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Abstract  In this paper, s-PD-sets of minimum size s + 1 for partial permu- 
tation decoding for the binary linear Hadamard code Hm  of length 2m, for       
all m ≥ 4 and 2 ≤ s ≤ | 2 J ­ 1, are constructed. Moreover, recursive con- 
structions to obtain s-PD-sets of size l ≥ s + 1 for Hm+1 of length 2m+1, 
from an s-PD-set of the same size for Hm, are also described. These results    
are generalized to find s-PD-sets for the Z4-linear Hadamard codes Hγ,δ  of 
length 2m, m = γ + 2δ ­ 1, which are binary Hadamard codes (not necessarily 
linear) obtained as the Gray map image of quaternary linear codes of type        
2γ 4δ . Specifically, s-PD-sets of minimum size s + 1 for Hγ,δ , for all δ ≥ 3 and 

2 ≤ s ≤ | 2    J­1, are constructed and recursive constructions are described. 

Keywords automorphism group · permutation decoding  · PD-set  · Hadamard 
code  · Z4-linear code 

Mathematics  Subject  Classiftcation  (2010)   94B05  ·  94B35  ·  94B60 

 
1 Introduction  

 
A binary Hadamard code of length n is a binary code with 2n codewords and 
minimum distance n/2 [16, Ch.2. §3.]. It is well known that there is a unique 
binary linear Hadamard code Hm of length n = 2m, for any m ≥ 2, which is 

the dual of the extended Hamming code of length 2m and also coincides with  
the first order Reed-Muller code of the same length [16, Ch.13. §3]. Binary 
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Hadamard codes of length 2m  which are obtained as the Gray map image  of 
quaternary linear codes of length 2m­1 and type 2γ 4δ , where m = γ+2δ­1, are 

called Z4-linear Hadamard codes and denoted by Hγ,δ . These quaternary linear 
codes are called quaternary linear Hadamard codes and denoted by Hγ,δ , that 
is, Hγ,δ  = Φ(Hγ,δ ), where Φ is the Gray map. The Z4-linear Hadamard codes 

have been studied and classified in [14, 18], and their automorphism  groups 
have been characterized in [13, 17].  They  can  be  seen  as  a  generalization  of 
the binary linear Hadamard codes, since when δ ∈ {1, 2} they are linear, so 
isomorphic  to  Hm,  but  when  δ  ≥ 3  they  are  nonlinear.  In  general, Z4-linear 
codes have become important since 1994, when it was shown that several  well- 
known families of binary nonlinear codes can be simply constructed as binary 
images under the Gray map of linear codes over Z4   [9]. 

Permutation decoding is a technique introduced by Prange [19] and de- 
veloped by MacWilliams [15] for linear codes that involves finding a special 
subset, called a PD-set, of the automorphism group of a code. This method is 
described in detail in [16, Ch.16. §9.] and [7, Section 8]. 

For linear codes, in [5], it is shown how to find s-PD-sets of size s + 1 
that satisfy the Gordon-Schönheim bound for (partial) permutation decoding 
up to s errors for the binary simplex code of length 2m  ­ 1 for all m ≥ 4     

and 1 < s ≤ 
, 

2      ­1 
, 

­ 1. In [21], 2-PD-sets of size 5 and 4-PD-sets of size 
1 2 

m
 

2 (m + m + 4) are found for Hm for m ≥ 5. In [10], the method used in [21] is 
extended to find (m­ 1)-PD-sets of size 1 (m2 + m + 4) for Hm for m ≥ 5, and 
(m + 1)-PD-sets of size 1 (m3 + 5m + 12) for Hm for m ≥ 6. Small PD-sets that 

satisfy the Gordon-Schönheim bound have also been found for binary Golay 
codes [6, 22] and for the binary simplex code S4 [12]. In [2], a new permutation 
decoding method for Z4-linear codes (not necessarily linear) was introduced. 
The determination of PD-sets for those that are nonlinear remained an open 
problem. 

In this paper, following the same technique as for the binary simplex codes 
in [5], we establish similar results for binary linear and Z4-linear Hadamard 
codes. More specifically, this paper is organized as follows. In Section 3, we 
first notice that the Gordon-Schönheim bound can be adapted to systematic 
codes, not necessarily linear (see Proposition 1). Furthermore, we apply this 
result to obtain a bound fm on the maximum value of s for which s-PD-sets 
of minimum size s + 1 may be found for binary linear and Z4-linear Hadamard 
codes, which are systematic and nonlinear in general (see Proposition 2). In 
Section 4, we regard the permutation automorphism group of Hm as a certain 
subgroup of the general linear group GL(m + 1, 2) and we provide a criterion 
on subsets of matrices of this subgroup to be an s-PD-set of minimum size   
s + 1 for Hm  (see Theorem 1). Then, we give s-PD-sets of size s + 1 for all 
m ≥ 4 and 2 ≤ s ≤ | 2 J ­ 1 = fm (see Theorem 2). In Section 5, we define 
recursive constructions to obtain s-PD-sets of size l ≥ s + 1 for Hm+1 from  an 

s-PD-set of the same size for Hm  (see Propositions 3 and 4). 
Regarding the results for binary linear Hadamard codes, we remark that 

Theorem 2 has also earlier been proved independently in [11, Corollary 4],  
as it was pointed out to us by one of the referees in the review process of 
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this paper. Moreover, most of the results given in Sections 3, 4 and 5 appear 
without proofs in our conference paper [1], but the main Theorem 2 and the 
recursive construction shown in Proposition 4 are novel contributions. 

In Sections 6 and 7, we establish similar results for (nonlinear) Z4-linear 
Hadamard codes Hγ,δ  of length 2m  and type 2γ 4δ , where m = γ + 2δ ­ 1. 
They represent the first s-PD-sets for a family of nonlinear codes. Specifically, 
in Section 6, we regard the permutation automorphism group of Hγ,δ as a 

certain subset of GL(γ+δ, Z4) and we provide a criterion on subsets of matrices 
of this group to be an s-PD-set of minimum size s + 1 for Hγ,δ = Φ(Hγ,δ ) (see 
Theorem 3). Moreover, we obtain a new bound fγ,δ  on the maximum value of    
s for which s-PD-sets of minimum size s + 1 can be found for these codes by 
using this theorem (see Corollary 4). Then, for all these codes, we give s-PD- 

sets of size s + 1 for all δ ≥ 3 and 2 ≤ s ≤ | 2 J ­ 1 = f0,δ (see Theorem 4 

and Corollary 5). In Section 7, we also define recursive constructions to   obtain 

s-PD-sets of size l ≥ s + 1 for Hγ+i,δ+j , for any i, j ≥ 0, from an s-PD-set of 
the same size for Hγ,δ  (see Proposition 6 and Corollary 6). 

In Section 8, we give some computational results and a new example, which 
improve the explicit construction given by Corollary 5 for Hγ,δ with γ > 0. 
Actually, we can found easily some s-PD-sets of size s + 1 for f0,δ < s ≤ fγ,δ 

by computer search. It is also worth mentioning that most of the concepts 
and results described in this paper have been implemented as new func- 
tions in Magma extending its functionality for linear and Z4-linear codes. 
Magma version 2.22 (from May 2016) and later contains these functions by 
default [4, Chapters 158 and 162], and they can also be downloaded from 
http://ccsg.uab.cat. Finally, in Section 9, we give the conclusions. 

 
 

2 Terminology and deftnitions 
 

Let Z2  and Z4  be the rings of integers modulo 2 and modulo 4,    respectively. 

Let Zn denote the set of all binary vectors of length n and let Zn be the 
set of all n-tuples over the ring Z4. The Hamming weight wt(v) of a vector    
v ∈ Zn is the number of nonzero coordinates in v. The Hamming distance 
d(u, v) between two vectors u, v ∈ Zn  is the number of coordinates in which u 
and v differ, that is, d(u, v) = wt(u + v). Let ei  be the binary vector or n-tuple 
over Z4 with a 1 in the ith coordinate and zeros elsewhere. Let 0, 1, 2 and 3 
be the binary vectors or n-tuples over Z4 having 0, 1, 2 and 3, respectively, 
repeated in each coordinate. It will be clear by the context whether we refer 
to binary vectors or n-tuples over Z4. 

Any nonempty subset C of Zn is a binary code and a subgroup of Zn is 
2 2 

called a binary linear code. Similarly, any nonempty subset C of Zn  is a quater- 
nary code and a subgroup of Zn  is called a quaternary linear code.  Quaternary 
codes can be viewed as binary codes under the usual Gray map Φ : Zn  → Z2n 

4 2 
defined as Φ((y1, . . . , yn)) = (φ(y1), . . . , φ(yn)), where φ(0) = (0, 0), φ(1) = 
(0, 1), φ(2) = (1, 1), φ(3) = (1, 0), for all y = (y1, . . . , yn) ∈ Zn. If C is a qua- 
ternary linear code, then the binary code C = Φ(C) is said to be a Z4-linear 
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code. Moreover, since C is a subgroup of Zn, it is isomorphic to an abelian 
group Zγ × Zδ  and we say that C (or equivalently, the corresponding  Z4-linear 

2 4 

code C = Φ(C)) is of type 2γ 4δ , see for example [9], [8, Chapter 12], or [23]. 
Let C be a binary code of length n and size |C| = 2k. For a vector v ∈ 

2  and  a  set  I  ⊆ {1, . . . , n},  |I| =  k,  we  denote  the  restriction  of  v  to  the 
coordinates in I by vI  ∈ Zk and the set {vI  : v ∈ C} by CI . A set I ⊆ {1, . . . , n} 
of  k  coordinate  positions  such  that  |CI | =  2k   is  called  an  information  set 
for C. If such a set I exists, then  C  is  said  to  be  a  systematic  code.  For 
each information set I    of size k, the set {1, . . . , n}\I  of the remaining n ­ k 
coordinate positions is called a check set for C. 

Let Sym(n) be the symmetric group of permutations on the set {1, . . . , n} 
and let id ∈ Sym(n) be the identity permutation. The group operation is 
the function composition, σ1σ2, which maps any element x to σ1(σ2(x)), 
σ1, σ2 ∈ Sym(n). A σ ∈ Sym(n) acts linearly on words of Zn or Zn by permut- 

2 4 
ing  their  coordinates  as  follows:  σ((v1, . . . , vn)) = (vσ−1(1), . . . , vσ−1(n)).  The 

permutation automorphism group of C or C = Φ(C), denoted by PAut(C) or 
PAut(C), respectively, is the group generated by all permutations that pre- 
serve the set of codewords [7]. 

Let C  be a binary systematic t-error-correcting code C  with information  
set I. A subset S ⊆ PAut(C) is said to be an s-PD-set for the code C if   every 
s-set of coordinate positions is moved out of I by at least one element of S, 
where 1 ≤ s ≤ t. When s = t, S is said to be a PD-set. 

 
3 Minimum size of s-PD-sets for Hadamard  codes 

 
There is a well-known bound on the minimum size of PD-sets for linear codes 
based on the length, dimension and minimum distance of such codes that can 
be adapted to systematic codes (not necessarily linear) easily. 

 

Proposition  1  Let C be a systematic t-error-correcting code of length n,   size 
|C| = 2k and minimum distance d. Let r = n ­ k be the redundancy of C. If 
S is a PD-set for C,  then 

, 
n 
, 

n ­ 1 
,
 

, 
n ­ t + 1 

,  
. . .
,,, 

. (1) 

|S| ≥ 
r
 r ­ 1 

. . . 
r ­ t + 1 

The above inequality (1) is often called the Gordon-Schönheim bound [6, 
20]. The result given by Proposition 1 is quoted and proved for linear codes in 
[7]. We can follow the same proof, since the linearity of the code is only used to 
guarantee that the code is systematic. In [2], it is shown that Z4-linear codes   
are systematic and a systematic encoding is given for these codes. Therefore,  
the result can be applied to any Z4-linear code, not necessarily linear. 

The  Gordon-Schönheim  bound  can  be  adapted  to  s-PD-sets  for  all  s up 
to the error-correcting capability of the code. Note that the    error-correcting 
capability of any binary linear or Z4-linear Hadamard code of length n = 2m 

is tm = |(d ­ 1)/2J = 
,
(2m­1 ­ 1)/2

, 
= 2m­2 ­ 1 [16, Ch.1. §3]. Moreover, all 
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these codes are systematic and have size 2n = 2m+1. Therefore, the right-hand 

side of the bound given by (1) for s-PD-sets, for binary linear and Z4-linear 
Hadamard codes of length 2m  and for all 1 ≤ s ≤ tm,  becomes 

 

gm(s) = 
, 

2m 

2m ­ m ­ 1 

, 
2m ­ 1 

2m ­ m ­ 2 

, 
. . . 

, 
2m ­ s + 1 

,,
 

2m ­ m ­ s 

,, 
. . . . 

We compute the minimum value of gm(s) in the following lemma. 

Lemma 1  Let m be an integer, m ≥ 4. Then gm(s) ≥ s + 1 for all 1 ≤ s  ≤ 
tm = 2m­2 ­ 1. 

Proof We need to prove that gm(s) ≥ s + 1. This fact is clear, since the central 
term |(2m ­ s + 1)/(2m ­ m ­ s)| = 2, for all s ∈ {1, . . . , 2m­2 ­ 1}, and in 

each stage of the ceiling function working from inside, gm(s) increases its value 

by at least 1. HH 
The smaller the size of the PD-set is, the more efficient permutation de- 

coding becomes. In this paper, we study the simple case, when we have that 
gm(s) = s + 1. For each binary linear and Z4-linear Hadamard code of length 
2m, m ≥ 4, we  define the integer fm  = max{s   :   2 ≤ s,  gm(s) =    s + 1}, 
which represents the greater s in which we can find s-PD-sets of size s +  1. 
The following result characterize this parameter from the value of m. Note 
that for m = 3, since the error-correcting capability is t3 = 1, the permuta- 
tion decoding becomes unnecessary and we do not take it into account in the 
results. 

Proposition 2 Let m be an integer, m ≥ 4. Then, fm = , 2m  
, 

1+m 
­ 1. 

 

Proof     By Lemma 1 and an argument similar to the proof of Lemma 2 in [5]. 

HH 
 

4 Construction of s-PD-sets of size s + 1 for binary linear 
Hadamard codes 

 
For any m ≥ 2, there is a unique linear Hadamard code Hm of length 2m, which 
is also the first order Reed-Muller code with parameters [2m, m+1, 2m­1]2 [16, 
Ch.13. §3]. A generator matrix ttm  for Hm      can be constructed as follows: 

. 
1  1 

. 
ttm = 0 ttr , (2) 

where ttr is any matrix having as column vectors the 2m ­ 1 nonzero vectors 
from  Zm,  with  the  vectors  ei,  i ∈ {1, . . . , m},  in  the  first  m positions.  Note 
that ttr can be seen as a generator matrix of the simplex code of length 2m ­ 1. 

By construction, from (2), it is clear that Im = {1, . . . , m + 1} is an infor- 
mation set for Hm. Let wi be the ith column vector of ttm, i ∈ {1, . . . , 2m}. 

By labelling the coordinate positions with the columns of ttm, we can take as 
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an information set Im for Hm the first m + 1 column vectors of ttm considered 
as row vectors, that is, Im = {w1, . . . , wm+1} = {e1, e1 + e2, . . . , e1 + em+1}. 
Then, depending on the context, Im will be taken as a subset of {1, . . . , 2m} 
or {1} × Zm. 

It is known that the permutation automorphism group PAut(Hm) of Hm is 
isomorphic to the general affine group AGL(m, 2) [16, Ch.13. §9]. Let GL(m, 2) 

be the  general  linear  group  over  Z2. Recall  that  AGL(m, 2)  consists  of all 

mappings α :  Zm  → Zm  of the form α(x)  =  Ax + b for x ∈    Zm, where 
A  ∈  GL(m, 2)  and  b  ∈  Zm,  together  with  the  function  composition  as the 
group operation. The monomorphism 

ϕ : AGL(m, 2) ­→ GL(m + 1, 2) 
. 

1 b 
. 

(b, A) ­→ 0 A 
 

defines an isomorphism between AGL(m, 2) and the subgroup of GL(m + 1, 2) 
consisting of all nonsingular matrices whose first column is e1. Therefore, from 
now on, we also regard PAut(Hm) as this subgroup. Note that any matrix 
M  ∈ PAut(Hm) can be seen as a permutation of coordinate positions,    that 
is, as an element of Sym(2m). By multiplying the ith column vector wi  of ttm 

by M , we obtain another column vector wj  = wiM , which means that the ith 
coordinate position moves to the jth coordinate position, i, j ∈ {1, . . . , 2m}. 

Let M be a binary matrix with r rows and let mi  be the ith row of M , 

i ∈ {1, . . . , r}. We define M∗ as the matrix 

  
m1 

  
M∗ = 

  m1 + m2 
  

. (3) 
  

.. 
  

    
m1 + mr 

 

An s-PD-set of size s + 1 for Hm  meets the Gordon-Schönheim bound if 2 ≤ 
s ≤ fm. The following theorem provides us a condition on sets of matrices of 
PAut(Hm) in order to be s-PD-sets of size s + 1 for Hm. 

Theorem 1  Let  Hm  be  the binary linear Hadamard code  of length 2m,    with 
m ≥ 4. Let Ps  = {Mi   :  0 ≤ i ≤ s} be a set of s + 1 matrices in PAut(Hm). 
Then, Ps is an s-PD-set of size s + 1 for Hm with information set Im if and 
only if no two matrices (M­1)∗ and (M­1)∗ for i ƒ= j have a row in common. 

i j 

Moreover, any subset Pk ⊆ Ps of size k + 1 is a k-PD-set for k ∈ {1, . . . , s}. 

Proof  Suppose  that  the  set  Ps   =  {Mi     :   0  ≤ i  ≤ s} satisfies  that  no  two 
matrices (M­1)∗ and (M­1)∗ for i ƒ= j have a row in common. Let E  = 

i j 

{v1, . . . , vs} ⊆ {1} × Zm be a set of s different column vectors of the generator 
matrix ttm regarded as row vectors, which represents a set of s error positions. 
Assume we cannot move all the error positions to the check set by any element 

of Ps. Then, for each i ∈ {0, . . . , s}, there is a v ∈ E such that vMi ∈ Im. In 
other words, there is at least one error position that remains in the information 
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set Im after applying any permutation of Ps. Note that there are s + 1 values 
for i, but only s elements in E. Therefore, vMi  ∈ Im  and vMj  ∈ Im  for some 
v ∈ E  and i ƒ= j. Suppose vMi  = wr  and vMj  = wt  for wr, wt  ∈ Im. 

Then, v = wrM­1 = wtM­1. Thus, we obtain that (M­1)∗ and (M­1)∗ 
have a row 

i j i j 
in common, contradicting our assumption. Let Pk ⊆ Ps of size k + 1. If this set 
satisfies the condition on the inverse matrices and we suppose that it is not a 
k-PD-set, we arrive at a contradiction in the same way as before. 

Conversely,  suppose  that  the  set  Ps   =  {Mi     :   0  ≤ i  ≤ s} forms  an  s- 
PD-set for Hm, but does not satisfy the condition on the inverse matrices.    
Thus, some v ∈ {w1, . . . , w2m } must be the rth row of (M­1)∗ and the tth 

row of (M­1)∗ for some r, t ∈ {1, . . . , m + 1}, i, j ∈ {0, . . . , s}. In other words, 

we have that v = er(M­1)∗ = et(M­1)∗. Therefore, v = wrM­1 = wtM­1, 
i j i j 

where  wr, wt   ∈  Im,  and  thus  vMi   =  wr   and  vMj   =  wt.  These  equalities 
implies that the vector v, which represents an error position, cannot be moved 
to the check set by the permutations defined by the matrices Mi and Mj . Let 
L = {l   :   0 ≤ l ≤ s,  l ƒ= i, j}.  For  each  l ∈ L,  choose  a  row  vl  of  
(M­1)∗. It is clear that vl = eh(M­1)∗ = whM­1 for some h ∈ {1, . . . , m 
+ 1}, so 

l l 
vlMl  = wh  ∈ Im. Finally, since some of the vl  may repeat, we obtain a set 
E = {vl    :   l ∈ L} ∪ {v} of size at most s. Nevertheless, no matrix in  Ps 

will map every member of E into the check set, a fact that contradicts our 

assumption. HH 
 

Let S be an s-PD-set of size s + 1. The set S is a nested s-PD-set if    
there is an ordering of the elements of S, S = {σ0, . . . , σs}, such that Si     = 
{σ0, . . . , σi} ⊆ S  is an i-PD-set of size i + 1, for all i ∈ {0, . . . , s}. Note that 

Si  ⊂ Sj  if 0 ≤ i < j ≤ s and Ss  = S. From Theorem 1, we have two important 
consequences. The first one is related to how to obtain nested s-PD-sets and 
the second one provides another proof of Proposition 2. 

Corollary 1  Let m be an integer, m ≥ 4. If Ps  is an s-PD-set of size s  + 1 
for the binary linear Hadamard code Hm, then any ordering of the elements 
of Ps gives nested k-PD-sets for k ∈ {1, . . . , s}. 

Corollary 2  Let m be an integer, m ≥ 4. If Ps  is an s-PD-set of size s  + 1 
, 

2m  
, 

for the binary linear Hadamard code Hm, then s ≤ fm = 1+m ­ 1. 
 

Proof Following the condition on sets of matrices to be s-PD-sets of size s + 1, 
given by Theorem 1, we have to obtain certain s + 1 matrices with no rows 
in common. Note that the number of possible vectors of length m + 1 over Z2 

with 1 in the first coordinate is 2m. Thus, taking this fact into account and 
counting the number of rows of each one of these s + 1 matrices, we have that 

m 

(s + 1)(m + 1) ≤ 2m, so s + 1 ≤   2      and finally s ≤ fm. HH 
 

Next, by using Theorem 1, we give an explicit construction of s-PD-sets of 
minimum size s + 1 for Hm, for all m ≥ 4 and 2 ≤ s ≤ fm. We follow a similar 

technique to the one described for simplex codes in   [5]. 
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Lemma  2  Let K  = Z2[x]/(f (x)), where f (x) ∈ Z2[x]  is a primitive polyno- 
mial of degree m. Let α ∈ K be a root of f (x). Then αi+1 ­ αi, . . . , αi+m ­ αi 

are linearly independent over Z2 for all i ∈ {0, . . . , 2m ­ 2}. 

Proof It is straightforward to see that αi+1 ­ αi, . . . , αi+m ­ αi are linearly 
independent over Z2 for all i ∈ {0, . . . , 2m ­ 2}, if and only if α­ 1, . . . , αm ­ 1 
are linearly independent over Z2, since αi ∈ K\{0}. 

Note  that  αm  ­ 1  =  
.m­1 µjαj   for  some  µj   ∈  {0, 1}.  Moreover,  this 

summation has an odd number of nonzero terms, since f (x) is irreducible. Let m­1 j 
µ = (µ1, . . . , µm­1) ∈ Z2 . Note that in vectorial notation α  ­1 = e1 +ej+1, 

j ∈ {1, . . . , m ­ 1}, and αm ­ 1 = 
.m­1 µjej+1. Finally, it is easy to see that 

the m × m binary matrix . 
1 Idm­1 

. 
, 

0 µ 

which has as rows α ­ 1, . . . , αm ­ 1, has determinant 
.m­1 µj  = 1 ƒ= 0. HH 

For i ∈ {1, . . . , fm}, we consider the (m + 1) × (m + 1) binary matrices 
 

  
1 0  
  
  0 1  
  

N0 =    
  

  
1 α(m+1)i­1 

  
  0 α(m+1)i ­ α(m+1)i­1   
    

  .. 
  ...

 
  and   Ni =   .. 
    

..   
  

0 αm­1 
0 α(m+1)i+m­1 ­ α(m+1)i­1 

 

Theorem  2  Let Ps  = {Mi    :   0 ≤ i ≤ s}, where Mi  = N­1. Then, Ps  is an 
s-PD-set of size s + 1 for the binary linear Hadamard code Hm  of length 2m 

with information set Im, for all m ≥ 4 and 2 ≤ s ≤ fm. 

Proof Clearly, N0 ∈ PAut(Hm). By Lemma 2, Ni  ∈ PAut(Hm) for all i ∈ 
{1, . . . , fm}. The rows of the matrices N∗, . . . , N∗  , constructed as in (3), are 

0 fm 

the elements of the form (1, a) for all a ∈ {0, 1, α, . . . , αfm(m+1)+m­1}. They 
are all different, since α is primitive and fm(m + 1) + m ­ 1 ≤ 2m ­ 2. By 

Theorem 1, the result follows. HH 
 

Note 1  The construction of the matrices in Theorem 2 is virtually identical to  
a construction submitted earlier in [11, Corollary    4]. 

 

Example 1 Let H4 be the binary linear Hadamard code of length 16 with a 
generator matrix constructed as in (2). Let K = Z2[x]/(x4 + x + 1) and α be a 
root of x4 + x + 1. We have that f4 = 2.  Let 

 

  
1 α4  

  
0 α5 − α4

 

  
1 1 1 0 0 


 
0 1 0 1  0 

  
1 α9  

  
0 α10 − α9

 

  
1 0 1 0 1 



 
0 1 0 1  1 

N1 = 
  

0 α6 − α4 
  

= 
  

0 1 1 1 1 
  

and N2 = 
  

0 α11 − α9 
  

= 
  

0 0 0 1 0 


. 
                
  

0 α7 − α4 

  
0 α8 − α4

 

  
0 0 0 0 1 
  

0 0 1 1  0 

  
0 α12 − α9 

  
0 α13 − α9

 

  
0 1 0 1 0 

  
0 1 1 1  0 

.
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The matrices N0 = Id5, where Id5 is the 5 × 5 identity matrix, N1 and N2 are 
elements of PAut(H4). By Theorem 2, P2 = {N­1, N­1, N­1} is a  2-PD-set 

0 1 2 

of size 3 for H4. It is straightforward to check that the matrices N∗, 
  

1 1 1 0 0 



 1 0 1 1  0 N∗   
1 0 0  1 1 



 

  
1 0 1 0 1 



 
1 1 1 1  0 

and  N∗ = 
  

1 0 1 1 1 


 

1 =    
  2 

    
  

1 1 1 0 1 
  

1 1 0 1  0 

  
1 1 1 1 1 

  
1 1 0 1  1 

 

have no rows in common. Finally, note that no s-PD-set of size s + 1 can be 
found for s ≥ 3 since f4 = 2. 

 
5 Recursive constructions of s-PD-sets for binary linear Hadamard 
codes 

Given a matrix M ∈ PAut(Hm) and an integer κ ≥ 1, we define the matrix 

M (κ) ∈ PAut(Hm+κ) as 
 

M (κ) = 
. 

M 0 
. 

0  Idκ 
,
 

 

where Idκ denotes the κ × κ identity matrix. 

Proposition  3  Let m be an integer, m ≥ 4, and let Ps  = {Mi   :  0 ≤ i ≤ s} 
be an s-PD-set of size s + 1 for Hm with information set Im. Then, Qs  = 
{Mi(κ)  :  0 ≤ i ≤ s} is an s-PD-set of size s + 1 for Hm+κ  with information 
set Im+κ, for any κ ≥ 1. 

Proof  Since  Ps   is  an  s-PD-set  for  Hm,  matrices  (M­1)∗, . . . , (M­1)∗, con- 
1 s 

structed as  in (3), have  no rows  in  common by  Theorem 1.  Therefore,  it 
is straightforward to check that matrices (M­1(κ))∗, . . . , (M­1(κ))∗ have no 

1 s 
rows in common either. Moreover, M­1(κ) ∈ PAut(Hm+κ) for all i ∈ {1, . . . , s}. 

Thus,  applying  again  Theorem  1  and  the  fact  that  Mi(κ)­1  =  M­1(κ),  we 

have that Qs  is an s-PD-set for Hm+κ. HH 

Note that the bound fm+1 for Hm+1 cannot be achieved recursively from 
an s-PD-set for Hm, since the recursive construction given by Proposition 3 
works for a given fixed s, while increasing the length of the Hadamard code. 

Next, we show a second recursive construction which holds when the size of 
the s-PD-set is any integer l, l ≥ s + 1, unlike the first recursive construction. 
Now, the elements of PAut(Hm) will be regarded as permutations of coordinate 
positions, that is, as elements of Sym(2m) instead of matrices of GL(m + 1, 2). 

It is well known that a generator matrix ttm+1 for the binary linear Hadamard 
code Hm+1 of length 2m+1 can be constructed as follows: . 

ttm ttm 
. 

, (4) 

ttm+1 = 0 1 
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where ttm is  a  generator  matrix  for  the  binary  linear  Hadamard  code  Hm 
of length 2m. Given two permutations σ1 ∈ Sym(n1) and σ2 ∈ Sym(n2), we 
define (σ1|σ2) ∈ Sym(n1 + n2), where σ1 acts on the coordinates {1, . . . , n1} 
and σ2 on {n1 + 1, . . . , n1 + n2}. 

Proposition 4  Let m be an integer, m ≥ 4, and S be an s-PD-set of size 

l for Hm  with information set I. Then, (S|S) = {(σ|σ) : σ ∈ S} is an s- 
PD-set of size l    for Hm+1  constructed from (4), with any information set 

Ir = I ∪ {i + 2m}, i ∈ I. 

Proof  Since  I  is  an  information  set  for  Hm,  we  have  that  |(Hm)I | =  2m+1. 
Since  Hm+1  is  constructed  from  (4),  it  follows  that  Hm+1  =  {(x, x), (x, x̄)  : 
x ∈ Hm}, where x̄ is the complementary vector of x. A vector and its comple- 

m+2 

mentary have different values in each coordinate, so |(Hm+1)I∪{i})| = 2 , 
for all i ∈ {2m + 1, . . . , 2m+1}. Thus, any set of the form Ir = I ∪ {i + 2m}, 
i ∈ I, is an information set for Hm+1. 

If σ ∈ PAut(Hm), then σ(x) = z ∈ Hm for all x ∈ Hm. Therefore, since 
(σ|σ)(x, x) = (z, z) and (σ|σ)(x, x̄) = (z, z + σ(1)) = (z, z̄), we can conclude 
that (σ|σ) ∈ PAut(Hm+1). 

Let e = (a, b) ∈ Z2n, where a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Zn, and 
2 2 

n = 2m. Finally, we will prove that for every e ∈ Z2n with wt(e) ≤ s, there 
is (σ|σ) ∈ (S|S) such that (σ|σ)(e)It   = 0. Let c = (c1, . . . , cn) be the binary 
vector  defined  as  follows:  ci   =  1  if  and  only  if  ai   =  1  or  bi   =  1,  for  all 
i ∈ {1, . . . , n}. Note that wt(c) ≤ s, since wt(e) ≤ s. Taking into account 
that S  is an s-PD-set with respect to I, there is σ ∈ S  such that σ(c)I  = 0. 
Therefore,  we  also  have  that  (σ|σ)(a, b)I∪J   = 0,  where  J  = {i + n : i ∈ I}. 

The result follows trivially since I r ⊆ I ∪ J . HH 
 
6 Construction of s-PD-sets of size s + 1 for Z4-linear Hadamard 
codes 

 
A Z4-linear Hadamard code Hγ,δ of length 2m is a binary Hadamard code 
obtained as the Gray map image of a quaternary linear code of length β = 
2m­1 and type 2γ 4δ with m = γ + 2δ ­ 1 [14]. Note that they have the same 

parameters (2m, 2m+1, 2m­1)2 as the binary linear Hadamard codes. For any 
m  ≥ 3  and  each  δ  ∈ {1, . . . , 

, 
m+1 

,
},  there  is  a  unique  (up  to  equivalence) 

Z4-linear Hadamard code of length 2m. Moreover, for a fixed m, all these 
codes are pairwise nonequivalent, except for δ = 1 and δ = 2, since these 
ones are equivalent to the binary linear Hadamard code Hm of length 2m [14]. 
Therefore, the number of nonequivalent Z4-linear Hadamard codes of length 
2m is 

, 
m­1 

, 
for all m ≥ 3. Note that when δ ≥ 3, the Z4-linear Hadamard 

codes are nonlinear. 

Let Hγ,δ be the quaternary linear Hadamard code of length β = 2m­1 and 
type 2γ 4δ , where m = γ + 2δ ­ 1, and let Hγ,δ = Φ(Hγ,δ ) be the corresponding 
Z4-linear code of length 2β = 2m. A generator matrix Gγ,δ  for Hγ,δ  of   size 
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I 

 

(γ + δ) × β can be constructed by using the following recursive constructions: 
. 

Gγ,δ Gγ,δ 
. 

, (5) Gγ+1,δ = 

Gγ,δ+1 = 

0 2 
. 
Gγ,δ Gγ,δ Gγ,δ Gγ,δ 

. 
, (6) 

0 1 2 3 
 

starting from G0,1 = (1). Note that different matrices Gγ,δ are obtained, de- 
pending on the chosen order applying γ times (5) and δ ­ 1 times (6). Since all 
of them generate permutation equivalent codes, from now on, we consider the 
one constructed as follows: first, the matrix G0,δ is obtained from G0,1 by using 
recursively δ ­ 1 times (6), and then Gγ,δ is constructed from G0,δ by using γ 
times (5). Considering the rows of Gγ,δ  as elements in the group (Zβ, +),   note 
that, following this construction, the rows of order four remain in the upper 
part of Gγ,δ  while those of order two stay in the lower part. 

Example 2 The quaternary linear Hadamard code H0,3 of length 16 has gen- 
erator matrix G0,3 obtained by applying (6) two times to G0,1 = (1), where 

. 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

.
 

G0,3 = 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 . 
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 

 

An ordered set I = {i1, . . . , iγ+δ} ⊆ {1, . . . , β} of γ +δ coordinate positions 
is said to be a quaternary information set for a quaternary linear code C of 

type 2γ 4δ if |C 
δ | = 2γ 4δ . If the elements of I are ordered in such a way that 

|C{i1,...,iδ}| = 4  , then it is easy to see that the set Φ(I), defined as 

Φ(I) = {2i1 ­ 1, 2i1, . . . , 2iδ ­ 1, 2iδ, 2iδ+1 ­ 1, . . . , 2iδ+γ ­ 1}, 

is an information set for C = Φ(C). For example, the set I = {1} is a qua- 
ternary information set for H0,1, so Φ(I) = {1, 2} is an information set for 
H0,1 = Φ(H0,1). In general, there is not a unique way to obtain a quaternary 
information set for Hγ,δ . The following result provides a recursive and simple 

form to obtain such a set. 
 

Proposition 5 Let I be a quaternary information set for the quaternary lin- 
ear Hadamard code Hγ,δ  of length β  = 2m­1  and type 2γ 4δ, where m =    
γ + 2δ ­ 1. Then I ∪ {β + 1} is a quaternary information set for the codes 
Hγ+1,δ  and Hγ,δ+1, which are obtained from Hγ,δ  by applying (5) and  (6), 
respectively. 

 
Proof Since |Hγ+1,δ| = 2γ+14δ and |Hγ,δ+1| = 2γ 4δ+1, it is clear that a quater- 
nary information set for codes Hγ+1,δ  and Hγ,δ+1 should have γ +δ +1 = |I|+1 
coordinate positions. 

Taking  into account that Hγ,δ+1  is constructed from (6), we  have    that 
Hγ,δ+1 = {(u, u, u, u), (u, u + 1, u + 2, u + 3), (u, u + 2, u, u + 2), (u, u + 3, u + 

2, u + 1) : u ∈ Hγ,δ}. Vectors u, u + 1, u + 2, and u + 3 have different values 
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I∪{i} 

I∪{i} 

γ

 

in each coordinate, so |(Hγ,δ+1) | = 2γ 4δ+1 for all i ∈ {β + 1, . . . , 2β, 3β + 
1, . . . , 4β}. In particular, I∪{β +1} is a quaternary information set for Hγ,δ+1. 

A similar argument holds for Hγ+1,δ . Since Hγ+1,δ is constructed from (5), 
we have that Hγ+1,δ  = {(u, u), (u, u + 2) : u ∈ Hγ,δ}. Vectors u and u + 2 

have different values in each coordinate, so    |(Hγ+1,δ ) | = 2γ+14δ  for all 
i ∈ {β + 1, . . . , 2β}. Thus,  I ∪ {β + 1} is  a  quaternary  information  set for 
Hγ+1,δ . HH 

Although the quaternary information set I∪{β+1}, given by Proposition 5, 
is the same for Hγ+1,δ and Hγ,δ+1, the information set for the corresponding 
binary codes Hγ+1,δ and Hγ,δ+1 are different, Ir = Φ(I) ∪ {2β + 1} and Irr = 
Φ(I) ∪ {2β + 1, 2β + 2}, respectively. As for binary linear codes, we can label 
the ith coordinate position of a quaternary linear code C, with the ith column 
of a generator matrix G of C. Thus, any quaternary information set I for      
C can also be considered as a set of vectors representing the positions in I. 
Then, by Proposition 5, we have that the set Iγ,δ = {e1, e1 + e2, . . . , e1 + 
eδ, e1 +2eδ+1, . . . , e1 +2eγ+δ} is a suitable quaternary information set for Hγ,δ . 
Depending on the context, Iγ,δ will be considered as a subset of {1, . . . , β} or 
{1} × Zδ­1 × {0, 2} . 

4 

Example 3  The set I0,3 = {1, 2, 5}, or equivalently the set of vectors I0,3   = 

{(1, 0, 0), (1, 1, 0), (1, 0, 1)}, is a quaternary information set for the code H0,3 

given in Example 2. By applying (5) and (6) over  G0,3, we  obtain matrices  
G1,3 and G0,4 that generate the codes H1,3 and H0,4 of length 32 and 64, 
respectively. By Proposition 5, it follows that I0,3 ∪ {17} = {1, 2, 5, 17} is   
a quaternary information set for H1,3 and H0,4. Although the quaternary 
information set is the same for both codes H1,3  and H0,4, it is important to  
note that in terms of vectors representing these positions, we have that I1,3 = 
{(1, 0, 0, 0), (1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 2)} and I0,4 = {(1, 0, 0, 0), (1, 1, 0, 0), 
(1, 0, 1, 0), (1, 0, 0, 1)}. Finally, Ir = Φ(I0,3) ∪ {33} = {1, 2, 3, 4, 9, 10, 33} and 

Irr = Φ(I0,3) ∪ {33, 34} = {1, 2, 3, 4, 9, 10, 33, 34} are information sets for the 
Z4-linear Hadamard codes H1,3  and H0,4, respectively. 

Let C be a quaternary linear code of length β and type 2γ 4δ , and let 

C = Φ(C) be the corresponding Z4-linear code of length 2β. Let Φ : Sym(β) → 
Sym(2β) be the map defined as 

. 
2τ (i/2), if i is even, 

Φ(τ )(i) = (7) 
2τ ((i + 1)/2) ­ 1 if i is odd, 

for all τ ∈ Sym(β) and i ∈ {1, . . . , 2β}. Given a subset S ⊆ Sym(β), we 
define the set Φ(S) = {Φ(τ ) : τ  ∈ S} ⊆ Sym(2β). It is easy to see that if     
S ⊆ PAut(C) ⊆ Sym(β), then Φ(S) ⊆ PAut(C) ⊆ Sym(2β). 

Let GL(k, Z4) be the general linear group of degree k over Z4. Let L be 
the set consisting of all matrices over Z4 of the following   form: 

  
1  η  2θ 



 
  0 A 2X   , 

0 Y  B 
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where A ∈ GL(δ­1, Z4), B ∈ GL(γ, Z4), X is a matrix over Z4 of size (δ­1)×γ, 
Y  is a matrix over  Z4  of size γ × (δ ­ 1), η ∈ Zδ­1  and θ ∈  Zγ . 

4 4 

Lemma 3 The set L is a subgroup of GL(γ + δ, Z4). 

Proof We first need to check that L ⊆ GL(γ +δ, Z4), i.e., that det(M) ∈ {1, 3} 
for all M ∈ L. Note that if Mr ∈ GL(k, Z4), then M = Mr + 2R ∈ GL(k, Z4) 
for any R. Thus, since det(Mr ) ∈ {1, 3}, we have that det(M) ∈ {1, 3}, where 

  
1 η  0 



 

Mr =   0 A 0   . 
0 Y B 

It is straightforward to check that MN ∈ L for all M, N ∈ L. HH 
Let ζ be the map from Z4 to Z4 defined as ζ(0) = ζ(2) = 0, ζ(1) = ζ(3) = 1. 

This map can be extended to matrices over Z4 by applying ζ to each one   of 

their entries. Let π be the map from L to L defined as 
  

1 η 2θ  


 

π(M) =   0   A 2X   , 
0 ζ(Y ) ζ(B) 

and let π(L) = {π(M) : M ∈ L} ⊆ GL(γ + δ, Z4). By Lemma 3, it is clear 
that π(L) is a group with the operation ∗ defined as M ∗ N = π(MN ) for all 
M, N ∈ π(L). By the proof of Theorem 2 in [13], it is easy to see that the per- 
mutation automorphism group PAut(Hγ,δ ) is isomorphic to π(L). Thus, from 
now on, we identify PAut(Hγ,δ ) with this group. Recall that we can label the 
ith coordinate position of Hγ,δ with the ith column vector wi of the generator 
matrix Gγ,δ constructed via (5) and (6), i ∈ {1, . . . , β}. Therefore, again, any 
matrix M ∈ PAut(Hγ,δ ) can be seen as a permutation of coordinate positions τ  
∈ Sym(β), such that τ (i) = j  as long as wj  = wiM, i, j ∈ {1, . . . , β}. For 
any M ∈ PAut(Hγ,δ ), we define Φ(M) = Φ(τ ) ∈ Sym(2β), where Φ(τ ) is 
defined as in (7), and for any P ⊆ PAut(Hγ,δ ), we consider Φ(P) = {Φ(M) : 
M ∈ P} ⊆ Sym(2β). 

Lemma 4 Let Hγ,δ be the quaternary linear Hadamard code of length β and 
type 2γ 4δ and let P ⊆ PAut(Hγ,δ ). Then, Φ(P) is an s-PD-set for Hγ,δ with 
information set Φ(Iγ,δ ) if and only if for every s-set E of column vectors of 
Gγ,δ there is M ∈ P such that {gM : g ∈ E} ∩ Iγ,δ = ∅. 

Proof If Φ(P) is an s-PD-set with respect to the information set Φ(Iγ,δ ), then 
for every s-set E ⊆ {1, . . . , 2β}, there is τ ∈ P ⊆ Sym(β) such that Φ(τ )(E) ∩ 
Φ(Iγ,δ ) = ∅. For every s-set E ⊆ {1, . . . , β}, let Eo = {2i­ 1 : i ∈ E}. We know 
that there is τ ∈ P such that Φ(τ )(Eo) ∩ Φ(Iγ,δ ) = ∅. By the definition of Φ, 
we also have that τ (E ) ∩ Iγ,δ  = ∅, which is equivalent to the statement. 

Conversely, we assume that for every s-set E ⊆ {1, . . . , β}, there is τ ∈  
P ⊆ Sym(β) such that τ (E ) ∩ Iγ,δ = ∅. For every s-set E ⊆ {1, . . . , 2β}, let Eo 

be an s-set such that {i : ϕ1(i) ∈ E or ϕ2(i) ∈ E} ⊆ Eo, where ϕ1(i) = 2i ­ 1 
and ϕ2(i) = 2i. Since there is τ ∈ P such that τ (Eo) ∩ Iγ,δ  = ∅, we have    that 

Φ(τ )(E) ∩ Φ(Iγ,δ ) = ∅. HH 
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Let M ∈ PAut(Hγ,δ ) and let mi be the ith row of M, i ∈ {1, . . . , δ + γ}. 
We  define M∗  as the matrix where the first row is m1  and the ith row is       
m1 + mi for i ∈ {2, . . . , δ} and m1 + 2mi for i ∈ {δ + 1, . . . , δ + γ}. 

Theorem 3 Let Hγ,δ be the quaternary linear Hadamard code of type 2γ 4δ. 
Let Ps = {Mi : 0 ≤ i ≤ s} be a set of s + 1 matrices in PAut(Hγ,δ ). Then, 
Φ(Ps) is an s-PD-set of size s + 1 for Hγ,δ with information set Φ(Iγ,δ ) if and 
only if no two matrices (M­1)∗ and (M­1)∗ for i ƒ= j have a row in common. 

i j 

Proof  By Lemma 4 and an argument similar to the proof of Theorem 1. HH 

Corollary 3 Let  Ps  be  a set of s + 1  matrices in PAut(Hγ,δ ). If Φ(Ps)  is  
an s-PD-set of size s + 1 for Hγ,δ, then any ordering of elements in Φ(Ps) 
provides nested k-PD-sets for k ∈ {1, . . . , s}. 

Corollary 4  Let Ps  be a set of s + 1 matrices in PAut(Hγ,δ ). If Φ(Ps) is   an , 
2γ+2δ−2 

, 
s-PD-set of size s + 1 for Hγ,δ, then s ≤ fγ,δ  = γ+δ ­ 1. 

 

Proof Following the condition on sets of matrices to be s-PD-sets of size s + 1, 
given by Theorem 3, we have to obtain certain s + 1 matrices with no rows in 
common. Since the rows of length δ + γ must have 1 in the first coordinate, 
and elements from {0, 2} in the last γ coordinates, the number of possible 

rows is 4δ­12γ = 2γ+2δ­2. Thus, taking this fact into account and counting the 
number of rows of each one of these s+1 matrices, we have that (s+1)(γ +δ) ≤ 
2γ+2δ­2, and the result follows. HH 

We know that the Z4-linear Hadamard codes Hγ,δ of length 2m with δ = 1 
or δ = 2 are equivalent to the binary linear Hadamard codes Hm  of length  
2m [14]. However, the results given in Section 4 for these codes will always be 
better than the ones obtained by using Theorem 3, since fγ,δ  ≤ fm, where 

m = γ + 2δ ­ 1. 

Example 4 In Example 1, a 2-PD-set of size 3 for H4 is given. The code H4    

is equivalent to both Z4-linear Hadamard codes H1,2 and H3,1. However, a 2-
PD-set of size 3 is not achievable by using Theorem 3, since f1,2 = f3,1 = 1. 

Example 5 A 4-PD-set of size 5 for H5 can be constructed by Theorem 2, since 
f5 = 4. However, considering H5 as the Gray map image of H2,2 or H4,1, no 

more than a 3-PD-set of size 4 can be found by using Theorem 3, since f4,1 = 2 
and f2,2 = 3. 

 
Next, by using Theorem 3, we give an explicit construction of s-PD-sets of 

minimum size s + 1 for H0,δ , for all δ ≥ 3 and 2 ≤ s ≤ f0,δ . Let R = GR(4δ­1) 
be the Galois extension of dimension δ ­ 1 over Z4. It is known that R is 

isomorphic to Z4[x]/(h(x)), where h(x) is a monic basic irreducible polynomial 
of degree δ ­ 1. Let f (x) ∈ Z2[x] be a primitive polynomial of degree δ ­ 1. Let 
A = 2δ­1 ­ 1. There is a unique primitive basic irreducible polynomial h(x) 
dividing xA ­ 1 in Z4[x] and such that µ(h(x)) = f (x), where µ is the map that 
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performs modulo 2 to all coefficients of h(x). Let T = {0, 1, α, . . . , αA­1} ⊆ R, 
where α is a root of h(x). It is well known that any r ∈ R can be written 
uniquely as r = a + 2b, where a, b ∈ T . We take R as the ordered set: 

R = {r1, . . . , r4δ−1 } 
= {0 + 2 · 0, . . . , αA­1 + 2 · 0, . . . , 0 + 2 · αA­1, . . . , αA­1 + 2 · αA­1}. 

Since |R|/δ = f0,δ + 1, we can form f0,δ + 1 disjoints sets of R of size δ. For 

i ∈ {0, . . . , f0,δ}, we consider the δ × δ quaternary matrices 
  

1 rδi+1 



 
i =   .. ..   

N   . .   . 
1 rδ(i+1) 

Theorem 4  Let Ps  = {Mi  :  0 ≤ i ≤ s}, where Mi = N­1. Then, Φ(Ps) 
is an s-PD-set of size s + 1 for the Z4-linear Hadamard code  H0,δ  of    length 
22δ­1 = 2m with information set Φ(I0,δ ), for all δ ≥ 3 and 2 ≤ s ≤ f0,δ = fm. 

Proof We need to prove that rδi+2 ­ rδi+1, . . . , rδ(i+1) ­ rδi+1 are linearly 
independent over Z4, for all i ∈ {0, . . . , f0,δ}, in order to guarantee that Ni  ∈ 
PAut(H0,δ ). Note that these vectors are not zero divisors [9]. Since αA  = 1, 

{rδi+2 ­ rδi+1, . . . , rδ(i+1) ­ rδi+1} is one of the following three sets: 

L1 = {1, . . . , αδ­2}, 
L2 = {αk+1 ­ αk, . . . , αk+δ­1 ­ αk}, for some k ∈ {0, . . . , A ­ 1}, 
L3 = {αk+1 ­ αk, . . . , αA­1 ­ αk, ­αk + 2(bj  ­ bi), αA ­ αk + 2(bj  ­ bi), . . . , 

αk+δ­2 ­ αk + 2(bj  ­ bi)}, for some bi, bj  ∈ T  and k ∈ {0, . . . , A ­ 1}. 

The elements in L1 are clearly linearly independent over Z4. Now, we prove 
that the same property is satisfied in L2. Assume on the contrary that there are 
some λi ƒ= 0, i ∈ {1, . . . , δ­1}, such that 

. 
λi(αk+i­αk) = 0. If λi ∈ {1, 3} 

for 
at least one i ∈ {1, . . . , δ­1}, we get a contradiction. Indeed, if we take modulo 

2  in  the  previous  linear  combination,  we  obtain  that  
. 
λ̄i(ᾱk+i  ­ ᾱk)  =  0, 

where λ̄i  ∈ Z2  and at least one λ̄i  ƒ= 0. This is a contradiction by Lemma 
2. On the other hand, if λi ∈ {0, 2} for all i ∈ {1, . . . , δ ­ 1} and there is at 
least 
one λi  = 2, then 

. 
2λr (αk+i­αk) = 2[

. 
λr (αk+i­αk)] = 0, where λr  ∈ {0, 1} 

i i i 
and at least one λr = 1. Hence, 

. 
λr (αk+i ­ αk) = 2λ for some λ ∈ R, that is, 

i i 
it is a zero divisor. By taking modulo 2, we obtain a contradiction by Lemma 2. 

We  show that the elements in L3 = {v1, . . . , vδ­1} are also linearly inde- 

pendent over Z4 by using a slight modification of the previous argument. 
Suppose that there is at least one λi ƒ= 0, i ∈ {1, . . . , δ ­ 1}, such  that . 
λivi   =  0.  By  taking  modulo  2,  we  obtain  that  λ̄δ­1ᾱ   + 

. 
λ̄i(ᾱ ­ k+i 

ᾱk)  =  ᾱk[λ̄δ   1  + 
. 
λ̄ (ᾱi  ­ 1)]  =  0.  Since  ᾱk   is  a  unit,  it  follows  that 

­ i ¯ ¯ i 

λδ­1 + 
. 
λi(ᾱ   ­ 1)  =  0,  which  gives  a  contradiction  if  λi   ∈ {1, 3} for  at 

least one index, since 1, ᾱ ­ 1, . . . , ᾱδ­2 ­ 1 are linearly independent over Z2. 
If λi  ∈ {0, 2} for all i ∈ {1, . . . , δ ­ 1}, we get a contradiction by applying  a 
similar argument to the one used above. 

Finally, by construction, the matrices N∗, . . . , N∗ have no rows in common 
0 s 

and the result follows by Theorem 3. HH 
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∗ ∗ ∗ ∗

� 
0 0 Idκ 0 

� 

 

The bound fm is always attained for H0,δ despite the elements of the fm- 
PD-set belong to the subgroup Φ(PAut(H0,δ )) ≤ PAut(H0,δ ), since fm = f0,δ . 

Example 6 Let H0,3 be the quaternary linear Hadamard code of length 16 and 
type  2043.  Let  R =  Z4[x]/(h(x)),  where  h(x)  =  x2 + x + 1.  Note  that  h(x) 
is a primitive basic irreducible polynomial dividing x3 ­ 1 in Z4[x]. Let α be 
a root of h(x). Then, T = {0, 1, α, α2} and R = {r1, . . . , r16} = {0, 1, α, 3 + 
3α, 2, 3, 2 + α, 1 + 3α, 2α, 1 + 2α, 3α, 3 + α, 2 + 2α, 3 + 2α, 2 + 3α, 1 + α}. Let 
P4 = {N ­1, N­1, N­1, N­1, N­1}, where N0 = Id3, 

0 1 2 3 4 

N1 = 

. 
1 3 3 

.
 

0 3 1 
0 0 1 

, N2 = 

. 
1 2 1 

.
 

0 3 2 
0 2 1 

, N3 = 

. 
1 1 2 

.
 

0 3 1 
0 2 3 

, and  N4 = 

. 
1 2 2 

.
 

0 1 0 . 
0 0 1 

 

Note that P4 ⊆ PAut(H0,3). By Theorem 4, Φ(P4) is a 4-PD-set of size 5 for 
H0,3. Note that the matrices N∗ = Id∗ and N∗, i ∈ {1, . . . , 4}, have no rows 

in common, where 

. 
1 3 3 

.
 

0 

 

. 
1 2 1 

.
 

3 i 
 

. 
1 1 2 

.
 

 
. 

1 2 2 
.

 
N1 = 1 2 0 

1 3 0 
, N2 = 1 1 3 

1 0 2 
, N3 = 1 0 3 

1 3 1 
, and  N4 = 1 3 2 . 

1 2 3 
 
 
7 Recursive constructions of s-PD-sets for Z4-linear Hadamard 
codes 

Given a matrix M ∈ PAut(Hγ,δ ) and an integer κ ≥ 1, we   define 
  

1 η 0 2θ  


 

M(κ) = 
  0   A 0 2X   
    

0 ζ(Y )  0 ζ(B) 
 

Proposition 6 Let Ps = {M0, . . . , Ms} ⊆ PAut(Hγ,δ ) such that Φ(Ps) is 
an s-PD-set of size s + 1 for Hγ,δ with information set Φ(Iγ,δ ). Then, Qs = 
{(M­1(κ))­1, . . . , M­1(κ))­1} ⊆ PAut(Hγ+i,δ+j )  and Φ(Qs)  is an s-PD-set 

0 s 
of size s + 1  for Hγ+i,δ+j   with information set Φ(Iγ+i,δ+j ), for any i, j  ≥ 0 

such that i + j = κ ≥ 1. 

Proof Note that if M ∈ PAut(Hγ,δ ), then M(κ) ∈ GL(γ + δ + κ, Z4). Taking 

this into account, together with the fact that Idκ  can split   as 
. 
Idj  0 

.
 

Idκ = 0  Idi 
,
 

where i + j = κ ≥ 1, it is clear that M­1(κ) ∈ PAut(Hγ+i,δ+j ) and so its 
inverse. Thus, Qs ⊆ PAut(Hγ+i,δ+j ). Finally, repeated rows in the matrices 
(M­1 ∗ ­1 ∗ 

0  (κ)) , . . . , (Ms   (κ))   cannot occur, since this fact would imply  repeated 
rows in the matrices (M­1)∗, . . . , (M­1)∗ by construction. The result follows 

0 s 

from Theorem 3. HH 

.
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i

M­1 

i

 

Example 7 Let P4 = {M0, . . . , M4} ⊆ PAut(H0,3) be the set, given in Ex- 
ample 6, such that Φ(P4) is a 4-PD-set of size 5 for H0,3. By Proposition        
6, Q4 = {M­1(1))­1 : 0 ≤ i ≤ 4} is contained in both PAut(H1,3) and 
PAut(H0,4). Moreover, Φ(Q4) is a 4-PD-set of size 5 for H1,3 and H0,4. Never- 
theless, note that the construction of (M­1(1))∗ depends on the group where 

i (1) is considered. 

As for binary linear Hadamard codes, a second recursive construction con- 
sidering the elements of PAut(Hγ,δ ) as permutations of coordinate positions, 
that is as elements of Sym(2m), can also be provided. Given four permutations 
σi ∈ Sym(ni), i ∈ {1, . . . , 4}, we define (σ1|σ2|σ3|σ4) ∈ Sym(n1 +n2 +n3 +n4) 
in  the  same  way  as  we  defined  (σ1|σ2) ∈ Sym(n1 + n2)  in  Section 5. 

Proposition 7  Let S be an s-PD-set of size l for Hγ,δ  of length n and   type 
2γ 4δ with information set I. Then, (S|S) = {(σ|σ) : σ ∈ S} is an s-PD-set of 
size l for Hγ+1,δ  of length 2n and type 2γ+14δ  constructed from (5) and the 
Gray map, with any information set Ir = I ∪ {i + n}, i ∈ I. 

Proof  Since Hγ+1,δ  = {(x, x), (x, x̄) : x ∈ Hγ,δ}, where x̄ is the complementary 

vector of x, the result follows using the same argument as in the proof of 
Proposition 4. By the proof of Proposition 5, we can add any of the coordinate 

positions of {i + n : i ∈ I} to I   in order to form a suitable information set Ir 
for Hγ+1,δ . HH 

Let 2S = 21S denote the set (S|S) and, recursively, 2iS = 2(2i­1S). 
 

Corollary 5 Let Ps = {Mi : 0 ≤ i ≤ s}, where Mi = N­1. Then, 2γ Φ(Ps) 
is an s-PD-set of size s + 1 for the Z4-linear Hadamard code Hγ,δ, for all 

γ ≥ 0, δ ≥ 3 and 2 ≤ s ≤ f0,δ. 

Proof By Theorem 4 and Proposition 7, we can construct f0,δ -PD-sets of size 

f0,δ +1 for Hγ,δ , for all γ ≥ 0 and δ ≥ 3. HH 
 

Proposition 7 cannot be generalized directly for Z4-linear Hadamard   codes 
Hγ,δ+1 constructed from (6) and the Gray map. Note that if S is an s-  PD-
set for Hγ,δ , then (S|S|S|S) = {(σ|σ|σ|σ) : σ ∈ S} is not always   an 

s-PD-set  for  Hγ,δ+1,  since  in  general  (σ|σ|σ|σ)  ∈/  PAut(Hγ,δ ).  For  exam- 
ple,  σ  =  (1, 5)(2, 8, 3, 6, 4, 7)  ∈ PAut(H0,2)  ⊆ Sym(8),  but  π  =  (σ|σ|σ|σ)  ∈/ 
PAut(H0,3) ⊆ Sym(32), since π(Φ((0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3))) = 

Φ((0, 0, 0, 0, 0, 2, 0, 2, 2, 2, 2, 2, 2, 0, 2, 0)) ƒ∈ H0,3. 

Proposition 8  Let S ⊆ PAut(Hγ,δ ) such that Φ(S) is an s-PD-set of size    l 
for Hγ,δ of length n and type 2γ 4δ with information set I. Then, Φ((S|S|S|S )) = 

{Φ((τ|τ|τ|τ )) : τ ∈ S} is an s-PD-set of size l for Hγ,δ+1 of length 4n and 
type 2γ 4δ+1 constructed from (6) and the Gray map, with any information set 

Irr = I ∪ {i + n, j + n}, i, j ∈ I and i ƒ= j. 
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Proof Since Hγ,δ+1 is constructed from (6), Hγ,δ+1 = {(u, u, u, u), (u, u+1, u+ 
2, u + 3), (u, u + 2, u, u + 2), (u, u + 3, u + 2, u + 1) : u ∈ Hγ,δ}. It is easy to 
see that if τ ∈ PAut(Hγ,δ ), then (τ|τ|τ|τ ) ∈ PAut(Hγ,δ+1). 

Let σ = Φ(τ ). Finally, we need to prove that for every e ∈ Z4n with wt(e) ≤ 
s,  there  is  (σ|σ|σ|σ)  ∈  Φ((S|S|S|S ))  such  that  (σ|σ|σ|σ)(e)Itt    =  0,  where 
Irr ⊆ {1, . . . , 4n} is an information set for Hγ,δ+1  with γ + 2(δ + 1) coordinate 
positions. Using a similar argument to that given in the proofs of Propositions 4 
and 7, the result follows. Moreover, by the proof of Proposition 5, any Irr   = 

I ∪ {i + n, j + n} with i, j ∈ I and i ƒ= j is an information set for Hγ,δ+1. HH 
Corollary 6  Let S ⊆ PAut(Hγ,δ ) such that Φ(S) is an s-PD-set of size l for 

Hγ,δ  of length 2m  and type 2γ 4δ  with information set I. Then, Φ(2i+2j S)  is 
an s-PD-set of size l for Hγ+i,δ+j   of length 2m+i+2j   and type 2γ+i4δ+j   with 
information set obtained by applying recursively Proposition 5, for all i, j ≥ 0. 

 

Proof  The result comes trivially by applying Propositions 5, 7 and 8. HH 
 

8 Computational results 
 
Magma software supports the basic facilities for linear codes over finite fields, 
integer residue rings and Galois rings [4]. A new package that expands the cur- 
rent functionality for binary linear and Z4-linear codes, including functions to 
decode using different methods, has been developed by the authors. It includes 
functions to perform permutation decoding, to obtain the s-PD-sets described 
in the previous sections, and to check whether or not a set of permutations 
is an s-PD-set with respect to an information set. Magma version 2.22 (from 
May 2016) and later contains these functions by default [4, Chapters 158 and 
162], and they can also be downloaded from http://ccsg.uab.cat. 

Using the functions implemented in this package, it is possible to easily 
improve the result given by Corollary 5 for Hγ,δ  with γ > 0, that is, to obtain 
s-PD-sets of size s + 1 for f0,δ < s ≤ fγ,δ by using a nondeterministic method. 
Table  1 summarizes these computational results for the codes Hγ,δ  with 3 ≤    
δ ≤ 6 and 1 ≤ γ ≤ 5. Specifically, for each one of these codes, the values of f0,δ 

and fγ,δ are shown, together with the maximum s for which an s-PD-set of 
size s + 1 has been found. Note that all these found s-PD-sets are constructed 

by using only elements from Φ(PAut(Hγ,δ )), which is a subgroup of the whole 
automorphism group of Hγ,δ . 

Even when the nondeterministic method fails to quickly find a fγ,δ -PD- 
set of minimum size fγ,δ  + 1, the bound fγ,δ  may be attained by using    only 
elements in Φ(PAut(Hγ,δ )) as shown in Example 8. Nevertheless, we have not 
been able to generalize this example to find an explicit construction in this 
case. The monomial automorphism group MAut(Hγ,δ ) and the permutation 

automorphism group PAut(Hγ,δ ) may be considered to achieve this goal. 

Example 8 Let the ordered set R and the matrices N∗, . . . , N∗ be as in Exam- 
0 3 

ple 6. Define r̄  = (1, r) ∈ {1} × Z2  for all r ∈ R. Let P7 = {A­1 : 0 ≤ i ≤ 7}, 
4 i 
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i 

0 0 

0 2 

∗

∗

∗

∗

∗

∗

 

δ γ f0,δ s fγ,δ  δ γ f0,δ s fγ,δ 

3 1 4 6 7  5 1 50 72 84 

 2 4 10 11   2 50 116 145 

 3 4 16 20   3 50 187 255 

 4 4 26 35   4 50 312 454 

 5 4 42 63   5 50 518 818 

4 1 15 23 24  6 1 169 230 291 

 2 15 36 41   2 169 377 511 

 3 15 56 72   3 169 630 909 

 4 15 91 127   4 169 1040 1637 

 5 15 150 226   5 169 1784 2977 

Table 1  Maximum s-PD-sets found computationally for some codes Hγ,δ 

 
 

where A∗ are the following matrices: 

. 
N∗ . 

, 
. 

r̄13  2 

. 
N∗ . 

, 
. 

r̄13  0 

N1  0 
. 

, 
. 

r̄16  2 

N1  2 
. 

, 
. 

r̄16  0 

N2  0 
. 

, 
. 

r̄15  2 

N2  2 
. 

, 
. 

r̄15  0 

N3 0 
. 

, 
r̄14  2 

N3 2 
. 

. 
r̄14  0 

By Theorem 3, one can easily check that Φ(P7) ⊆ PAut(H1,3) is a 7-PD-set of 
size 8 for H1,3 of length 64 with information set Φ(I1,3) = {1, 2, 3, 4, 9, 10, 33}. 
Since f1,3 = 7, no better s-PD-sets of size s + 1 can be provided for H1,3 by 
using Theorem 3. However, an 8-PD-set of size 9 could be theoretically found 
in PAut(H1,3) since f6 = 8. 

 

9 Conclusions 
 

An alternative permutation decoding method that can be applied to Z2Z4- 
linear codes [3], which include Z4-linear codes, was presented in [2]. However, 
the determination of PD-sets for some families of Z2Z4-linear codes remained 
an open question. In this paper, s-PD-sets of minimum size s+1 for binary lin- 
ear and Z4-linear Hadamard codes are constructed. This approach establishes 
equivalent results to the ones obtained for simplex codes in [5]. For binary 
linear codes Hm and (nonlinear) Z4-linear Hadamard codes H0,δ of length 2m, 
s-PD-sets of size s + 1 with s up to the upper bound fm = f0,δ are con- 
structed. Moreover, for (nonlinear) Z4-linear Hadamard codes Hγ,δ , s-PD-sets 
of size s + 1 up to f0,δ  are given. However, it still remains to find an explicit 
construction of s-PD-sets of size s + 1 for Hγ,δ  with γ > 0 and δ ≥ 3 for 

f0,δ < s ≤ fγ,δ . 
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“The Z4-linearity of Kerdock, Preparata, Goethals, and related codes,” IEEE Trans. 
Inf. Theory 40(2), 301–319 (1994). 

10. J. D. Key, T. P. McDonough, and V. C. Mavron, “Reed-Muller codes and permutation 
decoding,” Discrete Math. 310(22), 3114–3119 (2010). 

11. J. D. Key, T. P. McDonough, and V. C. Mavron, “Improved  partial  permutation  de- 
coding for Reed-Muller codes,” Discrete Math. 340(4), 722–728   (2017). 

12. H.-J. Kroll and R. Vincenti,  “PD-sets for binary RM-codes and the codes related to 
the Klein quadric and to the Schubert variety of PG(5,2),” Discrete Math. 308(2–3), 
408–414 (2008). 

13. D. S. Krotov and M. Villanueva  “Classification of the Z2Z4-linear Hadamard codes    and 
their automorphism groups,” IEEE Trans. Inf. Theory 61(2), 887–894 (2015). 

14. D. S. Krotov, “Z4-linear Hadamard and extended perfect codes,” Electron. Note Discr. 
Math. 6, 107-112 (2001). 

15. F. J. MacWilliams,  “Permutation decoding of  systematics  codes,”  Bell System Tech.  
J. 43, 485–505 (1964). 

16. F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North- 
Holland  Publishing  Company (1977). 

17. J. Pernas, J. Pujol, and M. Villanueva,  “Characterization of the automorphism group 
of quaternary linear Hadamard codes,” Des. Codes Cryptogr. 70(1-2), 105–115 (2014). 
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