Skip to main content
Log in

Asymptotic and constructive methods for covering perfect hash families and covering arrays

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Covering perfect hash families represent certain covering arrays compactly. Applying two probabilistic methods to covering perfect hash families improves upon the asymptotic upper bound for the minimum number of rows in a covering array with v symbols, k columns, and strength t. One bound can be realized by a randomized polynomial time construction algorithm using column resampling, while the other can be met by a deterministic polynomial time conditional expectation algorithm. Computational results are developed for both techniques. Further, a random extension algorithm further improves on the best known sizes for covering arrays in practice. An extensive set of computations with column resampling and random extension yields explicit constructions when \(k \le 75\) for strength seven, \(k \le 200\) for strength six, \(k \le 600\) for strength five, and \(k \le 2500\) for strength four. When \(v > 3\), almost all known explicit constructions are improved upon. For strength \(t=3\), restrictions on the covering perfect hash family ensure the presence of redundant rows in the covering array, which can be removed. Using restrictions and random extension, computations for \(t=3\) and \(k \le 10{,}000\) again improve upon known explicit constructions in the majority of cases. Computations for strengths three and four demonstrate that a conditional expectation algorithm can produce further improvements at the expense of a larger time and storage investment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alon N., Spencer J.H.: The probabilistic method. In: Wiley-Interscience Series in Discrete Mathematics and Optimization, 3rd edn. Wiley, Hoboken (2008).

  2. Bryce R.C., Colbourn C.J.: The density algorithm for pairwise interaction testing. Softw. Test. Verif. Reliab. 17, 159–182 (2007).

    Article  Google Scholar 

  3. Bryce R.C., Colbourn C.J.: A density-based greedy algorithm for higher strength covering arrays. Softw. Test. Verif. Reliab. 19, 37–53 (2009).

    Article  Google Scholar 

  4. Bshouty N.H., Costa A.: Exact learning of juntas from membership queries. Lecture Notes in Artificial Intelligence, vol. 9925, 115–129 (2016).

  5. Cawse J.N.: Experimental design for combinatorial and high throughput materials development. GE Glob. Res. Tech. Rep. 29, 769–781 (2002).

    Google Scholar 

  6. Chateauneuf M.A., Colbourn C.J., Kreher D.L.: Covering arrays of strength 3. Des. Codes Cryptogr. 16, 235–242 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  7. Chateauneuf M.A., Kreher D.L.: On the state of strength-three covering arrays. J. Comb. Des. 10, 217–238 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  8. Cohen D.M., Dalal S.R., Fredman M.L., Patton G.C.: The AETG system: an approach to testing based on combinatorial design. IEEE Trans. Softw. Eng. 23, 437–444 (1997).

    Article  Google Scholar 

  9. Cohen M.B., Colbourn C.J., Ling A.C.H.: Constructing strength three covering arrays with augmented annealing. Discret. Math. 308, 2709–2722 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  10. Colbourn C.J.: Combinatorial aspects of covering arrays. Le Matematiche (Catania) 58, 121–167 (2004).

    MATH  Google Scholar 

  11. Colbourn C.J.: Covering array tables: \(2 \le v \le 25\), \(2 \le t \le 6\), \(t \le k \le 10000\) (2005–2016). www.public.asu.edu/~ccolbou/src/tabby.

  12. Colbourn C.J.: Strength two covering arrays: existence tables and projection. Discret. Math. 308, 772–786 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  13. Colbourn C.J.: Covering arrays from cyclotomy. Des. Codes Cryptogr. 55, 201–219 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  14. Colbourn C.J.: Covering arrays and hash families. In: Information Security and Related Combinatorics, NATO Peace and Information Security, pp. 99–136. IOS Press, Amsterdam (2011).

  15. Colbourn C.J.: Conditional expectation algorithms for covering arrays. J. Comb. Math. Comb. Comput. 90, 97–115 (2014).

    MathSciNet  MATH  Google Scholar 

  16. Colbourn C.J., Torres-Jiménez J.: Heterogeneous hash families and covering arrays. Contemp. Math. 523, 3–15 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  17. Colbourn C.J., Zhou J.: Improving two recursive constructions for covering arrays. J. Stat. Theor. Pract. 6, 30–47 (2012).

    Article  MathSciNet  Google Scholar 

  18. Colbourn C.J., Martirosyan S.S., Van Trung T., Walker II R.A.: Roux-type constructions for covering arrays of strengths three and four. Des. Codes Cryptogr. 41, 33–57 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  19. Damaschke P.: Adaptive versus nonadaptive attribute-efficient learning. Mach. Learn. 41, 197–215 (2000).

    Article  MATH  Google Scholar 

  20. Donders M.S., Godbole A.P.: t-Covering arrays generated by a tiling probability model. Congressus Numerantium 218, 111–116 (2013).

    MathSciNet  MATH  Google Scholar 

  21. Erdős P., Lovász L.: Problems and results on \(3\)-chromatic hypergraphs and some related questions. In: Infinite and finite sets (Colloq., Keszthely, 1973, vol. II), pp. 609–627. Colloq. Math. Soc. János Bolyai, vol. 10. North-Holland, Amsterdam (1975).

  22. Forbes M., Lawrence J., Lei Y., Kacker R.N., Kuhn D.R.: Refining the in-parameter-order strategy for constructing covering arrays. J. Res. Nat. Inst. Stand. Tech. 113, 287–297 (2008).

    Article  Google Scholar 

  23. Francetić N., Stevens B.:: Asymptotic size of covering arrays: an application of entropy compression. J. Comb. Des. 25(6), 243–257 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  24. Freiman G., Lipkin E., Levitin L.: A polynomial algorithm for constructing families of \(k\)-independent sets. Discret. Math. 70(2), 137–147 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  25. Gargano L., Körner J., Vaccaro U.: Sperner capacities. Graphs Comb. 9, 31–46 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  26. Godbole A.P., Skipper D.E., Sunley R.A.: \(t\)-Covering arrays: upper bounds and Poisson approximations. Comb. Probab. Comput. 5, 105–118 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  27. Graham N., Harary F., Livingston M., Stout Q.F.: Subcube fault-tolerance in hypercubes. Inf. Comput. 102, 280–314 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  28. Hartman A.: Software and hardware testing using combinatorial covering suites. In: Golumbic M.C., Hartman I.B.A. (eds.) Interdisciplinary Applications of Graph Theory, Combinatorics, and Algorithms, pp. 237–266. Springer, Norwell (2005).

    Chapter  Google Scholar 

  29. Johnson D.S.: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9, 256–278 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  30. Kampel L., Simos D.E.: Set-based algorithms for combinatorial test set generation. Lecture Notes in Computer Science, vol. 9976, 231–240 (2016).

  31. Kuhn D.R., Kacker R., Lei Y.: Introduction to Combinatorial Testing. CRC Press, Boca Raton (2013).

    MATH  Google Scholar 

  32. Kuhn D.R., Wallace D.R., Gallo A.M.: Software fault interactions and implications for software testing. IEEE Trans. Softw. Eng. 30, 418–421 (2004).

    Article  Google Scholar 

  33. Lejay L.V., Shasha D.E., Palenchar P.M., Kouranov A.Y., Cruikshank A.A., Chou M.F., Coruzzi G.M.: Adaptive combinatorial design to explore large experimental spaces: approach and validation. IEE Proc. Syst. Biol. 1(2), 206–212 (2004).

    Article  Google Scholar 

  34. Lidl R., Niederreiter H.: Finite Fields, 2nd edn. Cambridge University Press, Cambridge (1997).

    MATH  Google Scholar 

  35. Lovász L.: On the ratio of optimal integral and fractional covers. Discret. Math. 13(4), 383–390 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  36. Maity S., Akhtar Y., Chandrasekharan R.C., Colbourn C.J.: Improved strength four covering arrays with three symbols. Submitted for publication (2016).

  37. Martirosyan S.S.: Tran Van Trung: on \(t\)-covering arrays. Des. Codes Cryptogr. 32, 323–339 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  38. Meagher K., Stevens B.: Group construction of covering arrays. J. Comb. Des. 13, 70–77 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  39. Moser, R.A.: A constructive proof of the Lovász local lemma. In: STOC’09—Proceedings of the 2009 ACM International Symposium on Theory of Computing, pp. 343–350. ACM, New York (2009).

  40. Moser R.A., Tardos G.: A constructive proof of the general Lovász local lemma. JACM 57(2), 11 (2010).

    Article  MATH  Google Scholar 

  41. Nayeri P., Colbourn C.J., Konjevod G.: Randomized postoptimization of covering arrays. Eur. J. Comb. 34, 91–103 (2013).

    Article  MATH  Google Scholar 

  42. Nie C., Leung H.: A survey of combinatorial testing. ACM Comput. Surv. 43(2), 11 (2011).

    Article  MATH  Google Scholar 

  43. Raaphorst S., Moura L., Stevens B.: A construction for strength-3 covering arrays from linear feedback shift register sequences. Des. Codes Cryptogr. 73(3), 949–968 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  44. Sarkar K., Colbourn C.J.: Upper bounds on the size of covering arrays. SIAM J. Discret. Math. (to appear).

  45. Sarkar K., Colbourn C.J., De Bonis A., Vaccaro U.: Partial covering arrays: algorithms and asymptotics. In: Proceedings of Combinatorial Algorithms—27th International Workshop, IWOCA 2016, pp. 437–448. Helsinki, Finland (2016). Accessed 17–19 Aug 2016.

  46. Seroussi G., Bshouty N.H.: Vector sets for exhaustive testing of logic circuits. IEEE Trans. Inf. Theor. 34, 513–522 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  47. Sherwood G.B., Martirosyan S.S., Colbourn C.J.: Covering arrays of higher strength from permutation vectors. J. Comb. Des. 14, 202–213 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  48. Stein S.K.: Two combinatorial covering theorems. J. Comb. Theor. A 16, 391–397 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  49. Tzanakis G., Moura L., Panario D., Stevens B.: Constructing new covering arrays from LFSR sequences over finite fields. Discret. Math. 339(3), 1158–1171 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  50. van den Berg E., Candès E., Chinn G., Levin C., Olcott P.D., Sing-Long C.: Single-photon sampling architecture for solid-state imaging sensors. Proc. Natl. Acad. Sci. 110(30), E2752–E2761 (2013).

    Article  Google Scholar 

  51. Walker II R.A., Colbourn C.J.: Tabu search for covering arrays using permutation vectors. J. Stat. Plan. Inference 139, 69–80 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  52. Yuan R., Koch Z., Godbole A.P.: Covering array bounds using analytical techniques. Congressus Numerantium 222, 65–73 (2015).

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Research of KS and CJC was supported in part by the National Science Foundation under Grant No. 1421058.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles J. Colbourn.

Additional information

Communicated by T. Etzion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colbourn, C.J., Lanus, E. & Sarkar, K. Asymptotic and constructive methods for covering perfect hash families and covering arrays. Des. Codes Cryptogr. 86, 907–937 (2018). https://doi.org/10.1007/s10623-017-0369-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-017-0369-x

Keywords

Mathematics Subject Classification

Navigation