1-t}-1
$$

lines of the $(n-1-t)$-space α^{\perp}. Since this number is less than the number of external lines through x found in Lemma 4.1, there is an external line of \mathcal{Q} through x but not in α^{\perp}, as desired.

Lemma 4.5. The vector $v^{T_{t}}$ is in $C\left(\Gamma_{\mathcal{Q}, t}\right)$. The vector $v^{T_{t, t}}$ is in $C\left(\Gamma_{\mathcal{Q}, t, t}\right)$.
Proof. Let $x_{1} \in S_{t}$. Note that $x_{1} \in \alpha^{\perp}$. Take an external line $l=\left\{x_{1}, x_{2}, x_{3}\right\}$ of \mathcal{Q} through x such that l is tangent to α^{\perp} at x_{1}. It exists by Lemma 4.4.

For each $i=1,2,3$, let r_{i}, \dot{r}_{i} and \ddot{r}_{i} respectively be the row of the adjacency matrices of $\Gamma_{\mathcal{Q}}, \Gamma_{\mathcal{Q}, t}, \Gamma_{\mathcal{Q}, t, t}$ corresponding to x_{i}. By the same argument used in the proof of Lemma 4.3, we have

$$
\begin{equation*}
r_{1}+r_{2}+r_{3}=0 \tag{4.7}
\end{equation*}
$$

Because of $x_{1} \in S_{t} \subset S_{t, t}$, by the definitions of $\Gamma_{\mathcal{Q}, t}$ and $\Gamma_{\mathcal{Q}, t, t}$, we have

$$
\begin{equation*}
\dot{r_{1}}=r_{1}+v^{T_{t}} \tag{4.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\ddot{r_{1}}=r_{1}+v^{T_{t, t}} . \tag{4.9}
\end{equation*}
$$

Since x_{2}, x_{3} are not in α^{\perp}, they are in T_{t} and $T_{t, t}$ by (3.2) and (3.4). So, for $i=2,3$, we have

$$
\begin{equation*}
\dot{r_{i}}=r_{i}+v^{S_{t}} \tag{4.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\ddot{r_{i}}=r_{i}+v^{S_{t, t}} . \tag{4.11}
\end{equation*}
$$

By (4.7), (4.8) and (4.10), $\dot{r_{1}}+\dot{r_{2}}+\dot{r_{3}}=v^{T_{t}}$ and so $v^{T_{t}}$ is a codeword of $C\left(\Gamma_{\mathcal{Q}, t}\right)$. Similarly, $v^{T_{t, t}}$ is a codeword of $C\left(\Gamma_{\mathcal{Q}, t, t}\right)$ because $\ddot{r_{1}}+\ddot{r_{2}}+\ddot{r_{3}}=v^{T_{t, t}}$ by (4.7), (4.9) and (4.11).

5. The minimum word of $C\left(\Gamma_{\mathcal{Q}, t}\right)$ and $C\left(\Gamma_{\mathcal{Q}, t, t}\right)$

In this section, we use the same notation $n, \mathcal{Q}, \perp, t, \alpha, \Pi, \Pi^{\prime}, \Gamma_{\mathcal{Q}}, \Gamma_{\mathcal{Q}, t}, \Gamma_{\mathcal{Q}, t, t}$, $S_{t}, S_{t, t}, T_{t}$ and $T_{t, t}$ as in Section 4, except requiring $n \geq 7$.

Let

$$
\begin{equation*}
C_{t}=\left\langle C\left(\Gamma_{\mathcal{Q}, t}\right), v^{S_{t}}, v^{T_{t}}\right\rangle \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{t, t}=\left\langle C\left(\Gamma_{\mathcal{Q}, t, t}\right), v^{S_{t, t}}, v^{T_{t, t}}\right\rangle \tag{5.2}
\end{equation*}
$$

In this section, we aim to prove the minimum word of C_{t} and $C_{t, t}$ are respectively $v^{S_{t}}$ and $v^{S_{t, t}}$. This will give the minimum word of $C\left(\Gamma_{\mathcal{Q}, t}\right)$ and $C\left(\Gamma_{\mathcal{Q}, t, t}\right)$ once we prove that $C_{t}=C\left(\Gamma_{\mathcal{Q}, t}\right)$ and $C_{t, t}=C\left(\Gamma_{\mathcal{Q}, t, t}\right)$ in the next section.

Lemma 5.1. Let $w \in C\left(\Gamma_{\mathcal{Q}}\right)$. Then $\operatorname{wt}\left(w+v^{S_{t}}\right)>2^{t+1}$ and $\operatorname{wt}\left(w+v^{S_{t, t}}\right)>2^{t+2}$.
Proof. From Table 3, if \mathcal{Q} is elliptic, the weight $\operatorname{wt}(w)$ of w satisfies $\mathrm{wt}(w) \geq 2^{n-1}$. By Lemma 3.1, $\operatorname{wt}\left(v^{S_{t}}\right)=2^{t+1}$ and $\operatorname{wt}\left(v^{S_{t, t}}\right)=2^{t+2}$. So,

$$
\begin{aligned}
\mathrm{wt}\left(w+v^{S_{t}}\right) & \geq \operatorname{wt}(w)-\operatorname{wt}\left(v^{S_{t}}\right)=2^{n-1}-2^{t+1} \\
\operatorname{wt}\left(w+v^{S_{t, t}}\right) & \geq \operatorname{wt}(w)-\operatorname{wt}\left(v^{S_{t, t}}\right)=2^{n-1}-2^{t+2}
\end{aligned}
$$

Since we have assumed $n \geq 7$ in this section and we have $t \leq \frac{n-3}{2}$ under the assumption in Theorems 3.A and 3.B, it is straightforward to verify that $\mathrm{wt}\left(w+v^{S_{t}}\right)>2^{t+1}$ and $\mathrm{wt}\left(w+v^{S_{t, t}}\right)>2^{t+2}$.

From Table 4, if \mathcal{Q} is hyperbolic, then $\operatorname{wt}(w) \geq 2^{n-1}-2^{\frac{n-1}{2}}$. Similarly, since $n \geq 7$, it is straightforward to verify that $\mathrm{wt}\left(w+v^{S_{t}}\right)>2^{t+1}$ and $\mathrm{wt}\left(w+v^{S_{t, t}}\right)>2^{t+2}$ with t in the range stated in Theorems 3.A and 3.B.

For any subset U of points of $\operatorname{PG}(n, 2)$, denoted by \widehat{U} the set $U \backslash \mathcal{Q}$. Recall that whenever we use the signs \pm or \mp, the upper sign is always taken when \mathcal{Q} is elliptic, and lower sign is always taken when \mathcal{Q} is hyperbolic.

Lemma 5.2. (1) $\left|\widehat{\alpha^{\perp}}\right|=2^{n-t-1} \pm 2^{\frac{n-1}{2}}$.
(2) Let $A=\left(\Pi^{\perp} \triangle \Pi^{\perp \perp}\right) \backslash S_{t, t}$. Then $|\widehat{A}|=2^{n-t-2} \pm 2^{\frac{n-1}{2}}-2^{t+2}$.
(3) Let Σ be an ($n-1$)-space. Then exactly one of the following holds:
(a) $\Sigma \cap \mathcal{Q}=\mathcal{Q}_{n-1} ;|\widehat{\Sigma}|=2^{n-1}$.
(b) $\Sigma \cap \mathcal{Q}=\Pi_{0} \mathcal{Q}_{n-2}$ where \mathcal{Q}_{n-2} and \mathcal{Q} are both elliptic or both hyperbolic; $|\widehat{\Sigma}|=2^{n-1} \pm 2^{\frac{n-1}{2}}$.

Proof. (1) Since α is in \mathcal{Q}, by [10, Theorem 22.8.3], $\alpha^{\perp} \cap \mathcal{Q}$ is a cone $\Pi_{t} Q_{n-2 t-2}$ where $Q_{n-2 t-2}$ is elliptic if \mathcal{Q} is elliptic, and is hyperbolic otherwise. By (2.1) and Table 1, we have

$$
\left|\alpha^{\perp} \cap \mathcal{Q}\right|=\left(2^{t+1}-1\right)+2^{t+1}\left(2^{n-2 t-2} \mp 2^{\frac{n-2 t-3}{2}}-1\right)=2^{n-t-1} \mp 2^{\frac{n-1}{2}}-1 .
$$

Since α^{\perp} is an $(n-t-1)$-space, it follows that

$$
\begin{aligned}
\left|\widehat{\alpha^{\perp}}\right| & =\left|\alpha^{\perp}\right|-\left|\alpha^{\perp} \cap \mathcal{Q}\right| \\
& =\left(2^{n-t}-1\right)-\left[2^{n-t-1} \mp 2^{\frac{n-1}{2}}-1\right]=2^{n-t-1} \pm 2^{\frac{n-1}{2}} .
\end{aligned}
$$

(2) Similar to (1), we have

$$
\begin{aligned}
\left|\widehat{\Pi^{\perp}}\right| & =\left|\Pi^{\perp}\right|-\left|\Pi^{\perp} \cap \mathcal{Q}\right|=\left|\Pi^{\perp}\right|-\left|\Pi_{t} Q_{n-2 t-3}\right| \\
& =\left(2^{n-t-1}-1\right)-\left[\left(2^{t+1}-1\right)+2^{t+1}\left(2^{n-2 t-3}-1\right)\right]=2^{n-t-2}
\end{aligned}
$$

and

$$
\begin{aligned}
\left|\left\langle\widehat{\Pi, \Pi^{\prime}}\right\rangle^{\perp}\right| & =\left|\left\langle\Pi, \Pi^{\prime}\right\rangle^{\perp}\right|-\left|\left(\left\langle\Pi, \Pi^{\prime}\right\rangle^{\perp}\right) \cap \mathcal{Q}\right|=\left|\left\langle\Pi, \Pi^{\prime}\right\rangle^{\perp}\right|-\left|\Pi_{t} \mathcal{Q}_{n-2 t-4}\right| \\
& =\left(2^{n-t-2}-1\right)-\left[\left(2^{t+1}-1\right)+2^{t+1}\left(2^{n-2 t-4} \pm 2^{\frac{n-2 t-5}{2}}-1\right)\right] \\
& =2^{n-t-3} \mp 2^{\frac{n-3}{2}} .
\end{aligned}
$$

where $\mathcal{Q}_{n-2 t-4}$ is hyperbolic if \mathcal{Q} is elliptic; $\mathcal{Q}_{n-2 t-4}$ is elliptic if \mathcal{Q} is hyperbolic. Recall from Lemma 3.5, $S_{t, t} \subset \Pi^{\perp} \triangle \Pi^{\perp}$. Now using Lemma 3.1, we deduce

$$
|\widehat{A}|=\left|\widehat{\Pi^{\perp}}\right|+\left|\widehat{\Pi^{\perp}}\right|-2 \left\lvert\,\left\langle\widehat{\left.\Pi, \Pi^{\prime}\right\rangle^{\perp}}\right|-\left|S_{t, t}\right|=2^{n-t-2} \pm 2^{\frac{n-1}{2}}-2^{t+2}\right.
$$

(3) By [10, Theorem 22.8.5], $\Sigma \cap \mathcal{Q}$ is either (a) \mathcal{Q}_{n-1} or (b) $\Pi_{0} \mathcal{Q}_{n-2}$ where \mathcal{Q}_{n-2} and \mathcal{Q} are both elliptic or both hyperbolic. The result follows by (2.1) and Table 1.

Lemma 5.3. The size of T_{t} and $T_{t, t}$ are respectively $\left|T_{t}\right|=2^{n}-2^{n-t-1}$ and $\left|T_{t, t}\right|=$ $2^{n} \pm 2^{\frac{n-1}{2}}-2^{n-t-2}-2^{t+2}$. Furthermore, the following holds:
(1) $\left|T_{t}\right|>2^{t+1}$.
(2) $\left|T_{t} \triangle S_{t}\right|>2^{t+1}$.
(3) $\left|T_{t, t}\right|>2^{t+2}$.
(4) $\left|T_{t, t} \triangle S_{t, t}\right|>2^{t+2}$.

Proof. Using (3.2) and Lemma 5.2(1), we obtain

$$
\left|T_{t}\right|=|\mathrm{PG}(n, 2)|-|\mathcal{Q}|-\left|\widehat{\alpha^{\perp}}\right|=\left(2^{n+1}-1\right)-\left(2^{n} \mp 2^{\frac{n-1}{2}}-1\right)-\left(2^{n-t-1} \pm 2^{\frac{n-1}{2}}\right)=2^{n}-2^{n-t-1} .
$$

Since $0<t \leq \frac{n-3}{2}$, we have

$$
\left|T_{t}\right|-2^{t+1}=2^{n-t-1}\left(2^{t+1}-1\right)-2^{t+1}>3 \cdot 2^{n-t-1}-2^{t+1}>0 .
$$

So, $\left|T_{t}\right|>2^{t+1}$.
Using (3.4) and Lemma 5.2(2), we have

$$
\left|T_{t, t}\right|=\left|T_{t}\right|+|\widehat{A}|=2^{n}-2^{n-t-2} \pm 2^{\frac{n-1}{2}}-2^{t+2}
$$

where $A=\left(\Pi^{\perp} \triangle \Pi^{\perp}\right) \backslash S_{t, t}$. Because of $t>0$, we have

$$
\left|T_{t, t}\right|-2^{t+2}=2^{n-t-2}\left(2^{t+2}-1\right) \pm 2^{\frac{n-1}{2}}-2^{t+3} \geq 7 \cdot 2^{n-t-2} \pm 2^{\frac{n-1}{2}}-2^{t+3}
$$

When \mathcal{Q} is elliptic, $t \leq \frac{n-3}{2}$ and so

$$
7 \cdot 2^{n-t-2}+2^{\frac{n-1}{2}}-2^{t+3}>0
$$

When \mathcal{Q} is hyperbolic, $t \leq \frac{n-5}{2}$ and so

$$
7 \cdot 2^{n-t-2}-2^{\frac{n-1}{2}}-2^{t+3} \geq 7 \cdot 2^{\frac{n-1}{2}}-2^{\frac{n-1}{2}}-2^{t+3}>0
$$

In both cases, $\left|T_{t, t}\right|>2^{t+2}$. The results of $T_{t} \triangle S_{t}$ and $T_{t, t} \triangle S_{t, t}$ follow because of $T_{t} \cap S_{t}=\emptyset$ and $T_{t, t} \cap S_{t, t}=\emptyset$.

Lemma 5.4. Let $R=(\mathrm{PG}(n, 2) \backslash \mathcal{Q}) \backslash \Sigma$ for some $(n-1)$-space Σ of $\mathrm{PG}(n, 2)$. Then the following holds:
(1) $\left|R \triangle T_{t}\right|>2^{t+1}$.
(2) $\left|R \triangle T_{t} \triangle S_{t}\right|>2^{t+1}$.
(3) $\left|R \triangle T_{t, t}\right|>2^{t+2}$.
(4) $\left|R \triangle T_{t, t} \triangle S_{t, t}\right|>2^{t+2}$.

Proof. The complement R^{c} of R in $\operatorname{PG}(n, 2) \backslash \mathcal{Q}$ is

$$
R^{c}=\widehat{\Sigma}
$$

Let $A:=\left(\left(\Pi^{\perp} \triangle \Pi^{\perp}\right) \backslash S_{t, t}\right) \backslash \mathcal{Q}$. By (3.2) and (3.4), we have

$$
\begin{align*}
T_{t}^{c} & =\widehat{\alpha^{\perp}} \tag{5.3}\\
T_{t, t} & =T_{t} \cup A
\end{align*}
$$

Recall for any subsets U_{1}, U_{2}, U_{3} of $\operatorname{PG}(n, 2) \backslash \mathcal{Q}$, we have $U_{1} \triangle U_{2}=U_{1}^{c} \triangle U_{2}^{c} ;\left(U_{1} \cup\right.$ $\left.U_{2}\right)^{c}=U_{1}^{c} \cap U_{2}^{c} ;\left(U_{1} \triangle U_{2}\right) \triangle U_{3}=U_{1} \triangle\left(U_{2} \triangle U_{3}\right) ; U_{1} \triangle U_{2} \supset U_{1} \backslash U_{2}$, and equality holds if and only if $U_{1} \subset U_{2}$. Further because of $S_{t}, S_{t, t} \subset \alpha^{\perp}$ by Lemma 3.5 and
$S_{t, t} \cap A=\emptyset$, we have

$$
\begin{align*}
R \triangle T_{t} & =\widehat{\Sigma} \triangle \widehat{\alpha^{\perp}} \supset \widehat{\Sigma} \backslash \widehat{\alpha^{\perp}} ; \\
R \triangle T_{t} \triangle S_{t} & =\left(\widehat{\Sigma} \triangle \widehat{\alpha^{\perp}}\right) \triangle S_{t}=\widehat{\Sigma} \triangle\left(\widehat{\alpha^{\perp}} \backslash S_{t}\right) \supset \widehat{\Sigma} \backslash\left(\widehat{\alpha^{\perp}} \backslash S_{t}\right) \supset \widehat{\Sigma} \backslash \widehat{\alpha^{\perp}} ; \\
R \triangle T_{t, t} & =\widehat{\Sigma} \triangle\left(\widehat{\alpha^{\perp}} \cap \widehat{A^{\perp}}\right)=\widehat{\Sigma} \triangle\left(\widehat{\alpha^{\perp}} \backslash \widehat{A}\right) \supset \widehat{\Sigma} \backslash\left(\widehat{\alpha^{\perp}} \backslash \widehat{A}\right) ; \tag{5.4}\\
R \triangle T_{t, t} \triangle S_{t, t} & =\widehat{\Sigma} \triangle\left[\left(\widehat{\alpha^{\perp}} \backslash \widehat{A}\right) \backslash S_{t, t}\right] \supset \widehat{\Sigma} \backslash\left[\left(\widehat{\alpha^{\perp}} \backslash \widehat{A}\right) \backslash S_{t, t}\right] \supset \widehat{\Sigma} \backslash\left(\widehat{\alpha^{\perp}} \backslash \widehat{A}\right) .
\end{align*}
$$

Thus, it suffices to show (i) $\left|\widehat{\Sigma} \backslash \widehat{\alpha^{\perp}}\right|>2^{t+1}$ and (ii) $\left|\widehat{\Sigma} \backslash\left(\widehat{\alpha^{\perp}} \backslash \widehat{A}\right)\right|>2^{t+2}$ for t within the range mentioned in Theorems [3.A and 3.B. By [10, Theorem 22.8.3], $\Sigma \cap \mathcal{Q}$ is either (a) a parabolic quadric \mathcal{Q}_{n-1}, or (b) a point cone $\Pi_{0} \mathcal{Q}_{n-2}$ where \mathcal{Q}_{n-2} and \mathcal{Q} are both elliptic or both hyperbolic.
(a) If $\Sigma \cap \mathcal{Q}=Q_{n-1}$, then by [10, Theorem 22.7.2], we have $\Sigma^{\perp} \notin \mathcal{Q}$ and so $\Sigma^{\perp} \notin \alpha$. By the definition of a polarity, we have $\alpha^{\perp} \not \subset \Sigma$. Since Σ is a hyperplane and α^{\perp} is an $(n-1-t)$-space, $\Sigma \cap \alpha^{\perp}$ is a ($\left.n-2-t\right)$-space.
(i) By Lemma 5.2(3a) and $0<t \leq \frac{n-3}{2}$, we have

$$
\begin{aligned}
\left|\widehat{\Sigma} \backslash \widehat{\alpha^{\perp}}\right|-2^{t+1} & \geq|\widehat{\Sigma}|-\left|\Sigma \cap \alpha^{\perp}\right|-2^{t+1} \\
& =2^{n-1}-\left(2^{n-t-1}-1\right)-2^{t+1}=2^{n-t-1}\left(2^{t}-1\right)+1-2^{t+1} \\
& \geq 2^{n-t-1}-2^{t+1}+1>0 .
\end{aligned}
$$

(ii) Similarly, since $\left.\widehat{\Sigma} \backslash \widehat{\alpha^{\perp}} \backslash \widehat{A}\right) \subset \widehat{\Sigma} \backslash \widehat{\alpha^{\perp}}$, we have

$$
\begin{aligned}
\left|\widehat{\Sigma} \backslash\left(\widehat{\alpha^{\perp}} \backslash \widehat{A}\right)\right|-2^{t+2} & \geq|\widehat{\Sigma}|-\left|\Sigma \cap \alpha^{\perp}\right|-2^{t+2} \\
& \geq 2^{n-t-1}-2^{t+2}+1>0
\end{aligned}
$$

(b) (i) If $\Sigma \cap \mathcal{Q}=\Pi_{0} \mathcal{Q}_{n-2}$, then by Lemma 5.2(1)3b) and because of $t>0$, we have

$$
\begin{aligned}
\left|\widehat{\Sigma} \backslash \widehat{\alpha^{\perp}}\right|-2^{t+1} & \geq|\widehat{\Sigma}|-\left|\widehat{\alpha^{\perp}}\right|-2^{t+1} \\
& =\left(2^{n-1} \pm 2^{\frac{n-1}{2}}\right)-\left(2^{n-t-1} \pm 2^{\frac{n-1}{2}}\right)-2^{t+1} \\
& =2^{n-1-t}\left(2^{t}-1\right)-2^{t+1} \geq 2^{n-1-t}-2^{t+1}>0
\end{aligned}
$$

(ii) If $\Sigma \cap \mathcal{Q}=\Pi_{0} \mathcal{Q}_{n-2}$, then by Lemma 5.2(12) 3 b$)$ and because of $t>0$, we have

$$
\begin{aligned}
& \left|\widehat{\Sigma} \backslash\left(\widehat{\alpha^{\perp}} \backslash \widehat{A}\right)\right|-2^{t+2} \\
\geq & |\widehat{\Sigma}|-\left|\widehat{\alpha^{\perp}}\right|+|\widehat{A}|-2^{t+2} \\
= & \left(2^{n-1} \pm 2^{\frac{n-1}{2}}\right)-\left(2^{n-t-1} \pm 2^{\frac{n-1}{2}}\right)+\left(2^{n-t-2} \pm 2^{\frac{n-1}{2}}-2^{t+2}\right)-2^{t+2} \\
= & 2^{n-2-t}\left(2^{t+1}-1\right) \pm 2^{\frac{n-1}{2}}-2^{t+3} \\
\geq & 3 \cdot 2^{n-2-t} \pm 2^{\frac{n-1}{2}}-2^{t+3}
\end{aligned}
$$

where the last equality holds if and only if $t=1$.
If \mathcal{Q} is elliptic, then because of $t \leq \frac{n-3}{2}$, we have

$$
3 \cdot 2^{n-2-t}+2^{\frac{n-1}{2}}-2^{t+3} \geq 0
$$

where the equality holds if and only if $t=\frac{n-3}{2}$. Because of $n \geq 7$, it is impossible to have $1=t=\frac{n-3}{2}$. Combining (5.5) and (5.6), we have $\left|\widehat{\Sigma} \backslash\left(\widehat{\alpha^{\perp}} \backslash \widehat{A}\right)\right|>2^{t+2}$.
If \mathcal{Q} is hyperbolic, then because of $t \leq \frac{n-5}{2}$, we have

$$
3 \cdot 2^{n-2-t}-2^{\frac{n-1}{2}}-2^{t+3}>0 .
$$

Combining (5.5) and (5.7), we have $\left|\widehat{\Sigma} \backslash\left(\widehat{\alpha^{\perp}} \backslash \widehat{A}\right)\right|>2^{t+2}$.

Proposition 5.5. Let u be a non-zero vector in C_{t}. Then $\mathrm{wt}(u) \geq 2^{t+1}$, and equality holds if and only if $u=v^{S_{t}}$.

Proof. Let u be a non-zero vector in C_{t}. Then u is one of the following: $w, w+v^{S_{t}}$, $w+v^{T_{t}}, w+v^{T_{t}}+v^{S_{t}}, v^{T_{t}}, w^{T_{t}}+v^{S_{t}}$ or $v^{S_{t}}$ for some $w \in C\left(\Gamma_{\mathcal{Q}}\right)$. By Tables 3 and 4. $\mathrm{wt}(w)>2^{t+1}$, and by Lemma 5.1, $\mathrm{wt}\left(w+v^{S t}\right)>2^{t+1}$. Note that for any subsets U_{1}, U_{2} of $\operatorname{PG}(n, 2) \backslash \mathcal{Q}, v^{U_{1}}+v^{U_{2}}=v^{U_{1} \Delta U_{2}}$. The result follows from Lemmas 3.1, 5.3 and 5.4 because $w=v^{R}$ where $R=(\mathrm{PG}(n, 2) \backslash \mathcal{Q}) \backslash \Sigma$ for some $(n-1)$-space Σ.

Proposition 5.6. Let u be a non-zero vector in $C_{t, t}$. Then $\mathrm{wt}(u) \geq 2^{t+2}$, and equality holds if and only if $u=v^{S_{t, t}}$.

Proof. It follows using arguments that are similar to those in the proof of Proposition 5.5

6. Numbers of switched graphs found

With the notation as given in Section 5 for $n, \mathcal{Q}, \perp, t, \alpha, \Pi, \Pi^{\prime}, \Gamma_{\mathcal{Q}}, \Gamma_{\mathcal{Q}, t}, \Gamma_{\mathcal{Q}, t, t}$, $S_{t}, S_{t, t}, T_{t}$ and $T_{t, t}$, we assume $n \geq 7$. In this section, we will prove $C\left(\Gamma_{\mathcal{Q}, t}\right)=C_{t}$ and
$C\left(\Gamma_{\mathcal{Q}, t, t}\right)=C_{t, t}$ as claimed in Section 5, and then count the number of non-isomorphic graphs constructed through Theorems 3.A and 3.B.

Let $A, A_{t}, A_{t, t}$ be the adjacency matrices of $\Gamma_{\mathcal{Q}}, \Gamma_{\mathcal{Q}, t}$ and $\Gamma_{\mathcal{Q}, t, t}$.
Since $S_{t} \subset S_{t, t}$ and $T_{t} \subset T_{t, t}$, we may assume that the first $\left|S_{t}\right|$ rows and columns of $A, A_{t}, A_{t, t}$ correspond to points of $\mathrm{PG}(n, 2) \backslash \mathcal{Q}$ in S_{t}; the next $\left|S_{t, t} \backslash S_{t}\right|$ rows and columns correspond to those in $S_{t, t} \backslash S_{t}$; the last $\left|T_{t, t}\right|$ rows and columns correspond to points in $T_{t, t}$ such that the last $\left|T_{t}\right|$ rows and columns correspond to points in T_{t}. By the definition of $\Gamma_{\mathcal{Q}, t}$,

$$
A_{t}=A+M_{t}, \text { where } M_{t}=\left(\begin{array}{ccc}
O & O & J_{t} \tag{6.1}\\
O & O & O \\
J_{t}^{\prime} & O & O
\end{array}\right)
$$

where J_{t} is the $\left|S_{t}\right|$-by- $\left|T_{t}\right|$ all-ones matrix. Similarly, by the definition of $\Gamma_{\mathcal{Q}, t, t}$,

$$
A_{t, t}=A+M_{t, t}, \text { where } M_{t, t}=\left(\begin{array}{ccc}
O & O & J_{t, t} \tag{6.2}\\
O & O & O \\
J_{t, t}^{\prime} & O & O
\end{array}\right)
$$

where $J_{t, t}$ is the $\left|S_{t, t}\right|$-by- $\left|T_{t, t}\right|$ all-ones matrix.
Lemma 6.1. None of $v^{T_{t}}$ or $v^{T_{t, t}}$ is in $C\left(\Gamma_{\mathcal{Q}}\right)$.
Proof. Suppose $v^{T_{t}}$ is in $C\left(\Gamma_{\mathcal{Q}}\right)$. Recall any codeword in $C\left(\Gamma_{\mathcal{Q}}\right)$ is v^{R} where $R=$ $(\mathrm{PG}(n, 2) \backslash \mathcal{Q}) \backslash \Sigma$ for some $(n-1)$-space Σ. By (3.2),

$$
(\mathrm{PG}(n, 2) \backslash \mathcal{Q}) \backslash \alpha^{\perp}=(\mathrm{PG}(n, 2) \backslash \mathcal{Q}) \backslash \Sigma
$$

This implies $\Sigma \backslash \mathcal{Q}=\alpha^{\perp} \backslash \mathcal{Q}$. Considering the size of $\Sigma \backslash \mathcal{Q}$ and $\alpha^{\perp} \backslash \mathcal{Q}$ given in Lemma 5.2, we have $n=3$ or $t=0$, which contradicts the range of n and t stated in Theorem 3.A or Theorem 3.B.

We now prove $C\left(\Gamma_{\mathcal{Q}, t}\right)=C_{t}$ and $C\left(\Gamma_{\mathcal{Q}, t, t}\right)=C_{t, t}$ as announced in Section 5.
Lemma 6.2. $C\left(\Gamma_{\mathcal{Q}, t}\right)=\left\langle C\left(\Gamma_{\mathcal{Q}, t}\right), v^{S_{t}}, v^{T_{t}}\right\rangle$ and the 2-rank of $C\left(\Gamma_{\mathcal{Q}, t}\right)$ is $n+3$.
Proof. By Lemmas 4.3 and 4.5, $v^{S_{t}}$ and $v^{T_{t}}$ are codewords of $C\left(\Gamma_{\mathcal{Q}, t}\right)$. By (6.1), a row of the adjacency matrix of $\Gamma_{\mathcal{Q}, t}$ either is a row of the adjacency matrix of $\Gamma_{\mathcal{Q}}$ or differs from such a row by $v^{S_{t}}$ or $v^{T_{t}}$. Thus, any row of the adjacency matrix of $\Gamma_{\mathcal{Q}}$ is a codeword of $C\left(\Gamma_{\mathcal{Q}, t}\right)$.

By Lemma 6.1, $v^{T_{t}} \notin C\left(\Gamma_{\mathcal{Q}}\right)$ and by Proposition 5.5, for any $w \in C\left(\Gamma_{\mathcal{Q}}\right)$, we have that none of w and $w+v^{T_{t}}$ is the vector $v^{S_{t}}$. Thus, $v^{S_{t}}, v^{T_{t}}$ and a basis of $C\left(\Gamma_{\mathcal{Q}}\right)$ form a linearly independent set of size $2+(n+1)=n+3$.

In (6.1), since the 2-rank of M_{t} is 2, the 2-rank of $C\left(\Gamma_{\mathcal{Q}}\right)$ differs from that of $C\left(\Gamma_{\mathcal{Q}, t}\right)$ by at most 2 . Since $v^{S_{t}}$ and $v^{T_{t}}$ and a basis of $C\left(\Gamma_{\mathcal{Q}}\right)$ form a linearly independent set in $C\left(\Gamma_{\mathcal{Q}, t}\right)$ with size two more than the 2-rank of $C\left(\Gamma_{\mathcal{Q}}\right)$, they form a basis of $C\left(\Gamma_{\mathcal{Q}, t}\right)$.

Lemma 6.3. $C\left(\Gamma_{\mathcal{Q}, t, t}\right)=\left\langle C\left(\Gamma_{\mathcal{Q}, t, t}\right), v^{S_{t, t}}, v^{T_{t, t}}\right\rangle$ and the 2-rank of $C\left(\Gamma_{\mathcal{Q}, t, t}\right)$ is $n+3$.
Proof. The proof is similar to that of Lemma 6.2.
We now give the parameters of $C\left(\Gamma_{\mathcal{Q}, t}\right)$ and $C\left(\Gamma_{\mathcal{Q}, t, t}\right)$. Recall the upper sign of \mp is taken when if \mathcal{Q} is elliptic, and otherwise if \mathcal{Q} is hyperbolic.
Theorem 6.4. $C\left(\Gamma_{\mathcal{Q}, t}\right)$ is a $\left[2^{n} \mp 2^{\frac{n-1}{2}}, n+3,2^{t+1}\right]_{2}$-code. $C\left(\Gamma_{\mathcal{Q}, t, t}\right)$ is a $\left[2^{n} \mp 2^{\frac{n-1}{2}}, n+\right.$ $\left.3,2^{t+2}\right]_{2}$-code
Proof. The length of $C\left(\Gamma_{\mathcal{Q}, t}\right)$ and $C\left(\Gamma_{\mathcal{Q}, t, t}\right)$ are the number of vertices of their respective graphs, which is $2^{n} \mp 2^{\frac{n-1}{2}}$. Other parameters of the codes follow from Lemmas 6.2, 6.3, and Proportions 5.5, 5.6.

Theorem 6.5. The graphs $\Gamma_{\mathcal{Q}}, \Gamma_{\mathcal{Q}, 1}, \Gamma_{\mathcal{Q}, 2}, \cdots, \Gamma_{\mathcal{Q}, \frac{n-3}{2}}, \Gamma_{\mathcal{Q}, 1,1}, \Gamma_{\mathcal{Q}, 2,2}, \cdots, \Gamma_{\mathcal{Q}, m, m}$ are distinct up to isomorphism, where $m=\frac{n-3}{2}$ if \mathcal{Q} is elliptic and $m=\frac{n-5}{2}$ if \mathcal{Q} is hyperbolic.

Proof. $\Gamma_{\mathcal{Q}}$ is distinct from other graphs in the list because it has a 2-rank $n+1$ [11, Theorem 5.3] but others do not by Lemmas 6.2 and 6.3. Let Γ, Γ^{\prime} be two graphs listed above other than $\Gamma_{\mathcal{Q}}$. Let S and S^{\prime} be switching sets of $\Gamma_{\mathcal{Q}}$ such that Γ, Γ^{\prime} are obtained from $\Gamma_{\mathcal{Q}}$ with switching sets respectively S and S^{\prime}.

Suppose there is an isomorphism ϕ between Γ and Γ^{\prime}. Then ϕ induces a code isomorphism Φ between $C(\Gamma)$ and $C\left(\Gamma^{\prime}\right)$. Since Φ maps minimum word(s) of $C(\Gamma)$ to those of $C\left(\Gamma^{\prime}\right)$, we have $\Phi(S)=S^{\prime}$ by Propositions 5.5 and 5.6. Considering the size of the switching sets given in Lemma 3.1, we may assume without loss of generality that $\Gamma=\Gamma_{\mathcal{Q}, t+1}$ and $\Gamma^{\prime}=\Gamma_{\mathcal{Q}, t, t}$ for some t. By Lemma 3.2, the subgraph of $\Gamma_{\mathcal{Q}}$, and hence of Γ, with vertex set $S=S_{t+1}$ is null. But by Lemma 3.3, the subgraph of $\Gamma_{\mathcal{Q}}$, and hence of Γ^{\prime}, with vertex set $S^{\prime}=S_{t, t}$ is not null. This contradicts $\Phi(S)=S^{\prime}$, and so Γ and Γ^{\prime} are non-isomorphic.

Since we work under the assumption that $n \geq 7$ in Sections 5 and 6. Theorem 6.5 is valid under the same assumption. However, it can be checked directly that in case \mathcal{Q} is elliptic and $n=5, \Gamma_{\mathcal{Q}}, \Gamma_{\mathcal{Q}, 1}$ and $\Gamma_{\mathcal{Q}, 1,1}$ are non-isomorphic; in case \mathcal{Q} is hyperbolic and $n=5, \Gamma_{\mathcal{Q}}$ and $\Gamma_{\mathcal{Q}, 1}$ are non-isomorphic. In conclusion, for $n \geq 5$, if \mathcal{Q} is an elliptic quadric in $\operatorname{PG}(n, 2)$, then Theorems 3.A and 3.B give $n-3$ non-isomorphic graphs, other than $\Gamma_{\mathcal{Q}}$, with the same parameters as $\Gamma_{\mathcal{Q}}$, where the parameters are shown in Table 1. For $n \geq 5$, if \mathcal{Q} is a hyperbolic quadric in $\operatorname{PG}(n, 2)$, then Theorems 3.A and 3.B give $n-2$ non-isomorphic graphs, other than $\Gamma_{\mathcal{Q}}$, with the same parameters as $\Gamma_{\mathcal{Q}}$.

References

[1] Abiad, A. \& Haemers, W.H. Switched symplectic graphs and their 2-ranks. Appeared online in Des. Codes Cryptogr.
[2] Assmus, E.F. \& Key, J.D. (1992). Designs and their codes. Cambridge University Press, Cambridge.
[3] Barwick, S.G., Jackson, W-A. \& Penttila, T. New families of strongly regular graphs. Manuscript.
[4] Brouwer, A.E. \& Haemers, W.H. (2011). Spectra of graphs. Springer, New York.
[5] Cameron, P.J. \& van Lint, J.H. (1991). Designs, graphs, codes and their links, Cambridge University Press, Cambridge.
[6] Godsil, C.D. \& McKay, B.D. (1982). Constructing cospectral graphs. Aequationes Math, 25, 257-268.
[7] Haemers, W.H., Peeters, M.J.P. \& van Rijckevorsel, J.M. (1999). Binary codes of strongly regular graphs. Des. Codes Cryptogr., 17, 187-209.
[8] Hall, J.I. \& Shult, E.E. (1985). Locally cotriangular graphs. Geometriae Dedicata, 18, 113-159.
[9] Hirschfeld, J.W.P. (1979). Projective geometries over finite fields. Oxford Univ. Press.
[10] Hirschfeld, J.W.P. \& Thas, J.A. (1991). General Galois geometries. Oxford Sci. Publ., Clarendon Press.
[11] Peeters, M.J.P. (1995). Uniqueness of strongly regular graphs having minimal p-rank. Linear Algebra Appl. 226-228, 9-31.

