Postprint of: Barrolleta, Roland D. et al. “Partial permutation decoding for binary
linear and Z4-linear Hadamard codes” in Designs Codes and Cryptography
(2017). The final version is available at DOI 10.1007/s10623-017-0342-8

Partial permutation decoding for binary linear and
Z,-linear Hadamard codes

Roland D. Barrolleta - Merce Villanueva

Received: daté Accepted: date

Abstract In this paper, S-PD-sets of minimum size S + 1 for partial permu-

tation decoding for the binn%ry linear Hadamard code Hm of length .2’“, for
alm = 4and 2 < s £ |™J — 1, are constructed. Moreover, recursive con-

. ; 1 .

structions to obtain S-PD-sets of size | = s+ 1 for Hm+1 of length 2M*1,
from an S-PD-set of the same size for Hm, are also described. These results
are generalized to find S-PD-sets for the Za-linear Hadamard codes Hy,s of

length 2™, m = y + 26 — 1, which are binary Hadamard codes (not necessarily
linear) obtained as the Gray map image of quaternary linear codes of type
2Y4% Specifically, s-PD-sets of minimum size S+ 1 for Hy.s, for all & = 3 and

2<s< Izii]— 1, are constructed and recursive constructions are described.
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1 Introduction

A binary Hadamard code of length n is a binary code with 2n codewords and
minimum distance n/2 [16, Ch.2. §3.]. It is well known that there is a unique
binary linear Hadamard code Hm of length n = 2™, for any m =2, which is

the dual of the extended Hamming code of length 2™ and also coincides with
the first order Reed-Muller code of the same length [16, Ch.13. §3]. Binary
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Hadamard codes of length 2™ which are obtained as the Gray map image of
quaternary linear codes of length 2™~ and type 2¥ 4%, where m = y+26—1, are
called Z4-linear Hadamard codes and denoted by Hy,s. These quaternary linear
codes are called quaternary linear Hadamard codes and denoted by Hy,s, that
is, Hy,s = ®(Hy,5), where @ is the Gray map. The Za-linear Hadamard codes

have been studied and classified in [14, 18], and their automorphism groups

have been characterized in [13, 17]. They can be seen as a generalization of
the binary linear Hadamard codes, since when & € {1, 2} they are linear, so

isomorphic to Hm, but when & = 3 they are nonlinear. In general, Za-linear
codes have become important since 1994, when it was shown that several well-
known families of binary nonlinear codes can be simply constructed as binary
images under the Gray map of linear codes over Z4 [9].

Permutation decoding is a technique introduced by Prange [19] and de-
veloped by MacWilliams [15] for linear codes that involves finding a special
subset, called a PD-set, of the automorphism group of a code. This method is
described in detail in [16, Ch.16. §9.] and [7, Section 8].

For linear codes, in [5], it is shown how to find s-PD-sets of size S + 1
that satisfy the Gordon-Schonheim bound for (partial) permutation decoding

up to S errors for the binary simplex code of length 2™ — 1 for all m = 4
qnd £ <s < 25=L" — 1. In[21], 2-PD-sets of size 5 and 4-PD-sets of size

5 (M + m + 4) are found for Hm for m = 5. In [10], the method used in [21]
extended to find (M — 1)-PD-sets of size 2 (M2 +m+4) for Hm for m = 5, and

(m+1)-PD-sets of size L(M3+5m+12) tzor Hm for m = 6. Small PD-sets that
satisfy the Gordon-Schonheim bound have also been found for binary Golay
codes [6, 22] and for the binary simplex code Sa [12]. In [2], a new permutation
decoding method for Zas-linear codes (not necessarily linear) was introduced.
The determination of PD-sets for those that are nonlinear remained an open
problem.

In this paper, following the same technique as for the binary simplex codes
in [5], we establish similar results for binary linear and Z4-linear Hadamard
codes. More specifically, this paper is organized as follows. In Section 3, we
first notice that the Gordon-Schonheim bound can be adapted to systematic
codes, not necessarily linear (see Proposition 1). Furthermore, we apply this
result to obtain a bound fm on the maximum value of S for which S-PD-sets
of minimum size S+ 1 may be found for binary linear and Z4-linear Hadamard
codes, which are systematic and nonlinear in general (see Proposition 2). In
Section 4, we regard the permutation automorphism group of Hm as a certain
subgroup of the general linear group GL(m + 1, 2) and we provide a criterion
on subsets of matrices of this subgroup to be an S-PD-set of minimum size

S + 1 for Hm (see Theorem 1). Then, we give S-PD-sets of size S + 1 for all
mz2=4and2 < s < 1|+mz_] — 1 = fm (see Theorem 2). In Section 5, we define

recursive constructions tg obtain S-PD-sets of size | = s + 1 for Hm+1 from an
S-PD-set of the same size for Hm (see Propositions 3 and 4).

Regarding the results for binary linear Hadamard codes, we remark that
Theorem 2 has also earlier been proved independently in [11, Corollary 4],
as it was pointed out to us by one of the referees in the review process of

—
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this paper. Moreover, most of the results given in Sections 3, 4 and 5 appear
without proofs in our conference paper [1], but the main Theorem 2 and the
recursive construction shown in Proposition 4 are novel contributions.

In Sections 6 and 7, we establish similar resulgs for (nonlinear) Za-linear
Hadamard codes Hy,5 of length 2™ and type 2¥4°, where m =y + 28 — 1.

They represent the first S-PD-sets for a family of nonlinear codes. Specifically,
in Section 6, we regard the permutation automorphism group of Hy,5 as a

certain subset of GL(y+0, Z4) and we provide a criterion on subsets of matrices
of this group to be an S-PD-set of minimum size S + 1 for Hy,s = ®(Hy,5) (see
Theorem 3). Moreover, we obtain a new bound fy,s on the maximum value of
s for which s-PD-sets of minimum size S + 1 can be found for these codes by
using this theorem (see Corollary 4). Then, for all these codes, we give S-PD-

setsof sizes+ 1 foralld = 3and2 < s < 1?62?—LJ — 1 = fo,6 (see Theorem 4
and Corollary 5). In Section 7, we also define reursive constructions to  obtain
S-PD-sets of size | 2 s + 1 for Hy+i,6+j, for any i, j = 0, from an S-PD-set of
the same size for Hy,s (see Proposition 6 and Corollary 6).

In Section 8, we give some computational results and a new example, which

improve the explicit construction given by Corollary 5 for Hy.s with y > 0.
Actually, we can found easily some S-PD-sets of sizé S+ 1 for fo,s <s < f,5

by computer search. It is also worth mentioning that most of the concepts
and results described in this paper have been implemented as new func-
tions in Magma extending its functionality for linear and Z4-linear codes.
Magma version 2.22 (from May 2016) and later contains these functions by
default [4, Chapters 158 and 162], and they can also be downloaded from
http://ccsg.uab.cat. Finally, in Section 9, we give the conclusions.

2 Terminology and deftnitions

Let Z2 and Za be the rings of integers modulo 2 and modulo 4, respectively.

Let ZY5 denote the set of all binary vectors of length n and let Z" 4 be the

set of all n-tuples over the ring Z4. The Hamming weight wt(Vv) of a vector
v € Z"is the number of nonzero coordinates in V. The Hamming distance

d(u, v) between two vectors U, Vv € Z" is the number of coordinates in whichu
and v differ, that is, d(u, v) = wt(u + V). Let €i be the binary vector or n-tuple
over Z4 with a 1 in the ith coordinate and zeros elsewhere. Let O, 1, 2 and 3
be the binary vectors or N-tuples over Z4 having 0, 1, 2 and 3, respectively,
repeated in each coordinate. It will be clear by the context whether we refer
to binary vectors or N-tuples over Z4.

Any nonempty subset C of Z" izs a binary code and a subgroup of Z" isz

called a binary linear code. Similarly, any nonempty subset C of Z7,is a quater-
nary code and a subgroup of Z", is called a quaternary linear code. Quatern%ry
codes can be viewed as binary codes under the usual Gray map @ : Z" — Z<"

defined as @Y1, . . ., ym) = (@YD), - - - » P(yn)), where @(0) = (0, O, @(1) =

O, D,e)=01,1),93)=(,0), forally=(Y1,.-.,¥Yn) € Z”. If C is a qua-
ternary linear code, then the binary code C = @(C) is said to be a Za-linear
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code. Moreover, since C is a subgroup of.Zn it is isomorphic to an abelian
group Z; X Z45 and we say that C (or equivaléntly, the corresponding Za-linear

code C = @(O)) is of type 2Y49, see for example [9], [8, Chapter 12], or [23].
Let C be a binary code of length n and size |C| = 2X. For a vector v €

7h and a set I € {1,...,n}, |I| =k, we denote the restriction of V to the
coordinates in | by vi € Z'Z‘ andtheset{vi:veC}byCi.Asetl €{1,...,n}
of k coordinate positions such that |Ci| = 2¥ is called an information set
for C. If such a set | exists, then C is said to be a systematic code. For
each information set | of size k, the set {1, . . ., n}¥l of the remaining n — Kk
coordinate positions is called a check set for C.

Let Sym(n) be the symmetric group of permutations on the set {1, . . ., n}

and let id € Sym(n) be the identity permutation. The group operation is
the function composition, 0102, which maps any element X to 01%02(x)),

01, 02 € Sym(n). A 0 € Sym(n) acts linearly on words of Z" or 4Z by permut-
ing their coordinates as follows: g((v1,...,Vn)) = (Vo-1(1),---,Vo-1(n)). The

permutation automorphism group of C or C = @(C), denoted by PAut(C) or
PAut(C), respectively, is the group generated by all permutations that pre-
serve the set of codewords [7].

Let C be a binary systematic t-error-correcting code C  with information
set I. A subset S € PAut(C) is said to be an s-PD-set for the code C if every

s-set of coordinate positions is moved out of | by at least one element of S,
where 1 £ s < t. Whens =1, S is said to be a PD-set.

3 Minimum size of s-PD-sets for Hadamard codes

There 1s a well-known bound on the minimum size of PD-sets for linear codes
based on the length, dimension and minimum distance of such codes that can
be adapted to systematic codes (not necessarily linear) easily.

Proposition 1 Let C be a systematic t-error-correcting code of length n, size
|C| = 2kand minimum distance d. Let r = n — k be the redundancy of C. If
Sis a PD-set for C, then

'n'n—p’ =t 1)

|5|2r r—1 7 or—t+1

The above inequality (1) is often called the Gordon-Schonheim bound [6,
20]. The result given by Proposition 1 is quoted and proved for linear codes in
[7]. We can follow the same proof, since the linearity of the code is only used to
guarantee that the code is systematic. In [2], it is shown that Zs-linear codes
are systematic and a systematic encoding is given for these codes. Therefore,
the result can be applied to any Zs-linear code, not necessarily linear.

The Gordon-Schonheim bound can be adapted to s-PD-sets for all S up
to the error-correcting capability of the code. Note that the error-correcting

capability of any bingry linear or Z4—hnear Hadamard code of length n=2™
istm=|(d—1)/2J="2™" 1 = 1)/2'=2m"2—1[16,Ch.1. §3]. Moreover, all



Partial permutation decoding for binary linear aadinear Hadamard codes 5

these codes are systematic and have size 2n = 2™*1, Therefore, the right-hand

side of the bound given by (%P for s-PD-sets, for binary linear and Za-linear
Hadamard codes of length 2™ and for all 1 < s < tm, becomes

, Toom—1 * Tom_gy1’7 7
Om(sS)= om
2M—m—1 2M—m-—2 2M—m-—s

We compute the minimum value of gm(S) in the following lemma.

Lemma 1 Let m be an integer, m = 4. Thengm(s) 2 s+ 1foralll1 <s <
tm=2M"2 —1.

Proof We need to prove that 9m(S) = s+1. This fact is clear, since the central
term |Q™ —s+ D/Q™ —m—s)| =2, foralls € {1,...,2™ 2 — 1} and in
each stage of the ceiling function working from inside, gm(S) increases its value
by at least 1. H

The smaller the size of the PD-set is, the more efficient permutation de-
coding becomes. In this paper, we study the simple case, when we have that
gdm(S) = s + 1. For each binary linear and Z4-linear Hadamard code oflength
2™ m = 4, we define the integer fm = max{s : 2<s, gm(S)= S+ 1},
which represents the greater S in which we can find S-PD-sets of size S + 1.
The following result characterize this parameter from the value of m. Note
that for m = 3, since the error-correcting capability is t3 = 1, the permuta-
tion decoding becomes unnecessary and we do not take it into account in the
results.

Proposition 2Let m be an integer, m = 4. Then, fm= Tgm T 1.

Proof By Lemma 1 and an argument similar to the proof of Lemma 2 in [5].
H

4 Construction of s-PD-sets of sizes + 1 for binary linear
Hadamard codes

For any m = 2, there is a unique linear Hadamard code Hm of length 2™, which

is also the first order Reed-Muller code with parameters [2™, m+1, 2™~ 112 [16,
Ch.13. §3]. A generator matrix ttm for Hm  can be constructed as follows:

ttm= Q¢ - ©)

where tt” is any matrix having as column vectors the 2™ — 1 nonzero vectors
from sz, with the vectors €i, i € {1,...,m}, in the first m positions. Note
that tt" can be seen as a generator matrix of the simplex code of length 2™ — 1.

By construction, from (2), it is clear that Im ={1,...,m+ 1} is an infor-
mation set for Hm. Let wi be the ith column vector of ttm, i € {1,...,2M}.

By labelling the coordinate positions with the columns of ttm, we can take as
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an information set Im for Hm the first m + 1 column vectors of ttm considered

as row vectors, that is, Im={W1, ..., Wm+1} ={€1,e1+€2,...,e1+em+1/.
Then, depending on the context, Im will be taken as a subset of {1,...,2M}
or{1}xZM.

It is kndwn that the permutation automorphism group PAut(Hm) of Hm is
isomorphic to the general affine group AGL(mM, 2) [16, Ch.13. §9]. Let GL(m, 2)

be the general linear group over Zz. Recall that AGL(mM, 2) consists of all
mappings a : Z% — Z% of the form a(X) = AX +bforx € Z9, where
A € GL(M,2) and b € ,Z™, together with the function composition as the
group operation. The monomorphism
¢ : AGL(m,2) —> GL(m + 1, 2)
“1p"
OA
defines an isomorphism between AGL(M, 2) and the subgroup of GL(M+1,2)
consisting of all nonsingular matrices whose first column is €1. Therefore, from
now on, we also regard PAut(Hm) as this subgroup. Note that any matrix
M € PAut(Hm) can be seen as a permutation of coordinate positions, that
is, as an element of Sym(2™). By multiplying the ith column vector Wi of ttm
by M, we obtain another column_vector wj, = wiM, which means that the_ith
coordinate position moves to the jth coordinate position, i,] € {1,...,2M}.
Let M be a binary matrix with r rows and let m;i be the ith row of M

b,A  —

i€ {l1,...,r} Wedefine M* as the matrix
r my ms> [}
M* — Ifﬁl (3)
= =
mi J; mr

An s-PD-set of size S+ 1 for Hm meets the Gordon-Schonheim bound if 2 <
S < fm. The following theorem provides us a condition on sets of matrices of
PAut(Hm) in order to be s-PD-sets of size S + 1 for Hm.

Theorem 1 Let Hn be the binary linear Hadamard code of length 2™,  with
m = 4. Let Ps = {M; : 0 <i < s} be aset of s+ 1 matrices in PAut(Hm).

Then, Ps is an s-PD-set of size s + 1 for Hy with information set Im if and

only if no two matrices (M~ 1)* and (M_1)* for i £=j have a row in common.
i ]

Moreover, any subset Px € Psof size k + 1 is a k-PD-setfork € {1,...,s}.

Proof Suppos_elthat the set 1Ps = {Mi : 0 < i < s} satisfies that no two
matrices (Mi )* and (Mj )* for i f=] have a row in common. Let E =

{vi,...,Vs} € {1} X ZMbe a set of s different column vectors of the generator
matrix ttm regarded as row vectors, which represents a set of S error positions.
Assume we cannot move all the error positions to the check set by any element
of Ps. Then, for each i € {0, ..., s}, thereis aVv € E such that VMi € Im. In
other words, there is at least one error position that remains in the information
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set Im after applying any permutation of Ps. Note that there are S + 1 values
for i, but only s elements in E. Therefore, VMi € Im and VMj € Im for some

v € E and i f= j. Suppose VMi = wr and VMj = w; for Wr, Wt € Im.

Then, Vv = wiM™! = wMm™?! . Thus, we obtam that (M~ )* and (M_l)*
have aToy

1n common, contrad1ct1ng our assumptlon Let Pk C Psof 8126 kK + 1. If this set
satisfies the condition on the inverse matrices and we suppose that it is not a
k-PD-set, we arrive at a contradiction in the same way as before.

Conversely, suppose that the set Ps = {Mi : 0 < i £ s} forms an s-
PD-set for Hm, but does not satisfy the condition on the 1nverse matrices.
Thus, some V € {wi1, ..., wam } must be the rth row of (M ) and the tth
row of(M L forsomer,t € {1,...,m+1},i i,j € {0,. S} In other words,
we have that v =e(M; Lyx = et(Mj_l)*. Therefore, v = WrMi_1 = th\/lj_l,
where Wr, Wt € Im, and thus VMi = wr and VMj = wt. These equalities
implies that the vector Vv, which represents an error position, cannot be moved
to the check set by the permutations defined by the matrices Mij and M;j . Let

L—{I : 0 1<s, | f=i,j}. For each Ie L, choose a row Vi of
(M™H* Tt is clear that vi= en(M™1)* = waM ™! for some h € {1, . . ' m
+ 1}, so

VIM| = Wh € Im. Finally, smce some of the vi may repeat, we obtain a set
E={wvi : | €L} v {v} of size at most S. Nevertheless, no matrix in Ps
will map every member of E into the check set, a fact that contradicts our
assumption. H

Let S be an S-PD-set of size S + 1. The set S is a nested s-PD-set if
there is an ordering of the elements of S, S = {00, .. ., Os}, such that Si =

{00,...,0i} € S is an i-PD-set of size i + 1, for all i € {0,...,s}. Note that
Si C SJ if0<i<j <£sand Ss=S. From Theorem 1, we have two important
consequences. The first one is related to how to obtain nested S-PD-sets and

the second one provides another proof of Proposition 2.

Corollary 1 Let m be an integer, m = 4. If Ps is an s-PD-set of size s + 1

f(%rptggleler]saryegpee(fk HP]%glgggg?grclg%e Hm, then 3ny ordering of the elements

Corollary 2 Let m be an integer, m > 4. If Ps is an s-PD-set of size s + 1

m

forthe binary linear Hadamard code Hm, thens < fim = 12+ﬁ - 1.

Proof Following the condition on sets of matrices to be s-PD-sets of size S+1,
given by Theorem 1, we have to obtain certain S + 1 matrices with no rows
in common. Note that the number of possible vectors of length m+ 1 over Z>2
with 1 in the first coordinate is 2™. Thus, taking this fact into account and
counting the number of rows of each one of these S+ 1 matrices, we have that

S+1D(M+1)<2M sos+1< —-nand finally s £ fm. H

~ Next, by using Theorem 1, we give an explicit construction of s-PD-sets of
minimum size S+ 1 for Hm, forallm = 4 and 2 < s < fm. We follow a similar

technique to the one described for simplex codes in  [5].
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Lemma 2 Let K = Zz[X]/(f(x)), where f(X) € Z[X] is a primitive polyno-

mial of degree m. Let a € K be a root of f(X). Then a'+1 —d,...,dtm—¢g
are linearly independent over Z; for alli € {0,.. -2}
Proof 1t is straightforward to see that a*! — dl, . . ., ™ — o' are linearly

independent over Z2 for alli € {0,...,2Mm =2}, ifandonlyifa—1,...,aMm—1

are linearly independent over Z2, since a' € K¥{0}.
m-—1

Note that @™ — 1 = _] . Mjad for some Mj € {0,1}. Moreover, this
summation has an odd jumber of nonzero terms, since f(X) is irreducible. Let
M= (HU1,...,Mm-1) € Z; . Note that in vectorial notation & —1 = €1+€j+1,
je{l,....m=—1},anda™—-1= " rjnz_ll Mjej+1. Finally, it is easy to see that
the m X m binary matrix

1 Idm—l
0 n '
which has as rows @ — 1,...,a™ — 1, has determinant rjnz_ll Mj=1f=0. H
Forie{l,...,fm}, we consider the (m+ 1) X (m + 1) binary matrices
: (m+1)i—1
1 0 ] 1 al 3
. 0 ag(m+1)i — g(m+1)i—-1
0 1
No =
0 . : and Ni= . . :
0 am-1 0 gm+1)i+m=1 _ g(m+1)i-1

Theorem 2 Let Ps = {Mi : 0 <i < s}, where Mj = N~ ~1 Then, Ps is an
s-PD-set of size s + 1 for the bmary I|near Hadamard code Hm of length 2™

with information set I, forallm = 4and 2 < s < fin.
Proof Clearly, No € PAut(Hm). By Lemma 2, Ni € PAut(Hm) foralli €
{1,...,fm}. The rows of the matrices N , N: constructed as in (3), are

the elements of the form (1,a) for all a E {O 1,a,...,afmMm+)+m=11 Thay
are all different, since a is primitive and fm(m + 1) +m-—1<2Mm-2 By

Theorem 1, the result follows. H

Note 1 The construction of the matrices in Theorem 2 is virtually identical to
a construction submitted earlier in [11, Corollary  4].

Example 1 Let Ha be the binary linear Hadamard code of length 16 with a
generator matrix constructed as in (2). Let K = Za[x)/(x* + x + 1) and a be a
root of X* + X + 1. We have that f4 = 2. Let

. . 11100 . 0 10101
1 .a . 1 .a 0101 1
*0a%—a* * ‘01010.° *0g%-a° " : :
Ni=, 0a®-a* =, 011%1; and N2 =, Oal'l-a? = 00010 .
T 0d’-a* 00001 " 0a2-a 01010

01110
0a® - a* 00110 0ald-a°
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The matrices No = Ids, where Ids is the 5 >< 5 1fient1t§/ matpx N1 and N2 are
elements of PAut(Ha4). By Theorem 2, P2 = } 1s a 2-PD-set

of size 3 for Ha. It is straightforward to check that the matrlces N,

11100 . 10103
and N*= 1 11
N* 0319
1= 2
11101 T11111
11011
1101 0

have no rows in common. Finally, note that no s-PD-set of size S + 1 can be
found for s = 3 since f4 =2

5 Recursive constructions oks-PD-sets for binary linear Hadamard
codes

Given a matrix M € PAut(Hm) and an integer K = 1, we define the matrix
M (k) € PAut(Hm+x) as

M@ = (Mc?-’
K

where Idk denotes the kK X K identity matrix.

Proposition 3 Let m be an integer, m > 4, and let Ps ={Mi : 0 <i<s}
be an s-PD-set of size s + 1 for Hyn with information set Im. Then, Qs =
{Mi(k) : 0 < i < s}isans-PD-set of size s + 1 for Hm+« with information
set Im+x, forany k > 1.

Proof Since Ps is an s-PD-set for Hm, matrices (M_ll)*, ., (MTYH* con-
structed as in (3), have no rows in common by Theorem 1. Thgrefore it
1s straightforward to check that matrlces (M~ (K)) , (M~ 1(k))* have no
rows in common either. Moreover, M (K) € PAut(Hm+K) for alli € { 1 ,S}.
Thus, applying again Theorem 1 and the fact that Mi(k)™! = M} (K), we
have that Qs is an s-PD-set for Hm+«. H

Note that the bound fm+1 for Hm+1 cannot be achieved recursively from
an s-PD-set for Hm, since the recursive construction given by Proposition 3

works for a given fixed S, while increasing the length of the Hadamard code.
Next, we show a second recursive construction which holds when the size of
the s-PD-set is any integer I, | = s+ 1, unlike the first recursive construction.

Now, the elements of PAut(Hm) will be regarded as permutations of coordinate
positions, that is, as elements of Sym(2™) instead of matrices of GL(M+1,2).
It is well known that a generator matrix ttm+1 for the binary linear Hadamard
code Hm+1 of length 2™*1 can be constructed as follows:
ttm ttm ’ )

ttm+1 = 0 1
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where ttmis a generator matrix for the binary linear Hadamard code Hm
of length 2™M. Given two permutations 01 € Sym(ni) and 02 € Sym(n2), we

define (01]|02) € Sym(ni + n2), where 01 acts on the coordinates {1,...,N1}
and o2 on {N1+1,...,Nn1+n2}.

Proposition 4 Let m be an integer, m = 4, and S be an s-PD-set of size

| for Hn with information set I. Then, (S|S)={(g|o): 0 € S} isans-
PD-set of size | for Hn+1 constructed from (4), with any information set

=10 {i+2"} i€l

Proof Since | is an information set for Hm, we have that |[(Hm)i| = 2M+1,
Since Hm+1 is constructed from (4), it follows that Hm+1 = {(X, X), (X, X) :
X € Hm}, where X is the complementary vector of X. A vector and its comrgle-
mentary have different values in each coordinate, so I(Hm+1)| i Dl =
foralli € {2™+1,...,2™*1 2 Thus, any set of the form I" = I U U {i+ 2m}
i €l,isan 1nformat1on set for Hm+1.

If o € PAut(Hm), then 0(X) = z € Hm for all X € Hm. Therefore, since
(0]0)(X, X) = (z, 2) and (0]|0)(X, X) = (z, Z + 0(1)) = (Z, Z), we can conclude
that (o|0) € PAut(Hm+1)

Lete=(a, b) € Z " wherea=(ai,...,an),b=(b1,...,bn) € Z;,and
N = 2™ Finally, we W111 prove that for every € € ZZ2n with wt(e) < s, there
is (0]o) € (S|S) such that (alo)(e)ir = 0. Letc=(ci, . . ., Cn) be the binary
vector defined ag follows: ¢i = 1 if and only if @ = 1 or bi = 1, for all
i€ {l1,...,n} Note that Wt(C) < s, since wt(e) < s. Taking into account
that S is an s-PD-set with respect to I, there is 0 € S such that o(c)1 = 0.
Therefore, we also have that (0]o)(a, b)|uJ =0, where J ={i+n:ie€l}

The result follows trivially since 1" € 1 U J. H

6 Construction of s-PD-sets of sizes + 1 for Z4-linear Hadamard
codes

A Za-linear Hadamard code Hy,s of length 2™ is a binary Hadamard code
obtained as the Gray map image of a quaternary linear code of length 8 =
2M=1 and type 2¥ 4% with m = y + 28 — 1 [14]. Note that they have the same
parameters (2™, 2M+1, 2M=1)5 45 the binary linear Hadamard codes. For any
m = 3 and each § € {1,..., ’m—;l’}, there is a unique (up to equivalence)
Z4-linear Hadamard code of length 2™. Moreover, for a fixed m, all these
codes are pairwise nonequivalent, except for 6 = 1 and & = 2, since these
ones are equivalent to the binary linear Hadamard code Hm of length2™ [14].
Therefore, the number of nonequivalent Z4-linear Hadamard codes of length
2Mis m= L’ for all m = 3. Note that when & = 3, the Z4-linear Hadamard
codes are nonhnear

Let Hy.5 be the quaternary linear Hadamard code of length 8 = 2™~1 and
type 2¥4%, where m = y+26 — 1, and let Hy,6 = @(H.5) be the corresponding
Za-linear code of length 28 = 2™. A generator matrix Gy,s for Hy,s of size
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(y + 6) X B can be constructed by using the following recursive constructions:
. Gy 5Gys -

y 5
C';y+1,6= 0 2 ( )
"G,5G,5G,5Gy5
G = y,6 Fy,6 Yy,6 Yy,0
y.6+1 o 1 a0 s ©)

starting from Go,1 = (1). Note that different matrices Gy,s are obtained, de-
pending on the chosen order applying Yy times (5) and & — 1 times (6). Since all

of them generate permutation equivalent codes, from now on, we consider the
one constructed as follows: first, the matrix Go,sis obtained from Go,1 by using

recursively © — 1 times (6), and then Gy,s is constructed from Go,s by using ¥
times (5). Considering the rows of Gy,s as elements in the group (ZB , 4+), note

that, following this construction, the rows of order four remain in the upper
part of Gy,5 while those of order two stay in the lower part.

Example 2 The quaternary linear Hadamard code Ho,3 of length 16 has gen-
erator matrix Go,3 obtained by applying (6) two times to Go,1 = (1), where

"1111111111111111
Gos= 0123012301230123.
0000111122223333

An ordered set I = {i1,...,iy+s} € {1,...,B} of y+0 coordinate positions
is said to be a quaternary information set for a quaternary linear code C of

type 2¥42if |Cg| = 2¥ 49 If the elements of I are ordered in such a way that
ICsis....is3] =4 , then it is easy to see that the set @), defined as

&) ={2i1 — 1, 21, ..., 25— 1, 2is, 2i5+1 — 1, . . ., 2is+y — 1},

is an information set for C = @(C). For example, the set I = {1} is a qua-
ternary information set for Ho,1, so @) = {1, 2} is an information set for
Ho,1 = @(Ho,1). In general, there is not a unique way to obtain a quaternary
information set for Hy,s. The following result provides a recursive and simple
form to obtain such a set.

Proposition 5Let I be a quaternary information set for the quaternary lin-
ear Hadamard code Hys of length 8 = 2™~! and type 2¥ 4%, where m =
y+20—1.ThenIvu {B+1}is aquaternary information set for the codes
Hy+1,6 and Hy,5+1, which are obtained from H,,s by applying (5) and (6),
respectively.

Proof Since |Hy+1,5] =2Y*14%and |Hy.5+1| =2Y4%*1 itisclearthataquater-
nary information set for codes Hy+1,6 and Hy,5+1 should have y+0+1 = |I|+1
coordinate positions.

Taking into account that Hy,s+1 is constructed from (6), we have that
Hys+1i={(u,u,u,u), U,u+1L,u+2,u+3),U,U+2, U U+2), U, u+3, U+

2,u+1)y:ue€ Hys}t. Vectors u, U + 1, u+ 2, and u + 3 have different values
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m each coordinate, so |(Hy,5+1)o¢izl =2v4%* L for alli € {B+1,...,2B, 38+
,4B}. In partlcular Tu{B + 1}} is a quaternary information set for Hy,s+1.
A similar argument holds for Hy+1,s. Since Hy+1,s5 is constructed from (5),
we have that Hy+1,6 = {(u, u), (U, U +2):u € Hys}. Vectors U and U +2

have different values in each coordinate, so  |(Hy+1,6) roqiz| = 2Y* 149 for all

ie{B+1,..., 2B}. Thus, I U {B+ 1} is a quaternary information set for
Hyi16. H

Although the quaternary information set IU { 8+1}, given by Proposition 5,
is the same for Hy+1,6 and Hy,5+1, the information set for the corresponding
binary codes Hy+1,6 and Hy,s+1 are different, I" = @) U {28+ 1} and I'" =
D) U {2B+1,2B+2}, respectively. As for binary linear codes, we can label
the ith coordinate position of a quaternary linear code C, with the ith column
of a generator matrix G of C. Thus, any quaternary information set I for
C can also be considered as a set of vectors representing the positions in 1.

Then, by Proposition 5, we have that the set Iy,s= {e1,e1+ €2, ..., €1+
86 e1+2es5+1,..., e1+2ey+s} isasuitable quaternary information set for Hy,s.

endn%g on the context, Iy,5 will be considered as a subset of {1,...,8} or
{ 1 x {0, 3 .

Example 3 The set Io,3 = {1, 2, 5}, or equivalently the set of vectors [o,3 =
{(1,0,0),(1,1,0), (1,0, 1}, is a quaternary information set for the code Ho,3
given in Example 2. By applying (5) and (6) over Go,3, we obtain matrices
G1,.3 and Go4 that generate the codes H1,3 and Ho.4 of length 32 and 64,
respectively. By Proposition 3, it follows that Io,3 Y {17} = {1, 2, 5, 17} is

a quaternary information set for H1,3 and Ho,4. Although the quaternary
information set is the same for both codes H1,3 and Ho.a4, it is important to
note that in terms of vectors representing these positions, we have that [1,3 =
{(1,0,0,0),(,1,0,0), (1,0, 1,0, (1,0,0, 2)} and Io.a = {(1, 0, 0, 0), (1, 1, 0, 0),
(1,0,1,0), (1,0, 0, D} Finally, I"= @0,3) V {33} ={1,2,3,4,9, 10, 33} and
"= ®o,3) Y {33,34} ={1,2,3,4,9, 10, 33, 34} are information sets for the
Z4-linear Hadamard codes H1,3 and Ho,4, respectively.

Let C be a quaternary linear code of length 8 and type 2Y4°, and let

C = @(C) be the corresponding Z4-linear code of length 28. Let @ : Sym(B8) —
Sym(28) be the map defined as
T21(i/2), if iiseven, 7
DY) = . L D
21 ((i + D/2) — 1 if i is odd,
forallT € Sym(B) andi € {1,..., 2B}. Given a subset S € Sym(B), we
define the set @(S) = {P(T) : 7 € S} S Sym(?2B). It is easy to see that if
S € PAut(C) € Sym(B), then ®(S) € PAut(C) € Sym(2B).
Let GL(K, Z4) be the general linear group of degree K over Za. Let L be

the set consisting of all matrices over Z4 of the following form:

1n 26

*0A2X®
OY B
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where A € GL(6—1, Z4), B € GL(y, Za), X is %g}atrix over Za of size (6—1) Xy,
Y is a matrix over Z4 of sizey X (6 — 1),n € Z . and@e Z'.

Lemma 3The set L is a subgroup of GL(y + 0, Za).

Proof We first need to check that L € GL(y+9, Z4), i.c., thatdet(M) € {1,3}
for all M € L. Note that if M" € GL(K, Z4), then M = M"+2R € GL(k, Za)
for any R. Thus, since det(tM") € {1 ,.3}, we hgwe that det(M) € {'1,3}, where

1noO
M =° 0A0" .
oYyB
It is straightforward to check that MN € L for all M,N € L. H

Let ¢ be the map from Z4 to Za4 defined as {(0) = {(2) =0,4(1) =4(3) = 1.
This map can be extended to matrices over Z4 by applying { to each one of
their entries. Let 17 be the map from L to L defined as

1 n 26
mM="0 A 2X°,
04(Y ) ¢(B)

and let m(L) = {m(M): M € L} € GL(y + 0, Z4). By Lemma 3, it is clear
that (L) is a group with the operation * defined as M * N = m(MN ) for all
M, N € m(L). By the proof of Theorem 2 in [13], it is easy to see that theper-
mutation automorphism group PAut(Hy,5 ) is isomorphic to mm(L). Thus, from
now on, we identify PAut(Hy,5 ) with this group. Recall that we can label the
ith coordinate position of Hy,s with the ith column vector wi of the generator
matrix Gy,s constructed via (5) and (6),1 € {1, ..., B}. Therefore, again, any
matrix M € PAut(Hy,s) can be seen as a permutation of coordinate positions T
€ Sym(B), such that 7(i) = j as long as wj = wiM, i,j € {1,..., B}. For
any M € PAut(Hy,5), we define @M) = O(1) € Sym(2B), where P(T ) is
defined as in (7), and for any P € PAut(Hy,5), we consider @(P) = { ®(M) :
M e P} € Sym(2B).

Lemma 4 Let Hy,5 be the quaternary linear Hadamard code of length 8 and
type 2" 4% and let P € PAut(Hy,5). Then, ®(P) is an s-PD-set for Hy s with
information set @(Iy,s) if and only if for every s-set E of column vectors of
Gysthereis M € P suchthat {gM:ge E} n1,5=C.

Proof If @(P) is an s-PD-set with respect to the information set ©(y,5 ), then
for every s-setE € {1,..., 2B}, thereis T € P € Sym(B) such that @(1)(E) N
@,5)=D.Forevery s-set E € {1,...,B},letEo={2i—1:i € E}. Weknow
that there is T € P such that @(7 )(Eo) N ®y.5) = . By the definition of P,
we also have that 7 (E ) N I,s = @, which is equivalent to the statement.
Conversely, we assume that for every s-set E € {1, ..., B}, thereis T €
P € Sym(PB) such that T(E) N I,,5 = D. For every S-set E € {1,..., 2B}, let Eo
be an S-set such that {i: ¢1(i) € E or ¢2(i)) € E} € Eo, where ¢1(i) =2i — 1
and ¢2(i) = 2i. Since there is T € P such that 7 (Eo) N Iys = O, we have  that

O(rYE)N Oy .5) = 0. H
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Let M € PAut(Hy,s) and let mi be the ith row of M, i € {1,...,0+y}.
We define M* as the matrix where the first row is m1 and the ith row is
mi+mifori € {2,...,0}andmy +2mjfori € {0+1,...,0+y}

Theorem 3Let H, s be the quaternary linear Hadamard code of type 2V 49.
LetPs= {M;:0< i < s} bea setofs + 1 matrices in PAut(Hy,5). Then,

®(Ps) is an s-PD-set of size s+1 for H quth information set ®(ly,5) if and
only if no two matrices (M H* and (MV )*fori f=j have arow |n common.

Proof By Lemma 4 and an argument similar to the proof of Theorem 1. H

Corollary 3 Let Ps be a setof s + 1 matrices in PAut(Hy,5). If ®(Ps) is
an s-PD-set of size s + 1 for Hy,5, then any ordering of elements in @(Ps)
provides nested k-PD-setsfork € {'1,...,s}.

Corollary 4 Let Ps be a set of s + 1 matrices in PAut(Hy,s). If @(Ps)is an
7 oy+25-2 "7
s-PD-set of size s + | for Hys, thens < fys = —— — 1.

Proof Following the condition on sets of matrices to be S-PD-sets of size S + 1,
given by Theorem 3, we have to obtain certain S + 1 matrices with no rows in

common. Since the rows of length & + y must have 1 in the first coordinate,
and elements from {0, 2} in the last y coordinates, the number of possible

rows is 49712Y = 2¥*+26-2 Thyg taking this fact into account and counting the
number of rows of each one of these S+ 1 matrices, we have that (S+1)(y+0) <
2v+26-2 and the result follows. H
We know that the Za-linear Hadamard codes Hy,s of length 2™ with 6 = 1
or & = 2 are equivalent to the binary linear Hadamard codes Hm of length
2M [14]. However, the results given in Section 4 for these codes will always be
better than the ones obtained by using Theorem 3, since fy,s < fm, where

m=y+20—1.

Example 4 In Example 1, a 2-PD-set of size 3 for Ha is given. The code Ha
is equivalent to both Z4-linear Hadamard codes Hi1,2 and H3,1. However, a 2-
PD-set of size 3 is not achievable by using Theorem 3, since f1,2 = 3,1 = 1.

Example 5 A 4-PD-set of size 5 for Hs can be constructed by Theorem 2, since
fs = 4. However, considering Hs as the Gray map image of H2.2 or Ha,1, no

more than a 3-PD-set of size 4 can be found by using Theorem 3, since f4,1 =2
and f2,2 = 3.

Next, by using Theorem 3, we give an explicit construction of s-PD-sets of
minimum size S+ 1 for Ho,s, forall6=3and2 < s < fo.5. Let R = GR(4°~1)

be the Galois extension of dimension & — 1 over Za. It is known that R is
isomorphic to Z4[X]/(h(X)), where h(X) is a monic basic irreducible polynomial
of degree & — 1. Let f(X) € Z2[X] be a primitive polynomial of degree d — 1. Let
A = 25"1 — 1 There is a unique primitive basic irreducible polynomial h(x)
dividing X* — 1 in Z4[x] and such that p(h(x)) = f(X), where W is the map that
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performs modulo 2 to all coefficients of h(x). Let T ={0,1,a,...,a* 1} C R,
where @ is a root of h(x). It is well known that any r € R can be written
uniquely as r = a + 2b, where a, b € T . Wetake R as the ordered set:

R:{I’l,...,l’46—1}
={0+2-0,...,a"14+2-0,...,0+2-a*L ..., a" 142 ar 1)
Since |R |16 =fo,5+ 1, we can form fo,6 + 1 disjoints sets of R of size 8. For

i €{0,...,%05}, we consider the 0 X § quaternary matrices
1 rsi+1
NT L.
1 rsg+1)

Theorem 4 Let Ps = {M; : 0 < i < s}, where Mi= N . Then, ®(Ps)
is an s-PD-set of size s + 1 for the Zs-linear Hadamard code Ho,s of length

226=1 — >m with information set ®os), forall 8 > 3and2 < s < fo 5= fm.

Proof We need to prove that rsi+2 — rsi+1, . . ., 5i+1) — rai+1 are linearly
independent over Z4, for all i € {0, . . ., fo,5}, in order to guarantee that Ni €
PAut(Ho.5). Note that these vectors are not zero divisors [9]. Since a® = 1,

{rsi+2 — rsi+1,...,Is(i+1) — Fsi+1} is one of the following three sets:

Li={1,...,a% 2}

La={a"t —d* ..., a0t — &k} forsome k € {0,...,A— 1},

L3 ={a"*! —aX,...,a" 1 —aK, —a" + 2(bj — bi), @" — a* + 2(bj — i), ...,
ak+0=2 — gk  2(bj — bi)}, for some bi,bj € T and k € {0,...,A— 1}.

The elements in L1 are clearly linearly independent over Z4. Now, we prove

that the same property is satisfied in L2. Assume on the contrary that there are
%ggne/\ if=0,i€{1,...,6—1},suchthat Ai(@**'—aX)=0.IfAi € {1,3}

atleastonei € {1,...,0— 1}, we get a contradiction. Indeed, if we take modulo

2 in the previous linear combination, we obtain that ~ Ai(@<*i — @) = 0,
where Ai € Z; and at least one Ai f/= 0. This is a contradiction by Lemma

2. On the other hand, if Ai € {0,2} foralli € {1,. — 1} and there is at

least
oenaes/\. =12,then ~ 2A7(ak+i —ak) =7[ /\r(a"’rI —ak)] = 0, where Ar € {0, 1}

and at least one A" = 1. Hence, /\r (ak+' ak) = 2A for some A € R, that is,
1
it is a zero divisor. By taking modulo 2, we obtain a contradiction by Lemma 2.
We show that the elements in L3 = {1, . .., Vo—1} are also linearly inde-

pendent over Z4 by using a shght modlflcatlon of the prev1ous argument.

u 08 ttheelsatle o 1, — ,s h that
pp y ta King mo u& nf we obtaln that A5 1C(k+ &lckﬂ

Qk) = Oka/\é B A (di — 1)] = 0. Since @ is a unit, it follows that

As—1+ A (Or — 1) = 0, which gives a contradiction if Ai € {1,3} for at
least one index, since 1, a — 1, . 05 2 — 1 are linearly independent over Z3.
IfAi € {0,2} foralli € {1, — 1}, we get a contradiction by applying a

similar argument to the one used abqve. ‘
Finally, by construction, the matrices N*, . . ., éV * have no rows in common

and the result follows by Theorem 3. H
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The bound fm is always attained for Ho,s des <p1te the elements of the f
PD-set belong to the subgroup @PAut(Ho5)) < PAut(Ho,s), since fm = 1{8 5.

Example 6 Let Ho,3 be the quaternary linear Hadamard code of length 16 and
type 2°43. Let R = Za[x)/(h(X)), where h(X) = x? + X + 1. Note that h(x)
is a primitive basic irreducible polynomial dividing X3 — 1 in Za[X]. Let a be
a root of h(x). Then, T {O La,a?}and R=Ar1,...,rie} =70, 1,a,3+
3023245011453 ga_%a3+a2+203+202+3a,1+a}.Let

Pa = {N , where No = 1d3,
1337 '121' T112° T122°
Ni= o031 , N2= 032 , N3= o031 , and Na= o010
001 021 023 001
Note that P4 € PAut(Ho,3). By Theorem4 ®D(P4) is a 4-PD-set of size 5 for
Ho,3. Note that the matrices N* —Id and N* i e {1, , 4}, have no rows

in common, where

"133° "121°7 T1127 “122°
Ni= 120 Ny — 113  nNr_ 103 = gpq NFf= 132
130 102 131 123

7 Recursive constructions ok-PD-sets forZs-linear Hadamard
codes

Given a matrix M € PAut(Hy,5) and an integer K = 1, we define

1 n 0 26

"0 A 0 2X°
MK)= "0 "0 1dc O

04(Y) 04(B)

Proposition 6 Let Ps= {Mo, .. ., Ms} € PAut(Hy,s) such that @(Ps) is

an s- g’D set of size s+1 for Hy.s with information set @(Iy,5). Then, Qs =
{(M )L, .., M 1(k)~1} 'C PAut(Hy+is+) and ®(Qs) is an s-PD-set

of S|ze s+ 1 for Hy+| s+j with information set ®(Zy+i5+j), for any i,j = 0
suchthati + j =k = 1.

Proof Note that if M € PAut(Hy,s), then M(K) € GL(Y + 0 + K, Z4). Taking
this into account, together with the fact that Id« can split as
"Id; O
lde="0 19, °

where i + j = kK = 1, it is clear that M~1(k) € PAut(Hy+i.6+j) and so its
inve{se Thus Qs - 1PAut(Hy+i 5+j). Finally, repeated rows in the matrices

row? in tflé irieitr'ices (I\%Q A cannot O%}lrl S;ﬂgg tclgrslsf&%tc\gggl eprlgsufpfe eYlows

from Theorem 3. H
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Example 7 Let P4 = { Mo, ..., Ma} S PAut(Ho,3) be the set, given in Ex-
ample 6, such that @(Pa) is a 4-PD-set of size 5 for Ho,3. By Proposition
6, Q4 = {Mi_l(l))_1 0 < i £ 4} is contained in both PAut(H1,3) and
PAut(Ho,4). Moreover, @(Qa) is a 4-PD-set of size 5 for H1,3 and Ho,4. Never-
theless, note that the construction of (/V/_il(l))* depends on the group where

ML) is considered.

As for binary linear Hadamard codes, a second recursive construction con-
sidering the elements of PAut(Hy,s ) as permutations of coordinate positions,

that is as elements of Sym(2™), can also be provided. Given four permutations
oi € Sym(ni), i € {1,...,4}, we define (01]|02]|03]|04) € Sym(n1+n2+N3+Nn4)
in the same way as we defined (01]|02) € Sym(n1i + n2) in Section 5.

Proposition 7 Let S be an s-PD-set of size | for Hy,s of length n and type
2V 4% with information set I. Then, (S|S) = {(o|o): 0 € S} is an s-PD-set of
size | for Hy+1,5 of length 2n and type 2V+14% constructed from (5) and the
Gray map, with any informationsetI"=1uv {i+n},i € I.

Proof Since Hy+1,6 = {(X, X), (X, X) : X € Hy.5}, where X is the complementary

vector of X, the result follows using the same argument as in the proof of
Proposition 4. By the proof of Proposition 5, we can add any of the coordinate

positions of {i+ Nn:i € 1} tol in order to form a suitable information set 1”
for Hy+1,5. H

Let 2S = 2!S denote the set (S|S) and, recursively, 2'S = 2(2171S).

Corollary 5 Let Ps= {Mi:0 < i < s}, where M = Ni_l. Then, 2Y @(Ps)
is an s-PD-set of size s + 1 for the Zs-linear Hadamard code Hy,s, for all

y=20,6=23and2 < s < fop.

Proof By Theorem 4 and Proposition 7, we can construct fo,s -PD-sets of size
fo5+1 for Hy,s, forall y 2 0 and 6 = 3. H

Proposition 7 cannot be generalized directly for Z4-linear Hadamard codes

Hy,5+1 constructed from (6% and the Gray map. Note that if Sis an S- PD-
set for Hy,5, then (S|S|S|S) = {(o|o|d|o): 0 € S} is not always an

s-PD-set for Hy,s+1, since in general (0|ololo) € PAut(Hy,s). For exam-
ple, 0 = (1,5)(2,8,3,6,4,7) € PAut(Ho,2) € Sym(8), but m = (o|o|o|o) ¢
PAut(Ho,3) € Sym(32), since m(¥(©0, 0,0,0,1,1,1,1,2,2,2,2,3,3,3,3)) =

®((0,0,0,0,0,2,0,2,2,2,2,2,2,0,2,0) f€ Hoz3.

Proposition 8 Let S € PAut(Hy,s) such that &(S) is an s-PD-set of size |
for Hy s of length n and type 2¥ 4° with information set I. Then, ®((S|S|S|S)) =

{®((r|r|r|r)): T € S} is an s-PD-set of size | for Hy,s+1 of length 4n and
type 2¥4%*1 constructed from (6) and the Gray map, with any information set

IM=1lu{i+nj+ntijelandi f=j.
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Proof Since Hy,s+1 is constructed from (6), Hy,5+1 = {(u, U, u, U), (U, u+1, u+
2,u+3),U,u+2,u,u+2),uU,u+3,u+2,u+1):ue Hys}. Itis easy to
see that if T € PAut(Hy,5), then (7| 7| 7|7 ) € PAut(Hy,6+1).

Let 0 = @(1). Finally, we need to prove that for every € € 224” with wt(e) <
s, there is (olololo) € ®((S|S|S|S)) such that (o|ololo)(e)e = O, where
I < {1, ...,4n} is an information set for Hy,5+1 with y + 2(0 + 1) coordinate
positions. Using a similar argument to that given in the proofs of Propositions 4
and 7, the result follows. Moreover, by the proof of Proposition 5, any I'" =

lu{i+n,j+n}withi,j €l and i f=] is an information set for Hy,s+1. H

Corollary 6 LetS € PAut(Hy,5) such that &(S) is an s-PD-set of size | for
H, s of length 2™ and type 2v4% with information set 1. Then, ®(2+4S) is

an s-PD-set of size | for Hy+is+j. of length 2m+i+2i and type 2¥*14%+1 with
information set obtained by applying recursively Proposition 5, for alli,j = 0.

Proof The result comes trivially by applying Propositions 5, 7 and 8. H

8 Computational results

Magma software supports the basic facilities for linear codes over finite fields,
integerresidue rings and Galois rings [4]. A new package that expands the cur-
rent functionality for binary linear and Z4-linear codes, including functions to
decode using different methods, has been developed by the authors. Itincludes
functions to perform permutation decoding, to obtain the S-PD-sets described
in the previous sections, and to check whether or not a set of permutations
isan S-PD-set withrespectto aninformationset. Magma version 2.22 (from
May 2016) and later contains these functions by default [4, Chapters 158 and
162], and they can also be downloaded from http://ccsg.uab.cat.
Using the functions implemented in this package, it is possible to easily

improve the result given by Corollary 5 for Hy,s with y > 0, that is, to obtain
s-PD-sets of size S + 1 for fo,s < s < f,,5 by using a nondeterministic method.

Table 1 summarizes these computational results for the codes Hy,s with 3 <
0 < 6and 1 £y < 5. Specifically, for each one of these codes, the values of fo,5
and fy,s are shown, together with the maximum S for which an S-PD-set of
size S+ 1 has been found. Note that all these found s-PD-sets are constructed
by using only elements from @(PAut(Hy,s)), which is a subgroup of the whole
automorphism group of Hy,s.
Even when the nondeterministic method fails to quickly find a fy,s -PD-
set of minimum size fy,s + 1, the bound fy,s may be attained by using only

elements in @(PAut(Hy,5)) as shown in Example 8. Nevertheless, we have not
been able to generalize this example to find an explicit construction in this

case. The monomial automorphism group MAut(Hy,s ) and the permutation
automorphism group PAut(Hy,s) may be considered to achieve this goal.

Example 8 Let the ordered set R and the matrices N ’(‘), ..., N*be as in Exam-
ple 6. Define r = (1,r) € {1} X Zz4for allr e R. Let P7 = {ﬁfl 0<i <7}
1
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§ v fos s fye 6§ v Jos s fy.6

3 1 4 6 7 5 1 50 72 84
2 4 1C 11 2 50 11€ 14E
3 4 16 2C 3 50 187 25E
4 4 26 35 4 50 312 454
5 4 42 63 5 50 51¢& 81¢

4 1 15 23 24 6 1 169 230 291
2 15 36 41 2 16¢€ 377 511
3 15 56 72 3 16¢ 63C 90¢
4 15 91 127 4 16€ 104C 1637
5 15 15C 22€ 5 16¢€ 1784 2971

Table 1 Maximum s-PD-sets found computationally for some coflps

where Ai* are the following matrices:

- QO' - * - - * - -N3*0-
) , Py 9 , P 9 , rg 2
a2 Lo Coe _Ns2~
Mo , M6 , M6 , fa 0

By Theorem 3, one can easily check that @(P7) € PAut(H1,3) is a 7-PD-set of
size 8 for H1,3 of length 64 with information set ®([1,3)=7{1,2,3,4,9,10,33}.

Since f1,3 = 7, no better s-PD-sets of size S + 1 can be provided for H1,3 by
using Theorem 3. However, an 8-PD-set of size 9 could be theoretically found
in PAut(H1,3) since fe = 8.

9 Conclusions

An alternative permutation decoding method that can be applied to Z2Za4-
linear codes [3], which include Za-linear codes, was presented in [2]. However,
the determination of PD-sets for some families of Z2Z4-linear codes remained
an open question. In this paper, S-PD-sets of minimum size S+1 for binary lin-
ear and Za-linear Hadamard codes are constructed. This approach establishes
equivalent results to the ones obtained for simplex codes in [5]. For binary
linear codes Hm and (nonlinear) Z4-linear Hadamard codes Ho,s of length 2™,
S-PD-sets of size S + 1 with S up to the upper bound fm = fo,s are con-
structed. Moreover, for (nonlinear) Za-linear Hadamard codes Hy,s, S-PD-sets
of size S + 1 up to fo,s are given. However, it still remains to find an explicit
construction of S-PD-sets of size S + 1 for Hy,s with y > 0 and & = 3 for

fO,(S <s < fy,6 .
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