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1. Introduction

Motivated by the connection to network coding, q-analogs of designs have re-
ceived an increased interest lately. Arguably the most important open problem in
this field is the question for the existence of a q-analog of the Fano plane [6]. Its
existence is open over any finite base field GF(q). The most important single case
is the binary case q = 2, as it is the smallest one. Nonetheless, so far the binary
q-analog of the Fano plane has withstood all computational or theoretical attempts
for its construction or refutation.

Following the approach for other notorious putative combinatorial objects as,
e.g., a projective plane of order 10 or a self-dual binary [72, 36, 16] code, the possible
automorphisms of a binary q-analog of the Fano plane have been investigated in
[4]. As a result [4, Theorem 1], its automorphism group is at most of order 4, and
up to conjugacy in GL(7, 2) it is represented by a group in the following list:

(a) The trivial group.
(b) The group of order 2

G2 =

〈







0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1







〉

.

(c) One of the following two groups of order 3:

G3,1 =

〈







0 1 0 0 0 0 0
1 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 1 0
0 0 0 0 0 0 1







〉

and G3,2 =

〈







0 1 0 0 0 0 0
1 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1







〉

.

(d) The cyclic group of order 4

G4 =

〈







1 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1
0 0 0 0 0 0 1







〉

.

For the groups of order 2, the above result was achieved as a special case of
a more general result on restrictions of the automorphisms of order 2 of a binary
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q-analog of Steiner triple systems [4, Theorem 2]. All the remaining groups have
been excluded computationally applying the method of Kramer and Mesner.

In this article, we will extend these results as follows. In Section 3 automorphisms
of order 3 of general binary q-analogs of Steiner triple systems STS2(v) will be
investigated. The main result is Theorem 2, which excludes about half of the
conjugacy types of elements of order 3 in GL(v, 2) as the automorphism of an
STS2(v). In the special case of ambient dimension 7, the group GL(7, 2) has 3
conjugacy types G3,1, G3,2 and G3,3 of subgroups of order 3. Theorem 2 shows
that the group G3,2 is not the automorphism group of a binary q-analog of the
Fano plane. Furthermore, Theorem 2 provides a purely theoretical argument for
the impossibility of G3,3, which previously has been shown computationally in [4].

In Section 4, the groups G4 and G3,1 will be excluded computationally by show-
ing that the Kramer-Mesner equation system does not have a solution. Both cases
are fairly large in terms of computational complexity. To bring the problems to a
feasible level, the solution process is parallelized and executed on the high perfor-
mance Linux cluster of the University of Bayreuth. For the latter and harder case
G3,1, we additionally make use of the inherent symmetry of the search space given
by the normalizer of the prescribed group, see also [8].

Finally, the combination of the results of Sections 3 and 4 yields

Theorem 1. The automorphism group of a binary q-analog of the Fano plane is
either trivial or of order 2. In the latter case, up to conjugacy in GL(7, 2) the
automorphism group is represented by

〈







0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1







〉

.

2. Preliminaries

Throughout the article, V is a vector space over GF(2) of finite dimension v.

2.1. The subspace lattice. For simplicity, a subspace of V of dimension k will
be called a k-subspace. The set of all k-subspaces of V is called the Grassmannian
and is denoted by

[

V
k

]

q
. As in projective geometry, the 1-subspaces of V are called

points, the 2-subspaces lines and the 3-subspaces planes. Our focus lies on the case
q = 2, where the 1-subspaces 〈x〉GF(2) ∈

[

V
1

]

2
are in one-to-one correspondence

with the nonzero vectors x ∈ V \ {0}. The number of all r-subspaces of V is given
by the Gaussian binomial coefficient

#

[

V

k

]

q

=

[

v

k

]

q

=

{

(qv−1)···(qv−r+1
−1)

(qr−1)···(q−1) if k ∈ {0, . . . , v};

0 otherwise.

The set L(V ) of all subspaces of V forms the subspace lattice of V . There are good
reasons to consider the subset lattice as a subspace lattice over the unary “field”
GF(1) [5].

By the fundamental theorem of projective geometry, for v ≥ 3 the automorphism
group of L(V ) is given by the natural action of PΓL(V ) on L(V ). In the case that
q is prime, the group PΓL(V ) reduces to PGL(V ), and for the case of our interest
q = 2, it reduces further to GL(V ). After a choice of a basis of V , its elements are
represented by the invertible v × v matrices A, and the action on L(V ) is given by
the vector-matrix-multiplication v 7→ vA.
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2.2. Designs.

Definition 1. Let t, v, k be integers with 0 ≤ t ≤ k ≤ v and λ another positive
integer. A set D ⊆

[

V
k

]

q
is called a t-(v, k, λ)q subspace design if each t-subspace

of V is contained in exactly λ elements (called blocks) of D. When λ = 1, D is
called a q-Steiner system. If additionally t = 2 and k = 3, D is called a q-Steiner
triple system and denoted by STSq(v).

Classical combinatorial designs can be seen as the limit case q = 1 of a design
over a finite field. Indeed, quite a few statements about combinatorial designs have
a generalization to designs over finite fields, such that the case q = 1 reproduces
the original statement [3, 9, 10, 15].

One example of such a statement is the following [18, Lemma 4.1(1)]: If D is a
t-(v, k, λ)q design, then D is also an s-(v, k, λs)q for all s ∈ {0, . . . , t}, where

λs := λ

[

v−s
t−s

]

q
[

k−s
t−s

]

q

.

In particular, the number of blocks in D equals

#D = λ0 = λ

[

v
t

]

q
[

k
t

]

q

.

So, for a design with parameters t-(v, k, λ)q, the numbers λ
[

v−s
t−s

]

q
/
[

k−s
t−s

]

q
necessarily

are integers for all s ∈ {0, . . . , t} (integrality conditions). In this case, the parameter
set t-(v, k, λ)q is called admissible. It is further called realizable if a t-(v, k, λ)q design
actually exists.

For designs over finite fields, the action of Aut(L(V )) ∼= PΓL(V ) on L(V ) pro-
vides a notion of isomorphism. Two designs in the same ambient space V are called
isomorphic if they are contained in the same orbit of this action (extended to the
power set of L(V )). The automorphism group Aut(D) of a design D is its stabilizer
with respect to this group action. If Aut(D) is trivial, we will call D rigid. Further-
more, for G ≤ PΓL(V ), D will be called G-invariant if it is fixed by all elements
of or equivalently, if G ≤ Aut(D). Note that if D is G-invariant, then D is also
H-invariant for all subgroups H ≤ G.

2.3. Steiner triple systems. For an STSq(v) we have

λ1 =

[

v−1
2−1

]

q
[

3−1
2−1

]

q

=
qv−1 − 1

q2 − 1
and

λ0 =

[

v
2

]

q
[

3
2

]

q

=
(qv − 1)(qv−1 − 1)

(q3 − 1)(q2 − 1)
.

As a consequence, the parameter set of an ordinary or a q-analog Steiner triple
system STSq(v) is admissible if and only if v ≡ 1, 3 mod 6 and v ≥ 3. For q = 1,
the existence question is completely answered by the result that a Steiner triple
system is realizable if and only if it is admissible [11]. However in the q-analog
case, our current knowledge is quite sparse. Apart from the trivial STSq(3) given
by {V }, the only decided case is STS2(13), which has been constructed in [1].

The smallest admissible case of a non-trivial q-Steiner triple system is STSq(7),
whose existence is open for any prime power value of q. It is known as a q-analog of
the Fano plane, since the unique Steiner triple system STS1(7) is the Fano plane.
It is worth noting that there are cases of Steiner systems without a q-analog, as the
famous large Witt design with parameters 5-(24, 8, 1) does not have a q-analog for
any prime power q [9].
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2.4. Group actions. Let G be a group acting on a set X via x 7→ xg. The
stabilizer of x in G is given by Gx = {g ∈ G | xg = x}, and the G-orbit of x is given
by xG = {xg | g ∈ G}. By the action of G, the set X is partitoned into orbits. For
all x ∈ X , there is the correspondence xg 7→ Gxg between the orbit xG and the
set Gx\G of the right cosets of the stabilizer Gx in G. For finite orbit lengths, this
implies the orbit-stabilizer theorem stating that #xG = [G : Gx]. In particular, the
orbit lengths #xG are divisors of the group order #G.

For all g ∈ G we have

(1) Gxg = g−1Gxg.

This leads to the following observations:

(a) The stabilizers of elements in the same orbit are conjugate in G, and any
conjugate subgroup of Gx is the G-stabilizer of some element in the G-orbit
of x.

(b) Equation (1) shows that Gxg = Gx for all g ∈ NG(Gx), where NG de-
notes the normalizer in G. Consequentely, for any subgroup H ≤ G the
normalizer NG(H) acts on the elements of x ∈ X with Nx = H .

The above observations greatly benefit our original problem, which is the in-
vestigation of all the subgroups H of G = GL(7, 2) for the existence of a binary
q-analog D of the Fano plane whose stabilizer GD equals H : By observation 2.4,
we may restrict the search to representatives of subgroups of G up to conjugacy.
Furthermore, having fixed some subgroup H , by observation 2.4 the normalizer
N = NG(H) is acting on the solution space. Consequently, we can notably speed
up the search process by applying isomorph rejection with resprect to the action of
N .

2.5. The method of Kramer and Mesner. The method of Kramer and Mesner
[13] is a powerful tool for the computational construction of combinatorial designs.
It has been successfully adopted and used for the construction of designs over a
finite field [2, 14]. For example, the hitherto only known q-analog of a Steiner triple
system in [1] has been constructed by this method. Here we give a short outline, for
more details we refer the reader to [2]. The Kramer-Mesner matrix MG

t,k is defined

to be the matrix whose rows and columns are indexed by the G-orbits on the set
[

V
t

]

q

of t-subspaces and on the set
[

V
k

]

q
of k-subspaces of V , respectively. The entry of

MG
t,k with row index TG and column index KG is defined as #{K ′ ∈ KG | T ≤ K ′}.

Now there exists a G-invariant t-(v, k, λ)q design if and only if there is a zero-one
solution vector x of the linear equation system

(2) MG
t,kx = λ1,

where 1 denotes the all-one column vector. More precisely, if x is a zero-one solution
vector of the system (2), a t-(v, k, λ)q design is given by the union of all orbits KG

where the corresponding entry in x equals one. If x runs over all zero-one solutions,
we get all G-invariant t-(v, k, λ)q designs in this way.

3. Automorphisms of order 3

In this section, automorphisms of order 3 of binary q-analogs of Steiner triple
systems are investigated. While the techniques are not restricted to q = 2 or
order 3, we decided to stay focused on our main case of interest. In parts, we follow
[4, Section 3] where automorphisms of order 2 have been analyzed.

We will assume that V = GF(2)v, allowing us to identify GL(V ) with the matrix
group GL(v, 2).
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Lemma 1. In GL(v, 2), there are exactly ⌊v/2⌋ conjugacy classes of elements of
order 3. Representatives are given by the block-diagonal matrices Av,f with f ∈

{0, . . . , v − 1} and v − f even, consisting of v−f
2 consecutive 2 × 2 blocks ( 0 1

1 1 ),
followed by a f × f unit matrix.

Proof. Let A ∈ GL(v, 2) and mA ∈ GF(2)[X ] be its minimal polynomial. The
matrix is of order 3 if and only if mA divides X3 − 1 = (X + 1)(X2 +X + 1) but
mA 6= X + 1. Now the enumeration of the possible rational normal forms of A
yields the stated classification. �

For a matrix A of order 3, the unique conjugate Av,f given by Lemma 1 will be

called the type of A. The action of 〈Av,f 〉 partitions the point set
[

GF(2)v

1

]

2
into

orbits of size 1 or 3. An orbit of length 3 may either consist of three collinear points
(orbit line) or of a triangle (orbit triangle).

Lemma 2. The action of 〈Av,f 〉 partitions
[

GF(2)v

1

]

2
into

(i) 2f − 1 fixed points;

(ii) 2v−f
−1

3 orbit lines;

(iii) (2v−f
−1)(2f−1)
3 orbit triangles.

Proof. Let G = 〈Av,f 〉. The eigenspace of Av,f corresponding to the eigenvalue 1
is of dimension f and equals F = 〈ev−f+1, ev−f+2, . . . , ev〉. The fixed points are

exactly the 2f −1 elements of
[

F
1

]

2
. Furthermore, for a non-zero vector x ∈ GF(2)v

the orbit 〈x〉GGF(2) is an orbit line if and only if A2
v,fx+Av,fx+x = 0 or equivalently,

x ∈ K := ker(A2
v,f +Av,f + Iv) = 〈e1, e2, . . . , ev−f 〉.

Thus, the number of orbit lines is
[

dim(K)
1

]

2
/3 = (2v−f−1)/3. The remaining

[

v
1

]

2
−

[

f
1

]

2
−
[

v−f
1

]

2
= (2v−f − 1)(2f − 1) points are partitioned into orbit triangles. �

Example 1. We look at the classical Fano plane as the points and lines in PG(2, 2) =
PG(GF(2)3). Its automorphism group is GL(3, 2). By Lemma 1, there is a single
conjugacy class of automorphisms of order 3, represented by

A3,1 =





0 1 0
1 1 0
0 0 1



 .

By Lemma 2, the action of 〈A3,1〉 partitions the point set
[

GF(2)3

1

]

2
into the fixed

point

〈(0, 0, 1)〉GF(2),

the orbit line

{〈(1, 0, 0)〉GF(2), 〈(0, 1, 0)〉GF(2), 〈(1, 1, 0)〉GF(2)},

and the orbit triangle

{〈(1, 0, 1)〉GF(2), 〈(0, 1, 1)〉GF(2), 〈(1, 1, 1)〉GF(2)}.

Now we look at planes E fixed under the action of 〈Av,f 〉. Here, the restriction of
the automorphism x 7→ Av,fx to E yields an automorphism of E ≡ GF(2)3 whose
order divides 3. If its order is 1, then E consists of 7 fixed points and we call E
of type 7. Otherwise, the order is 3. So, by Example 1 it is of type A3,1, and E
consists of 1 fixed point, 1 orbit line and 1 orbit triangle. Here, we call E of type 1.
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Lemma 3. Under the action of 〈Av,f 〉,

#fixed planes of type 7 =

[

f

3

]

2

=
(2f − 1)(2f−1 − 1)(2f−2 − 1)

21
;

#fixed planes of type 1 = #orbit triangles =
(2f − 1)(2v−f − 1)

3
.

Proof. The fixed planes of type 7 are precisely the planes in the space of all fixed
points of dimension f . Each fixed plane of type 3 is uniquely spanned by an orbit
triangle. �

Example 2. By Lemma 1, the conjugacy classes of elements of order 3 in GL(7, 2)
are represented by

A7,1 =







0 1 0 0 0 0 0
1 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 1 0
0 0 0 0 0 0 1






, A7,3 =







0 1 0 0 0 0 0
1 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1






, A7,5 =







0 1 0 0 0 0 0
1 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1






.

By Lemma 2 and Lemma 3, we get the following numbers:

A7,1 A7,3 A7,5

#fixed points 1 7 31
#orbit lines 21 5 1
#orbit triangles 21 35 31
#fixed planes of type 7 0 1 155
#fixed planes of type 1 21 35 31

In the following, D denotes an STS2(v) with an automorphism Av,f of order
3. From the admissibility we get v ≡ 1, 3 mod 6 and hence f odd. The fixed
points are given by the 1-subspaces of the eigenspace of Av,f corresponding to the
eigenvalue 1, which will be denoted by F . The set of fixed planes in D of type 7
and 1 will be denoted by F7 and F1, respectively.

Lemma 4. Let L ∈
[

V
2

]

2
be a fixed line. Then the block passing through L is a

fixed block.

Proof. From the design property, there is a unique block B ∈ D passing through
L. For all A ∈ 〈Av,f 〉, we have B · A ∈ D and B · A > L · A = L, so B · A = B by
the uniqueness of B. Hence B is a fixed block. �

Lemma 5. The blocks in F7 form an STS2(f) on F .

Proof. Obviously, each fixed block of type 7 is contained in F . Let L ∈
[

F
2

]

2
. By

Lemma 4, there is a unique fixed block B ∈ D passing through L. Since L consists
of 3 fixed points, B must be of type 7. Hence B ≤ F . �

The admissibility of STS2(f) yields f ≡ 1, 3 ≡ 6, so:

Corollary 1. An STS2(v) does not have an automorphism of order 3 of type Av,f

with f ≡ 2 mod 3.

In particular, a binary q-analog of the Fano plane does not have an automorphism
of order 3 and type A7,5. This gives a theoretical confirmation of the computational
result of [4], where the group 〈A7,5〉 has been excluded computationally.

Lemma 6.

#F7 =
(2f − 1)(2f−1 − 1)

21
;(3)

#F1 = #orbit lines =
2v−f − 1

3
.(4)
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Proof. By Lemma 5, the number #F7 equals the λ0-value of an STS2(f).
For #F1, we double count the set X of all pairs (L,B) where L is an orbit line,

B ∈ F1 and L < B. By Lemma 2, the number of choices for L is 2v−f
−1

3 . Lemma 4
yields a unique fixed block B passing through L. Since B contains the orbit line

L, B has to be of type 1. So #X = 2v−f
−1

3 . On the other hand, there are #F1

possibilities for B and each such B contains a single orbit line. So #X = #F1,
verifying Equation (4). �

Lemma 7. An STS2(v) with v ≥ 7 does not have an automorphism of order 3 of
type Av,f with f > (v − 3)/2 and f 6≡ v mod 3.

Proof. Assume that v ≥ 7 and f 6≡ v mod 3. Let P ∈
[

F
1

]

2
and X be the set

of all blocks passing through P which are not of type 7. The number of blocks

passing through P is λ1 = 2v−1
−1

3 . By Lemma 5, F7 is an STS2(f) on F . So
the number of blocks of type 7 passing through P is given by the λ1-value of an

STS2(f), which equals 2f−1
−1

3 . Hence #X = 2v−1
−2f−1

3 . Since P is a fixed point,
the action of 〈Av,f 〉 partitions X into orbits of size 1 and 3. Depending on v and
f , the remainder of #X modulo 3 is shown below:

f ≡ 1 mod 6 f ≡ 3 mod 6 f ≡ 5 mod 6
v ≡ 1 mod 6 0 1 2
v ≡ 3 mod 6 2 0 1

In our case f 6≡ v mod 3, we see that #X is not a multiple of 3, implying the
existence of at least one fixed block in X , which must be of type 1. Thus, it
contains only 1 fixed point, showing that the type 1 blocks coming from different
points P ∈

[

F
1

]

2
are pairwise distinct. In this way, we see that

2f − 1 = #fixed points ≤ #F1 =
2v−f − 1

3
,

where the last equality comes from Lemma 6. Using the preconditions v ≥ 7 and
v, f odd, we get that this inequality is violated for all f > (v − 3)/2. �

Remark 1. [(a)]
(1) The condition v ≥ 7 cannot be dropped since the automorphism group of the

trivial STS2(3) is the full linear group GL(3, 2) containing an automorphism
of type A3,1.

(2) In the case that the remainder of #X modulo 3 equals 2, we could use the
stronger inequality 2(2f − 1) ≤ #F1. However, the final condition on f is
the same.

Lemma 7 allows us to exclude one of the groups left open in [4, Theorem 1]:

Corollary 2. There is no binary q-analog of the Fano plane invariant under
G3,2 := 〈A7,3〉.

As a combination of Lemma 1, Corollary 1 and Lemma 7, we get:

Theorem 2. Let D be an STS2(v) with an automorphism A of order 3. Then
A has the type Av,f with f 6≡ 2 mod 3. If f ≡ v mod 3, then either v = 3 or
f ≤ (v − 3)/2.
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Example 3. Theorem 2 excludes about half of the conjugacy types of elements of
order 3. Below, we list the remaining ones for small admissible values of v:

A7,1 A9,1 A9,3 A13,1 A13,3 A13,7

#fixed points 1 1 7 1 7 127
#orbit lines 21 85 21 1365 341 21
#orbit triangles 21 85 147 1365 2387 2667
#fixed planes of type 7 0 0 1 0 1 11811
#fixed planes of type 1 21 85 147 1365 2387 2709
#F7 0 0 1 0 1 381
#F1 21 85 21 1365 341 21

We conclude this section with an investigation of the case Av,1, which has not
been excluded for any value of v. The computational treatment of the open case
A7,1 in Section 4 will make use of the structure result of the following lemma.

Lemma 8. Let D be a STS2(v) with an automorphism of type Av,1. Then D

contains 2v−1
−1

3 fixed blocks of type 1. The remaining blocks of D are partitioned
into orbits of length 3. Furthermore, V can be represented as V = W + X with
GF(2) vector spaces W and X of dimension v − 1 and 1, respectively, such that
the fixed blocks of type 1 are given by the set {L + X : L ∈ L}, where L is a
Desarguesian line spread of PG(W ).

Proof. Let W = GF(2v−1), which will be considered as a GF(2) vector space if not
stated otherwise. Let ζ ∈ W be a primitive third root of unity. We consider the
automorphism ϕ : x 7→ ζx of W of order 3. Since ϕ does not have fixed points
in

[

W
1

]

2
, ϕ is of type Av−1,0. The set L =

[

W
1

]

4
is a Desarguesian line spread of

PG(W ). It consists of all lines of PG(W ) with ϕ(L) = L. Since PG(W ) does not
contain any fixed points under the action of ϕ, L is the set of the (2f−1−1)/3 orbit
lines.

Now let X be a GF(2) vector space of dimension 1. The map ϕ̂ = ϕ× idX is an

automorphism of V = W ×X of order 3 and type Av,1. Let L̂ = {L+X | L ∈ L}.

Under the action of ϕ̂, the elements of L̂ are fixed planes of type 1. By Lemma 3,
the total number of fixed planes of type 1 equals #L̂ = #L, so L̂ is the full set of
fixed planes of type 1. Moreover, Lemma 6 gives #F1 = (2f−1 − 1)/3 = #L̂, on
the one hand, so all these planes have to be blocks of D, and #F7 = 0 on the other
hand, so the remaining blocks are partitioned into orbits of length 3. �

4. Computational results

The automorphism groups G3,1 and G4 of a tentative STS2(7) are excluded
computationally by the method of Kramer and Mesner from Section 2.5. The

matrix MG4

t,k consists of 693 rows and 2439 columns, the matrix M
G3,1

t,k has 903
rows and 3741 columns. In both cases, columns containing entries larger than 1
had been ignored since from equation (2) it is immediate that the corresponding
3-orbits cannot be part of a Steiner system.

One of the fastest method for exhaustively searching all 0/1 solutions of such
a system of linear equations where all coefficients are in {0, 1} is the backtrack
algorithm dancing links [12]. We implemented a parallel version of the algorithm
which is well suited to the job scheduling system Torque of the Linux cluster of the
University of Bayreuth. The parallelization approach is straightforward: In a first
step all paths of the dancing links algorithm down to a certain level are stored.
In the second step every such path is started as a separate job on the computer
cluster, where initially the algorithm is forced to start with the given path.
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For the group G4 the search was divided into 192 jobs. All of these determined
that there is no STS2(7) with automorphism group G4. Together, the exhaustive
search of all these 192 sub-problems took approximately 5500 CPU-days.

The group G3,1 was even harder to tackle. The estimated run time (see [12]) for
this problem is 27 600 000 CPU-days.

In order to break the symmetry of this search problem and avoid unnecessary
computations, the normalizer N(G3,1) of G3,1 in GL(7, 2) proved to be useful.
According to GAP [7], the normalizer is generated by

N(G3,1) =

〈







0 1 0 0 0 0 0
1 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 1 0
0 0 0 0 0 0 1






,







0 1 0 1 0 1 0
1 0 1 0 1 0 0
1 1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1






,







0 1 0 1 0 1 0
1 1 1 1 1 1 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1







〉

and has order 362 880.
As discussed in Section 2.4, if for a prescribed group G, s1, s2 are two solutions of

the Kramer-Mesner equations (2), then s1 and s2 correspond to two designs D1 and
D2 both having G as full automorphism group. A permutation σn which maps the
1-entries of s1 to the 1-entries of s2 can be represented by an element n ∈ GL(7, 2).
In other words, Dn

1 = D2. Since G is the full automorphism group of D1 and D2 it
follows for all g ∈ G:

Dng
1 = Dg

2 = D2 = Dn
1 .

This shows that n ∈ N(G).
This can be used as follows in the search algorithm. We force one orbit KG

i to
be in the design. If dancing links shows that there is no solution which contains
this orbit, all k-orbits in (KG

1 )N can be excluded from being part of a solution, i.e.
the corresponding columns of MG

t,k can be removed.
In the case G3,1, the set of k-orbits is partitioned into four orbits under the

normalizer N(G3,1). Two of this four orbits, let’s call them KG
1 and KG

2 , can be
excluded with dancing links in a few seconds. The third orbit KG

3 needs more work,
see below. After excluding the third orbit, also the fourth orbit is excluded in a
few seconds.

For the third orbit KG
3 we iterate this approach and fix two k-orbits simultane-

ously, one of them being KG
3 . That is, we consider all cases of fixed pairs (KG

3 ,KG
i ),

where KG
i /∈ (KG

1 )N ∪ (KG
2 )N . If there is no design which contains this pair of k-

orbits, all k-orbits of the orbit (KG
i )S can be excluded too, where S = GKG

3
is the

stabilizer of the orbit KG
3 under the action of N(G).

This process could be repeated for triples, but run time estimates show that
fixing pairs of k-orbits minimizes the computing time.1 Under the stabilizer of KG

3 ,
the set of pairs (KG

3 ,KG
i ) of k-orbits is partitioned into 14 orbits. Seven of these

14 pairs representing the orbits lead to problems which could be solved in a few
seconds. The remaining seven sub-problems were split into 49 050 separate jobs with
the above approach for parallelization. These jobs could be completed by dancing
links in approximately 23 600 CPU-days on the computer cluster, determining that
there is no STS2(7) with automorphism group G3,1.

For the groupG2 the estimated run time is 3 020 000 000 000 000CPU-days which
seems out of reach with the methods of this paper.

1If iterated till the end, this type of search algorithm is known as orderly generation, see
e.g. [16, 17].
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